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Abstract

The evolution of cloud computing in the last decade has offered unprecedented

access to sizable, configurable computing resources with minimal management effort.

Containerization of applications, particularly through Docker, has been pivotal in

this progression. As modern software increasingly relies on various cloud services,

designing performant cloud applications has emerged as a critical concern. Key

attributes of such applications include reliability, scalability, efficiency, fault tolerance,

and responsiveness. This thesis seeks to address the challenges intrinsic to creating

performant cloud applications by developing strategies aimed at achieving these

characteristics through: 1) the application of autoscaling techniques to enhance

scalability, efficiency, and responsiveness; 2) the introduction of a methodology for

assessing the impact of Docker image upgrades on containerized applications to prevent

performance degradation; and 3) the utilization of microservices architecture to develop

scalable, reliable, and fault-tolerant cloud applications.

In our initial research, we propose a pioneering approach to optimize the perfor-

mance and resource usage of containerized cloud applications using adaptive controllers

grounded in control theory. Our methodology harnesses the capacity of neural networks

to capture the intrinsic non-linearity of these applications, and adapts the parameters

of a proportional-integral-derivative (PID) controller to accommodate environmental

changes. The outcomes demonstrate significant enhancements in resource utilization

and a reduction in service level agreement violations, surpassing the performance of

other examined autoscaling techniques.

In the subsequent study, we present a method to evaluate the performance implica-
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tions of Docker image upgrades on cloud software systems and their correlation with

application dependencies. Our case study of 90 official WordPress images underscores

the need for comprehensive performance testing before upgrades, the importance of

maintaining a performance repository for reporting test results, and the potential

benefits of extending semantic versioning to encompass performance modifications.

This investigation encourages an enlightened approach to Docker image management,

promoting enhanced cloud application performance.

Lastly, we introduce Micro-FL, a fault-tolerant federated learning framework crafted

to enhance the reliability and scalability of cloud-based machine learning platforms. By

incorporating a microservices-based architecture within Docker containers, Micro-FL

overcomes challenges typically associated with federated learning, such as resource

constraints, scalability, and system faults. Performance assessments demonstrate

Micro-FL’s capability to efficiently manage faults and streamline federated learning

processes, offering a more robust and scalable solution for federated learning.

The research work presented in this thesis provides deep insights, actionable

recommendations, and effective and thoroughly evaluated approaches for building

performant cloud applications.
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Chapter 1

Introduction

Emerging from the amalgamation of concepts such as heterogeneous distributed

computing, grid computing, utility computing, and autonomic computing, cloud

computing has presented itself as a remarkably transformative paradigm [202]. With

myriad definitions offered for cloud computing [17, 159, 228], it is the National Institute

of Standards and Technology that provides an apt explanation: cloud computing

represents a model that promotes ubiquitous and convenient access to a vast pool

of configurable computing resources such as networks, servers, storage, applications,

and services, which can be provisioned swiftly with minimum management or service

provider intervention [159]. Due to its inherent attributes, cloud computing has

attracted increasing interest within both industry and academia. This interest is driven

by its potential to transform software system operation models, thereby promising high

system availability, scalability, and performance [79]. Modern cloud-based applications

are typically composed of a diverse range of services and applications, each with unique

resource requirements to fulfil their Service Level Agreement (SLA) and maintain a

high Quality of Service (QoS). In this context, building a cloud application that can

deliver high-quality service without infringing upon the SLAs becomes an imperative.

In other words, creating an application that is not only performant but also able to

maintain this performance under varying loads and conditions, forms the cornerstone

of this endeavor.
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1.1 Performant Cloud Software Systems

The notion of a performant cloud software system refers to a cloud-based platform

that delivers services or capabilities with high efficiency and performance. Key

characteristics of such a system include reliability, scalability, efficiency, fault tolerance,

and responsiveness. Reliability refers to a system’s ability to consistently deliver

expected outcomes over a specified period in a particular environment [189]. This

means the software should perform as expected at all times, even in the face of various

failures such as software, hardware, service failures, or power outages. Scalability

reflects a system’s ability to expand in response to increased demand while maintaining

its performance objectives or SLAs [5]. In the context of cloud applications, this

means being capable of automatically allocating additional computing resources to

handle increased demand or workload. Techniques for achieving this include scaling

up (adding resources to an existing machine), scaling out (adding more machines), or

autoscaling (dynamically adjusting resources based on real-time demand). Efficiency

is determined by how effectively a software system utilizes its allocated resources

such as CPU, memory, and network capabilities. One approach to enhance the

efficiency of cloud software systems is through resource allocation, a process that

involves distributing available resources to cloud applications over the internet while

considering the available infrastructure, SLAs, cost, and energy factors [3]. Fault

tolerance is a system’s ability to continue operations despite the failure of certain

components. The system should be capable of detecting, identifying, and recovering

from faults. Techniques for designing fault-tolerant cloud software systems include

component redundancy, tolerance policies, and load balancing fault tolerance [55,

169]. Responsiveness refers to how efficiently and effectively a cloud software system

responds to user requests. This implies that the software’s execution time should be

optimized to reduce latency and improve operation speed.
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1.2 Containerization

Virtualization, a method that allows the sharing of physical resources among different

users and applications, is seen as one of the foundational concepts behind the advent of

modern cloud environments [29]. By consolidating numerous underutilized machines

into a single system, virtualization can optimize resources in data centers, including

hardware, software, energy, and monetary investments. It also improves process

reliability and fault tolerance through performance isolation, process migration, and

replication across geographically disparate locations [241].

An alternative approach to conventional virtualization, known as container-based

virtualization, Operating System (OS)-virtualization, or containerization, is increasingly

being recognized as a viable option. This approach significantly reduces resource

overhead, thereby enhancing the efficiency of data center utilization [200]. In the

containerization scheme, distinct instances known as containers operate atop a shared

OS kernel, with necessary isolation measures in place. A key distinction to note

is that compared to hypervisor-based virtualization, which uses virtual machines

(VMs), the virtualized objects in containerization are largely confined to global kernel

resources [209]. This particular characteristic allows containerization to operate

multiple virtual environments on a shared host kernel, utilizing fewer CPU, memory,

and networking resources. Consequently, containerization can provide more efficient,

scalable, and cost-effective resource management solutions in cloud infrastructures,

thereby explaining its rising popularity [232]. More specifically, container management

is best handled explicitly by a distributed system, rather than leaving it up to the

user to initiate a container within each task [249].

Among various containerization solutions available, Docker has emerged as a leading

choice [252]. As a principal technology in this space, Docker offers a lightweight

and minimal-overhead solution for implementing containerized applications, aligning

perfectly with the increasingly popular microservice architecture. The rapid startup
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times associated with Docker containers make it easy to perform swift scaling actions,

both horizontally and vertically, thus outperforming alternatives like virtual machines.

The unique characteristics of Docker align perfectly with microservices architecture

where each service is typically encapsulated in its own container, thereby promoting

isolation, optimized resource utilization, fault-tolerance and improved security.

1.3 Thesis Motivations and Objectives

Designing a performant cloud software system represents a substantial challenge,

requiring meticulous consideration to ensure that the system embodies the essential

qualities of reliability, scalability, efficiency, fault tolerance, and responsiveness. In

this context, containerization emerges as a potent instrument, opening new avenues

to enhance these essential attributes and fundamentally redefine the capabilities of

cloud software systems. This technology offers unique features that can be harnessed

to enhance the performance of cloud software systems. In light of these developments,

this thesis seeks to provide strategies for leveraging containerization to construct

performant cloud software systems. This thesis endeavors to present strategies for

harnessing containerization to build performant cloud software systems. The proposed

strategies will primarily focus on improving the scalability, efficiency, responsiveness,

reliability, and fault tolerance of these systems.

The central objectives of this thesis are as follows:

• Objective 1: Investigate strategies that can potentially enhance resource allocation,

application responsiveness, and scalability of containerized applications to attain

optimal performance.

– Evaluate the viability of utilizing Neural Networks (NNs) to construct a

dependable performance model, tailored to developing adaptive auto-scalers

within a control-theoretical framework.
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– Investigate and categorize the types of controllers capable of effectively

preserving desired performance alongside key metrics, such as Service Level

Agreement (SLA),in cloud-based software systems.

– Identify which controller can tackle resource provisioning tasks with the

utmost efficiency.

• Objective 2: Investigate the impact of updating the Docker image of applications

on their overall performance.

– Investigate the impact of the upgrade of the application on its performance

– Investigate the correlation between the application’s performance and

updates made to its dependencies.

• Objective 3: Investigate the advantages of employing microservices design pat-

terns for creating performant cloud applications.

– Investigate methods to migrate from monolithic applications to a microservice-

based architecture.

– Examine the advantages of implementing microservices design in terms of

enhancing scalability, reliability, responsiveness, and fault tolerance.

To accomplish our objectives, we undertake three distinct research studies. The

first study, which corresponds to Objective 1, encompasses an exhaustive analysis

of a variety of autoscaling techniques. Subsequent to this evaluation, we propose

an adaptive PID controller aiming for optimizing the performance, improving the

responsiveness of the application, optimizing resource utilization, and reducing service

level agreement (SLA) violations. The second study, targeting Objective 2, proposes a

methodology for assessing the impact of Docker image upgrades on their performance

and potential subsequent effects on the user experience (responsiveness). The central

focus of this study lies in understanding the implications of Docker image upgrades
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from the vantage points of reliability, responsiveness, and resource utilization. The

third study, pertaining to Objective 3, investigates a novel type of cloud application

integrating machine learning systems - in this case, Federated Learning systems.

The study examines the effects of adopting microservices design patterns on the

performance of such cloud applications. The primary emphasis of this study is on

enhancing the scalability, reliability, fault tolerance, and resource utilization of cloud

applications.

The motivations and findings derived from our research studies, which constitute

the contributions of this thesis, are summarized as follows:

Research Study 1: “Optimizing the Performance of Containerized Cloud

Software Systems using Adaptive PID-Controllers” [196] (Chapter 2)

Motivation: The improvement of scalability, responsiveness, and resource utiliza-

tion in containerized cloud applications can be achieved through the implementation

of autoscaling techniques. Prior research has delved into various autoscaling tech-

niques, encompassing non-adaptive autoscaling methods [23, 72, 78] and adaptive

autoscaling methods [60, 123, 151]. A primary challenge associated with non-adaptive

techniques lies in the autoscaler’s lack of knowledge about the performance of the

scaled cloud application. Capturing the behavior of highly non-linear systems such as

cloud applications is a demanding task. Therefore, our motivation was to devise an

autoscaling method that harnessed the capabilities of neural networks for modeling the

performance of the cloud application and control theory for adapting the autoscaler to

changes in the cloud environment, thereby optimizing performance, resource utilization,

and responsiveness.

Findings: Our results indicate that using neural networks, we could effectively

model the performance of the cloud applications. The neural network presented a

Mean Squared Error (MSE) of 5,931.20 and 8,248.60, a Mean Absolute Error (MAE)

of 42.34 and 71.57, and a Mean Absolute Percentage Error (MAPE) of 5.96% and

11.278% for the training set and the validation set, respectively. By integrating this
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performance model with the adaptive PID controller, our findings demonstrated that

all controllers were able to maintain the average response time within the desired

operating region. Control-theoretical methods responded faster to disturbances and

had fewer SLA violations compared to the scaling heat algorithm. Among control-

theoretical approaches, the proposed adaptive controllers notably outperformed the

non-adaptive counterparts in both SLA and rise time. Furthermore, we observed that

adaptive controllers showed enhanced capabilities in handling resource management

tasks by significantly improving over-provisioning, efficient provisioning, and under-

provisioning.

Research Study 2: “Studying the Performance Risks of Upgrading Docker

Hub Images: A Case Study of WordPress” [198] (Chapter 3)

Motivation: Performance has become an increasingly critical aspect of modern

software. Some common performance metrics are response time, throughput, and

resource usage [33]. Performance testing aims to answer ”what if” questions, such as

the impact of software configuration changes or workload changes on the system perfor-

mance [101]. Despite its significance, performance testing is not widely implemented

in the industry [33] or by developers [135]. We hypothesized that the same applies

to Docker images. While the performance of individual software components within

the image may have been tested, their collective performance in operation has likely

never been examined. This oversight could have adverse effects on the performance of

cloud applications from the perspectives of reliability, responsiveness, and resource

utilization. While several studies have analyzed Docker’s performance [69, 146, 194,

242], our research is the first to explore the performance impact of upgrading Docker

images. Consequently, we were motivated to propose a strategy to better comprehend

the performance risks associated with upgrading a Docker image, with particular

attention to its dependencies.

Findings: We selected WordPress as the subject for our performance analysis. Our

results illustrated that the considerable variation in relative response time improve-
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ments for the studied upgrades implies that predicting performance effects based solely

on the WordPress version in the image is challenging. This suggests that WordPress’s

performance is mostly driven by other components in the image. It is also challenging

to forecast how upgrading a WordPress image will alter performance, based on its

WordPress or Apache version. A major version upgrade of the PHP consistently

improved WordPress’s performance, indicating that WordPress’s performance is highly

dependent on the PHP version. Upgrading the last patch version in a minor/major

version to the first available patch version in a minor/major version of PHP invariably

enhanced WordPress’s performance. We propose that Docker Hub should allow users

to provide performance measurements of an image and that Semantic versioning

should extend to cover performance changes.

Research Study 3: “Micro-FL: A Fault-Tolerant Scalable Microservice

Based Federated Learning Platform” [197] (Chapter 4)

Motivation: Cloud computing has gained popularity due to its resource availability

and ease of use, offering an excellent platform for deploying and serving machine

learning applications in the cloud environment. Federated learning, a machine learning

paradigm that supports collaborative model training across different entities while

preserving data privacy, provides a promising alternative to traditional machine

learning systems. However, current federated ML frameworks encounter challenges,

including high hardware requirements, limited scalability, and significant vulnerability

to system faults. Aiming to design a performant federated learning systems, we

propose utilizing a microservices architecture to address the issues of scalability and

fault tolerance in federated learning systems as a containerized cloud application.

Findings: Our research found that using a microservices architecture for federated

learning systems can address scalability issues, improving system performance in

response to an increase in workload (users) by horizontally scaling the services within

the federated learning system. Furthermore, we discovered that employing redundancy

techniques could improve the reliability and fault tolerance of existing federated
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learning systems, thereby resolving the issue of a single point of failure in these

systems.

Together, discussed research studies, provide multiple pathways for enhancing the

performance of containerized cloud applications, addressing a variety of challenges

associated with the current design and management of these systems. Each study con-

tributes unique insights and proposes practical, implementable strategies for improving

the performance and overall quality of cloud applications.

1.4 Thesis Outline

The remaining sections of this thesis are structured as follows. Chapter 2 introduces

our autoscaling technique tailored to optimize the performance of cloud applica-

tions. Chapter 3 details our study examining the implications of upgrading Docker

Hub images, using WordPress as a case study. Chapter 4 introduces our proposed

microservices-based platform, designed to offer scalability and fault tolerance for

federated learning. The concluding chapter, Chapter 5, encapsulates the key findings

and contributions of our research studies, offering insights into potential avenues for

future research.
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Chapter 2

Optimizing the Performance of
Containerized Cloud Software
Systems using Adaptive
PID-Controllers

2.1 Abstract

Control theory, with its robust mathematical foundation, has demonstrated its efficacy

in the design and implementation of controllers. This approach avoids the issues

commonly associated with non-control theoretic controllers. State of the art auto-

scaling controllers suffer from one or more of the following limitations: 1) lack of

a reliable performance model, 2) using a performance model with low scalability,

tractability or fidelity, 3) being application or architecture-specific leading to low

extendability and 4) no guarantee on their efficiency. Consequently, in this chapter,

we strive to mitigate these problems by leveraging an adaptive controller, which is

comprising of a neural network as the performance model and a PID controller as the

scaling engine. More specifically, we design, implement and analyze different flavours

of these adaptive and non-adaptive controllers, compare and contrast them against

each other to find the most suitable one for managing containerized cloud software

systems at runtime. The controller’s objective is to maintain the response time of

the controlled software system in a pre-defined range, and meeting the Service Level
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Agreements (SLA) while leading to efficient resource provisioning.

2.2 Introduction

Modern distributed systems need to have robust mechanisms for dealing with changes

in their performance in order to be responsive and cost-effective at the same time. This

is mainly due to the stochastic nature of the underlying infrastructure’s performance,

variable workload, and possible failures common in the current complex computing

systems. Therefore, the modern distributed systems need to have self-adaptive

capabilities to sense the changes in the environment and react accordingly. Various

methods have been proposed to address and implement this [9, 13, 98, 208, 216], but

there has been very limited research on using control-theory-based solutions.

Control theory has been the go-to approach for many adaptable systems, especially

in physical systems due to its predictability, mathematical guarantees, and effectiveness.

To use control-theory-based approaches in managing the performance of large-scale

software systems effectively, we need accurate performance models of the computing

software system [25]. However, building models with acceptable accuracy has proven

to be lengthy and error-prone for the modern complex distributed systems [24, 96,

111, 112]. This has led to the current ad-hoc control theoretical solutions which are

application-specific and not proven to be extendable for other systems [15, 206].

In this work, we plan to leverage neural networks to design an adaptive performance

model that can maintain optimized performance for containerized cloud software

systems. Our proposed solution leverages the guarantees and robustness associated

with control theoretical approaches. We evaluate our approach in various settings

for a generic three-tier containerized application that has been deployed on Google

Cloud Platform (GCP). The control objective is achieved by scaling the number of

containers in the application tier. Moreover, we shed some light on the control theory’s

applicability in designing performant software systems. More specifically, we address

the following research questions:
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• RQ2.1: Can we use Neural Networks to build a reliable performance model for

designing control-theoretical adaptive auto-scalers?

Designing performance models for large-scale distributed systems that maintain

an acceptable trade-off between tractability and fidelity is a very challenging

task [111, 112]. In this work, we aim to evaluate if Neural Networks can be

used to design a tractable performance model with a high degree of fidelity and

extendability.

• RQ2.2: Which type of controllers can effectively maintain the performance and

metrics of interest, i.e., Service Level Agreement, Mean Squared Error, and

Mean Absolute Error in software systems?

Several run-time indicators are considered to see which controller is capable of

maintaining the system’s response time in the desired operating region with fewer

violations. We designed and evaluated fixed PI/PID controllers and adaptive

PI/PID counterparts to investigate this question. We compare these controllers

to find the most suitable one for distributed software systems.

• RQ2.3: Which controller can handle the task of resource provisioning more

efficiently?

In this case, we strive to find out which controller can make the best use of the

available resources (in our case containers). The goal is to use the resources as

it is necessary without over/under-provisioning. To this end, the performance of

the proposed adaptive PI and PID controllers are compared against their non-

adaptive counterparts as well as a pure reactive (Scaling Heat Algorithm [25])

algorithm by considering two different workloads.

The remainder of this chapter is organized as follows. Section 2.3 discusses the

background concepts for this research project. Section 2.4 introduces and compares

the related work in the literature. Section 2.5 presents our novel control-theory-based

methodology. Section 2.6 outlines our evaluation methodology for the approaches
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presented in this work.Section 2.6.3 discusses the results obtained in our evaluation.

In Section 2.7, we tried to identify the most important threats to our work’s validity

as well as some avenues for future research. Finally, Section 2.8 concludes the chapter.

2.3 Background

In this section, we briefly introduce the important concepts that are being used in

this chapter, namely, container virtualization and control theory.

Docker containers provide us with a lightweight and low overhead solution to im-

plement containerized application and the well known microservice architectures [161].

Their fast startup enables us to perform rapid-scaling actions, both horizontal and

vertical, compared to other solutions like virtual machines.

Cluster management platforms like Kubernetes [129], Mesos [162], and Swarm [61]

allow the software system to be deployed and reconfigured at large scale. These

orchestrators provide the deployment team with the ability to configure the software

without worrying about the underlying infrastructure. These platforms also contain

simple reactive auto-scaler units for the deployed cloud application out of the box.

As shown in Figure 2.1, in the context of control theory, each control system consists

of several blocks, e.g., sensor, actuator, feedback controller, and system under control.

We briefly explain each of these elements.

• Control Objective: refers to the control system’s purpose. For example, it could

be controlling the average response time of the controlled system to be less than

t seconds or lay in a pre-defined range.

• Set-Point : represents the desired value for the output of the controlled system.

For instance, the set point for average response time could be 1000 ms. Note

that the set point could be a range as well.

• Sensor : refers to a component that enables us read the system output, or in

our case, the performance variables. For example, average response, fail ratio,
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Figure 2.1: Block diagram of a simple control-theoretical feedback loop.

queue length, etc. In fact, it is a software component used for monitoring the

controlled system, e.g., Locust and Jmeter.

• Error : denotes the difference between the set-point and the measured value of

the output read by the sensor, representing the deviation from the desired value

for the control objective.

• Control Signal : represents the value computed by adopting a specific controller

with regards to the error, e.g., having a 400 ms error, the controller might signal

for creating two more containers.

• Controller : describes a mechanism or algorithm that calculates the control signal

to achieve the required control objective, considering the error value. We refer

to this algorithm as the control law.

• Actuator : refers to a mechanism that can be used to affect the controlled system.

For instance, the number of Virtual Machines or containers.

• System Under Control : denotes a system to be controlled by adjusting the

actuator(s). For example, a containerized cloud application as a system that its

control objective is met by creating/removing replicated containers.

The Proportional-Integral-Derivative (PID) controller, also known as “three term”

controller [11], still is the most popular controller in the industry due to its simplicity
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and transparency. The control signal of the continuous-time PID controller is described

as follows; please note that in this study we used discrete-time form of the PID controller

(discussed in Section 2.5.2) and this continuous-time form is discussed here only due

to its simplicity:

u(t) = KP e(t) + KI

∫︂ t

0

e(t) + KD
de(t)

dt
(2.1)

Where u(t) is the control signal calculated by the controller, e(t) is the current error,

and KP denotes the proportional gain, KI the integral gain, and KD the derivative

gain. The purpose of each of these gains are described as follows [11]:

• Proportional Gain KP : shows the sensitivity of the control system to the current

error.

• Integral Gain KI : shows the sensitivity of the control system to past errors.

Integral term acts as a low-frequency compensator to reduce the steady-state

error.

• Derivative Gain KD: shows the sensitivity of the control system to the future

trend of the error. Derivative term acts as a high-frequency compensator to

improve the transient behaviour of the system.

In order to tune the aforementioned PID controller parameters, interested readers

are encouraged to refer to [11] for a thorough overview of PID controllers and their

tuning methods.

2.4 Related Work

In this section, we discuss the prior work related to our study of optimizing the

performance of containerized software systems using adaptive PID-controllers. In

particular, we discuss the related work on performance modelling of cloud software

systems, non-adaptive and adaptive control-theoretical methods for auto-scaling.
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2.4.1 Cloud Software System Performance modelling

Performance unpredictability and responsive auto-scaling of the cloud applications are

listed in the top 10 obstacles for adopting the cloud [17]. Xiong et al. [240] present

a novel approach for studying computer service performance in cloud computing.

To fulfill the Quality of Service (QoS) guaranteed services in such a computing

environment, they seek to find the relationship among the maximum number of users,

the minimal service resources, and higher service levels. The authors introduce a

queuing network model and then use an approximation method to compute the Laplace

transform of a response time distribution. Moreover, they model the Web server and

service center as an infinite queue for single-class customers.

Qian et al. [183] propose a hierarchical modelling approach to analytically evaluate

Quality of Experience (QoE) of Online Service providers (OSPs) who are using cloud

environments. They use four sub-models, namely an outbound bandwidth model, a

cloud computing availability model, a latency model, and a cloud computing response

time model. These sub-models are combined into one whole model using a redirection

strategy graph. Their proposed approach is suitable for endless interactions in this

environment. Moreover, one can easily change these identified sub-models and also

add other sub-models to the existing model.

Khazaei et al. [116] put forth an analytical model for performance evaluation of

cloud server farms. The authors model a cloud server farm as a M/G/m queuing

system, considering it a Markov process. Then, they employ embedded Markov

chain techniques to analyze the performance of the cloud server farms and verify its

accuracy. In their follow-up study [114], they describe a new approximate analytical

model based on the Markov chain model for performance evaluation of cloud server

farms. The model determines the relationship between the number of servers and

input buffer size with performance metrics such as the mean number of tasks in the

system, blocking probability, and the probability that a task will obtain immediate
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service as well as response time distribution characteristics. In another study [113], the

authors introduce a performance model suitable for analyzing large-sized Iaas clouds’

service quality, using interacting stochastic models. They leverage both analytical

and simulation modelling to address the complexity of cloud computing systems.

Their proposed model fuses cloud centers’ important characteristics such as batch

arrival of user requests, resource visualization, and realistic servicing steps to obtain

the important performance indicators such as task blocking probability and total

waiting time incurred on user requests. Also, cloud centers’ performance with a high

degree of virtualization and Poisson batch task arrivals is evaluated in [115]. The

proposed model is based on a two-stage approximation technique where first, they

model the non-Markovian process with an embedded semi-Markov process, which

is then modelled by an embedded Markov process but only at the time instants of

super-task arrivals.

Malik et al. [153] provide an in-depth analysis, modelling, and verification of some

of the open-source state-of-art VM-based cloud management platforms. They leverage

high-level Petri nets (HLPN) to model and assess the software systems’ structural

and behavioural characteristics with the advantage of providing firm mathematical

representations. The authors verified the models using SMT-Lib and Z3 solvers.

Chang et al.[49] highlight the fact that the heterogeneity of the workload in real

Iaas Cloud Data Centers (CDCs) makes the performance modelling of complicated

Iaas CDCs a challenging task. Their study studies a situation in which the number of

virtual CPUs requested by each customer job is different. They present a hierarchical

stochastic modelling approach for performance analysis of CDCs to quantify the

impact of variation in job arrival rate, buffer size, and the maximum vCPUs numbers

on the cloud service quality.

Shekhar et al. [204] present an online data-driven approach that leverages Gaussian

Process-Based machine learning techniques to build run-time predictive models of

the performance of the system under different interference intensity. This model can
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adapt itself to the changes in the workload. The reason for selecting Gaussian Process

to model the latency variations due to varying workload is that these types of models

require a small number of hyperparameters, and also they can model the non-linear

behaviour of the target system. However, these models are probabilistic, and Then

they use this model to make run-time decisions for vertical scaling of the resources.

2.4.2 Non-adaptive Control Theoretical Auto-Scaling

Gergin et al. [78] propose a decentralized autonomic architecture based on a fixed

PID controller for a n-tier application. They implemented the proposed method on

a custom data mining web application based on the FIFA 1998 Workload. For this

three-tier application, three separate PID controllers control the number of Virtual

Machines (VMs) for each tier to maintain the corresponding CPU utilization at a

constant value. Another interesting study Barna et al. [23], evaluates the performance

of a non-adaptive PID controller in maintaining the desired behaviour for a web

application on SAVI as the private and Amazon EC3 as the public cloud provider.

The controller has been tuned manually by trial and error, and the control objective

of this controller is to keep the CPU utilization within a specific range.

The problem of control granularity and decoupled control is discussed in [144].

They point out that most of the available cloud controllers function without direct

knowledge about the cloud software system behaviour and performance metrics.

Control theory based adaptation using a Fixed PI controller is evaluated and

compared with the threshold-based and model-based method in [72]. Introducing

smooth and sharp variations in the cloud application workload, these three controllers’

performance in maintaining the CPU utilization around 70% is evaluated on a minimal

three-tier web application. Looking into results from an efficiency and effectiveness

perspective, the PI controller exhibits better resource utilization and faster settling

time and rise time.
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2.4.3 Adaptive Control Theoretical Auto-Scaling

Several studies on adaptive controllers have been carried out; for example, a vertical

elastic controller for memory is presented in [66] along with a method for error

smoothing. The control actuator is the memory size allocation, and the target is to

maintain the desired response time.

To handle the capacity shortage in cloud infrastructure, the brownout concept is

extended from electrical grids to cloud software systems in [123]. During high load,

brownout downgrades the user experience, e.g., by decreasing the optional content to

be served (i.e., dimmer value); in doing so, the Service Level Objective (SLO) can be

maintained. Brownout-compliant applications help support more users and consume

less resources while satisfying the SLO. An adaptive PI controller is synthesized for

coping with changes in the number of users and the environment. There are several

studies on brownout-compliant cloud software systems. For example, Maggio et

al. [151] study the applicability of adaptive PI, adaptive deadbeat, adaptive PID, and

Feedforward-feedback controllers on Brownout compliant systems. The performance of

these controllers against changes in application requirements and resource availability

is evaluated. The results of this work indicate that the feedforward-feedback controller

has better performance while requiring significant engineering effort. Therefore, since

the adaptive PID controller is simpler to implement, it is a preferable choice.

Event-based application brown-out as an improved approach to brown-out is pre-

sented in [60] based on the queue-length of pending requests. In this study, improve-

ment in control objectives is reported combining PI controller with machine learning

algorithms. Moreover, Nydlander et al. [174] improve this event-based control by

proposing a more accurate model of brown-out applications using queuing theory.

Quantitative comparison for the proposed cascade controller with original Brown-out

and event-based brown-out shows that better performance is achieved by having two

control levels: one for the inner-loop and one for the outer-loop. The flexibility of
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control theory in dealing with software systems is undeniable; one can find interesting

adaptive controllers designed using brown-out for load balancing strategies, e.g. [64,

178].

Baresi et al. [22] enumerate the benefits of containerizing the applications and

investigate the performance of auto-scaling in both container and Virtual Machine level.

They extend the EcoWare [21] framework to achieve compatibility with containerized

applications and then develop an autonomic control theoretical approach for auto-

scaling of a cloud application. A new dynamic model for the controlled system is

presented to model the application’s response time as a function of assigned cores and

request rate.

To address the incompatibility of the non-functional software models derived from

the architectural description of the software with control theoretical approaches, Arcelli

et al. [14] use the Modelica library to represent a Queuing Network. This library

provides some adjustable parameters for controlling the behaviour of the cloud software

system. Moreover, Model Identification Adaptive Controller(MIAC) based on the

layered queuing model and optimal control is presented in [26]. This non-linear model

is linearized around the operating point to tune the optimal controller parameter.

Moreover, Incerto et al. [95] propose a control algorithm for horizontal and vertical auto-

scaling of a cloud software system based on Model Predictive Control(MPC) strategy

is presented. In this study, they consider a compact approximate representation

of queuing networks based on ordinary differential equations(ODEs) to meet the

performance requirements by the model predictive controller. However, the authors

point out that the only technical limitation of their proposed method is the single

class assumption in the QN model, which they address this limitation in their follow

up paper [94].

Several comprehensive surveys on the application of control theoretical methods

are found in the recent literature. Ullah et al. [220] look into available methods from

both control solution view and elasticity view and review available work on control
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theoretical methods for cloud application elasticity and outlines the existing challenges

and trends in adopting such methods. Filieri et al. [70] review and elaborate on

the current control strategies for self-adaptive software systems starting from goal

identification to the verification and validation of the controlled system and at the

end, highlight the open challenges, both from the software engineering and the control

theory perspective. Moreover, a systematic literature review on control theoretical

software adaptation has been presented in [206].

Considering the previous studies on this area, we found that the most challenging

problem in adopting control theory in cloud software system adaptation is modelling

the software systems. According to previous studies in this area, researchers propose

various modelling methods for software systems, such as using queuing networks, to

make their auto-scaler adaptive to the environment’s changes. However, modelling

such highly stochastic and non-linear systems,e.g., cloud applications, is a painstaking

and costly task and requires a significant engineering effort. Therefore, in this research

project, we propose an approach for data-driven modelling of the software systems

leveraging neural networks due to the performance data’s abundance. To evaluate our

proposed method in RQ2.1, we investigate the possibility of using neural networks

for reliable performance modelling of cloud applications. Moreover, in RQ2.2 and

RQ2.3, we evaluate the performance of the proposed performance modelling method

along with an adaptive controller in maintaining the control objectives and from an

efficiency point of view.

2.5 Methodology

In this section, we go over the details of the methodology proposed in this research

study.
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2.5.1 Performance Modelling

The inherent nature of the cloud software systems exhibits some non-linear behaviours

at run-time. Modelling such systems is a non-trivial task and sometimes impossible

due to the complexity of the non-linear systems. Nevertheless, due to the constant

changes in the cloud environment, this model will not accurately represent the system

after a while. Linear approximation of these non-linear models only works around

the operating point and will not be valid if any significant changes occur in the

system’s operating point. Considering all these problems, we attempt to develop a

new approach for modelling cloud software systems and further adjusting it to its

environment changes. Due to the abundance of the data, we propose a data driven

approach to obtain a non-linear model of the cloud software system.

The neural networks can be a convenient solution to tackle the problems mentioned

above. According to the universal approximation theorem [59, 90], we can use a

feed-forward network with a linear output layer and at least one hidden layer with

some specific activation functions,e.g. logistic sigmoid functions, to approximate

any continuous function provided that the enough hidden layers and neurons are

given [81]. Several modelling approaches are developed and validated in [176]. Most

of these modelling approaches are performed on the electrical and physical systems.

For instance, [6] uses Recurrent High-Order Neural Networks (RHONN) for real-time

discrete non-linear modelling of an induction motor. A neural network-based non-linear

auto-regressive moving average with exogenous inputs for modelling a piezoelectric

actuator has been presented in [54]. These studies motivated us to carry out some

experiments to examine neural networks’ applicability for modelling cloud software

systems. Here, we formalize Hypothesis 1 to obtain the performance model for cloud

applications.

Hypothesis 1. In any situation, the performance of a containerized cloud application is

a non-linear function of the number of requested containers, the number of successfully
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provisioned containers, and the number of users with some time-delays.

ŷ(n + 1) =f(u(n), ..., u(n− nu),

z(n), ..., z(n− nz), d(n), ..., d(n− nd))
(2.2)

where ŷ is the response time, f is the non-linear function, u is the number of

requested containers, z is the number of running containers, d is the number of users

and n is the discrete time index.

Neural Networks

Neural Networks are employed extensively for system identification due to their

satisfactory performance in non-linear dynamic system modelling [52]. In this work,

we use the Multi-Layer Perceptron (MLP) as a feed-forward neural network for system

identifications. Figure 2.2 shows the proposed architecture of the MLP neural network.

For simplicity, only one hidden layer is considered.

The first layer is the input layer, the second layer is the hidden layer, and the last

one is the output layer. We use hyperbolic tangent as the activation function for the

hidden layer, and the output layer is a linear function.

According to Figure 2.2, the input vector for the Neural Network is:

xi(n) =(u(n), ..., u(n− nu),

z(n), ..., z(n− nz), d(n), ..., d(n− nd))
(2.3)

Where in our case, u, z, d, and n are the number of requested containers, number

of running containers, number of users, and discrete-time index, respectively. Also,

nu, nz, and nd denote the corresponding time delay for each of these inputs.

The cost function for training the neural network model, intended for system

identification purposes, is delineated as follows:

J = (y(n + 1)− ŷ(n + 1))2 =
1

2
(em(n + 1))2 (2.4)
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Figure 2.2: The structure of the proposed neural network for modelling the behaviour
of the cloud software system.

where y(n + 1) represents the measured output, ŷ(n + 1) is the predicted output, and

e(n + 1) is the prediction error.

The system identification procedure is required to obtain the sensitivity of the

system’s output to the change in control input, which is the number of requested

containers in our case. The Jacobian of the system can be derived as follows:

∂y(n + 1)

∂u(n)
≈ ∂ŷ(n + 1)

∂u(n)
(2.5)

Data-driven system identification comprises two stages: 1) data collection and

2) model training and verification. In the following subsection, we discuss the best

practices to collect the appropriate data for better system identification.

Data Collection

Data collection is an indispensable part of data-driven system identification, and the

resultant performance of the modelling highly depends on the quality of the acquired
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Figure 2.3: The overall structure of the identification and control of a cloud application,
red arrows on the Neural Network model and PID controller blocks indicate the online
adaptation of these blocks.

data. System identification can be carried out in an offline/online manner. Most of the

time, it is preferable to train the neural networks model online. However, this requires

a high sampling rate. Since the monitoring systems for cloud software systems suffer

from a low sampling rate, we are bound to first use some offline data for pre-training,

and then do further online training at run-time to adapt the model to the changes in

application or underlying infrastructure. Hence, we have a model that can be used in a

highly dynamic environment. To this end, we have collected offline data from a cloud

software system as our system under study to be identified for about 48 hours and

with a sample rate of 20 seconds. To acquire meaningful data from the system, it is

crucial to monitor the system’s behaviour in most system states. Furthermore, we can

apply the data logged in the cloud monitoring system’s repository for identification

purposes. One can find an example of data logging module in our online repository1.

1https://github.com/pacslab/NNPIDAutoscaler
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(a) Measurement vs estimated value from the trained model.

(b) The dynamics of workload and the number of running containers during the off-line
training.

Figure 2.4: Training the neural network before activating the adaptive controller.
During this time, the system uses a pure reactive auto-scaler to bring the adaptive
controller up to speed.

Model Training

In this section, we use data collected in the data collection phase (refer to Section 2.5.1)

to obtain the performance model. A multi-layer perceptron with one hidden layer

containing 40 neurons is adopted for this purpose. According to Equation (2.3), the

input vector consists of two-time delays for u, z, and d, i.e., nu = nz = nd = 2.

Therefore, the input vector is a nine-by-one vector. The number of time delays is

obtained from observations in data. The number of neurons, hidden layers and time

delays depends on the non-linearity of the target software system. The more non-linear

the system, the more neurons and deeper architecture are needed. Therefore, we

selected the number of neurons and hidden layers after several manual training and

finding the best fit. These numbers depend on the non-linearity of the target software

system. We tried to use the simplest model since increasing the number of neurons,
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Figure 2.5: Distribution of the evaluation metrics for performance modelling in the
training and validation stages.

and hidden layers may result in the problem of overfitting and computational overhead.

Our goal is to model the non-linear behaviour of the cloud software system with these

nine inputs for the next time step.

In order to train the model, 67% of the dataset is used for training and 33% for the

validation. In the pre-processing step, we scaled the input data to the range 0 to 1

according to the Min-Max scaling algorithm, to prevent the neural network model

from saturating. We used Adam Optimizer to train the weights and biases of the

neural network with a training rate of η = 0.002, β1 = 0.99, β2 = 0.9, and ϵ = 1e− 8

which are the default training values for the optimizer [121]. We set the batch size to

32 and the training epoch to 10000. We executed the model training five times.

Now, we can respond to RQ2.1. Figure 2.5 shows the distribution of the evaluation

metrics for performance modelling in the training and validation stages. In our offline

training phase, our neural network showed a Mean Squared Error (MSE) of 5931.20

and 8248.60, a Mean Absolute Error (MAE) of 42.34 and 71.57, and a Mean Absolute

Percentage Error (MAPE) of 5.96% and 11.278% for the training set and the validation

set, respectively. This is while the average response time in our training set is 667.79
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ms, with a variance of 187,480.34.

The root cause of the reported modelling errors can be due to a lack of sufficient

and representative data or an appropriate regularization in the model.

Considering the variations in the data and the obtained evaluation metrics from

the model, our neural network provides acceptable predictions during the training and

evaluation phases for an extremely stochastic system. The training set and validation

set results show that the neural network is not over-fitting to the training set during

our training.

2.5.2 Controller Design

In this study, we opted to use the adaptive PID controller’s incremental version, which

is available at our online repository 2. In this scheme, the error signal for the controller

is defined as follows and is shown in Figure 2.3:

et(n + 1) = ydes(n + 1)− y(n + 1) (2.6)

where ydes(n + 1) is the desired set point for the response time of the cloud software

system, and y(n + 1) is the measured response time of the system.

Control law for the discrete incremental PID [86] is defined as follows, one should note

that since number of containers cannot take float values we use ceiling function on

the u(n) :

u(n) =
⌈︁
u(n− 1) + kp(et(n)− e(n− 1))+

kIe(n) + kD(e(n)− 2e(n− 1) + e(n− 2))
⌉︁ (2.7)

where u(n) is a control input at discrete-time n. kp, kI , and kD are the proportional,

integral, and derivative gains of the incremental discrete controller respectively. We

are going to adaptively change these gains as the system behaviour changes with

respect to the following cost function for controller [86]:

J =
1

2
(ydes(n + 1)− y(n + 1))2 =

1

2
(et(n + 1))2 (2.8)

2https://github.com/pacslab/NNPIDAutoscaler
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To adjust the controller gains, the gradient descent method has been applied as follows:

kP (n + 1) = kP (n)− ηc
∂J

∂kP

kI(n + 1) = kI(n)− ηc
∂J

∂kI

kD(n + 1) = kD(n)− ηc
∂J

∂kD

(2.9)

where ηc is the controller learning rate. From equations 2.8 and 2.9, using the chain rule

for derivatives, we can derive the following equations for updating the PID controller

gains:

∂J

∂kP
=

∂J

∂y(n + 1)

∂y(n + 1)

∂u(n)

∂u(n)

∂kP
= −et(n + 1)

∂y(n + 1)

∂u(n)
θ1(n)

∂J

∂kI
=

∂J

∂y(n + 1)

∂y(n + 1)

∂u(n)

∂u(n)

∂kI
= −et(n + 1)

∂y(n + 1)

∂u(n)
θ2(n)

∂J

∂kD
=

∂J

∂y(n + 1)

∂y(n + 1)

∂u(n)

∂u(n)

∂kD
= −et(n + 1)

∂y(n + 1)

∂u(n)
θ3(n)

(2.10)

where ∂y(n+1)
∂u(n)

is Jacobian of the controlled system and it is obtained from the system

identification process, and θ1(n) = e(n) − e(n − 1), θ2(n) = e(n) and θ3(n) =

e(n)− 2e(n− 1) + e(n− 2). The algorithm for proposed adaptive controller is shown

in Algorithm 1.

It is worth noting that the controller adaptation will be performed when the neural

network exhibits “satisfactory accuracy”. In our experimental evaluations, we define

the neural network is satisfactory accurate when the prediction error in response time

is less than 300ms. Considering this value helps us prevent controller adaptation

from diverging since if any large changes happen in the identified model, it will lead

to a wrong Jacobian. According to Algorithm 1, the NN model is fine tuned at

runtime to adapt itself to the changes in the environment, therefore, we can wait until

the model is learned online again and then adjust the controller to the new model.

Moreover, according to Algorithm 1, the controller optimization is only performed

when the neural network model’s prediction error is lower than the threshold and
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when the regulation error is not zero, i.e. the response time is not between 500-800

ms. Although a full stability analysis would stray from the scope of this study, the

proposed approach for adaptation of the controller is a viable and robust means to

prevent the same adaptation from driving the closed-loop system toward instability.

2.6 Evaluation

In this section, we describe the experimental setup and the configuration of the

underlying infrastructure. Then, we discuss the experimental methodology for more

detail on workloads and performance metrics.

2.6.1 Experimental Setup

To properly evaluate the effect of the proposed algorithm on performance compared to

with other auto-scaling algorithms, we deployed a three-tier containerized WordPress

cloud application with MySQL as the database and Nginx as the webserver deployed

on a Kubernetes cluster. We picked WordPress as the benchmarking application due

to its widespread use in more than 34% of all websites over the Internet [225]. For load

testing, we leveraged an extended version of Locust Library [149], available publicly

in our repository3 on the same cluster to minimize the effect of network latency in the

results. Our extended version of Locust gave us more flexibility during experiments

than any other available load testing tool. We used a simple REST API developed

on the load testing tool4 that helped us control the load testing and measure the

performance of the application at runtime. The details of our deployment, along with

the configuration settings, can be found in our GitHub repository5. To synchronize

the WordPress’s upload folder between different instances, we used an NFS server

deployed to the same zone as the Kubernetes cluster to minimize the network latency.

3https://github.com/pacslab/pacs locust
4https://github.com/pacslab/pacs load tester
5https://github.com/pacslab/wordpress-kubernetes-deployment
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Algorithm 1: Proposed Adaptive Controller Algorithm

input : yn+1 — The average response time measured for the current time
step.

input : un, un−1, ..., un−nu — The number of requested containers for nu

previous time steps.
input : zn, zn−1, ..., zn−nz — The number of running containers for nz

previous time steps.
input : dn, dn−1, ..., dn−nd

— The number of users for nd previous time steps.
input : KP (n), KI(n), KD(n) — The controller parameters at time step n.
output : u(n + 1) — The updated controller command for the next time step.

while True do
/* According to the current parameters(KP (n), KI(n), KD(n)) */

Calculate u(n) using Equation 2.7
Calculate the Jacobian using Equation 2.5
Prepare the input vector xi(n) for NN model according to Equation 2.3
/* NN model predicts the average response time. */

ŷ(n + 1) ← f(xi(n)) according to Equation 2.2
e(n + 1)← ŷ(n + 1)− y(n + 1)
/* Checking the accuracy of the predictor. */

if |e(n + 1)| < Threshold then
/* Updating the control variables */

kP (n + 1)← kP (n)− ηc
∂J
∂kP

kI(n + 1)← kI(n)− ηc
∂J
∂kI

kD(n + 1)← kD(n)− ηc
∂J
∂kD

else
/* The control variables are not updated due to

unsatisfactory prediction. */

kP (n + 1)← kP (n)
kI(n + 1)← kI(n)
kD(n + 1)← kD(n)

end
/* According to the new control

parameters(KP (n + 1), KI(n + 1), KD(n + 1)) */

Calculate u(n + 1) using Equation 2.7
/* To improve the prediction accuracy the NN-Model is

fine-trained. */

Fine-tune the NN-Model by optimizing Equation 2.4
end
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Table 2.1: Configuration of the Kubernetes Cluster.

Property Value

Cluster Zone us-central1-a

Minimum Nodes 1

Maximum Nodes 7

VM Type n1-standard-1

vCPU 1

RAM 3.75 GB

SSD 30GB

OS Container-Optimized OS

Client Version 1.13.9

Server Version 1.13.6

Kubernetes Cluster

For the purpose of this work, we deployed a Kubernetes cluster on the Google Cloud

Platform (GCP) using the Google Kubernetes Engine (GKE). The cluster configuration

used in the experiments can be found in Table 2.1.

Benchmarking Application

In this section, we introduce the details of our benchmarking three-tier containerized

application. For this study, we used WordPress with PHP FPM version 7.3 as our

application server. Our application server uses MySQL version 5.6 as the database

and Nginx version 1.7.9 as its web server. Our configuration files, as well as the Docker

images and deployment procedure, is publicly available on the WordPress deployment

GitHub repository mentioned above.
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2.6.2 Experimental Methodology

In this section, we discuss different workloads and the motivations behind selecting

them. Moreover, the performance metrics of interest are presented to compare the

controllers’ ability to satisfy the cloud software system SLA requirements. It is

noteworthy that before designing the experiments, we first evaluated the available

resources’ capacity in handling the number of users. Regarding the VMs, we could

create 42 containers of the WordPress Application. Therefore, the number of containers

is more than sufficient to satisfy the control objectives,e.g. SLA. We assumed that the

orchestration system works correctly in resource provisioning, i.e. the infrastructure

is reliable. In other words, all the containers are created successfully when the

appropriate command is called.

Step-change Workload

Figure 2.6 portrays the step-change workload (blue line) in which the number of users

changes abruptly, resembling a step signal. The number of users rises from 30 to

60 and then declines back to 30, in a period of 36 minutes. The rationale behind

considering such workload is to evaluate the robustness of the controllers against

sudden disturbances and also study the adaptive behaviour of the proposed controller

in managing the SLA, performance in particular. This is a common situation for

online websites that offer short time deals, attracting a considerable number of users

in a short time.

FIFA World-Cup Workload

Figure 2.6 presents the second workload (black line). In this case, the number of

users varies according to the variations of the FIFA World-Cup 1998 data set [16]

collected from ‘1998-06-30 08:00:01’ to ‘1998-07-01 08:00:00’. Given the systems’

capacity in handling the number of requests, we scaled down the number of users

between 30 and 150 while persevering the shape of the trace. The reason for choosing
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Figure 2.6: FIFA World-Cup and Step Change Workload.

150 as the number of user upper limit is that the application is close to its saturation

point but can still maintain the control target in the desired region. Also, the time

scale is transformed from 24 hours to 8 hours, which helped us study the control

system’s performance under more intensified fluctuations in the number of users. This

behaviour may occur in web services offering live sports game streaming. At the start

of each sport event, the number of online streamers increases gradually, and at the

end of the event, a gradual decrease can be observed.

Performance Metrics

Various performance metrics are considered to have a clear comparison of controllers’

capability and efficiency in maintaining the optimized performance. We consider

well-known performance metrics from the control and software community to have the

best of two worlds. The Mean Squared Error (MSE), Mean Absolute Error (MAE),

and rise time are used as representative performance indices from control theory. The

definition of MSE and MAE are given in Equation (2.11) and ( 2.12), respectively. For

the sake of simplicity, we define the rise time as the time required for the controller

to bring the response time of the system to the desired operating region after the

disturbance has been applied.
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MSE =
1

N

∑︂
[e(t)]2 (2.11)

MAE =
1

N

∑︂
|e(t)| (2.12)

For software domain performance metrics, Service-Level Agreement (SLA) and

efficient provisioning are considered. We define the SLA as follows: the upper limit

for the average response time (1, 000ms) cannot be violated more than one minute,

i.e., three consecutive monitoring intervals. If such a violation occurs, we aggregate

the violation time and count this as a violation with a penalty. Since the SLA does

not change frequently, i.e. the set point for the response time is not changed; we are

dealing with a regulation and disturbance rejection control problem. Therefore, the

goal is to regulate the set-point around the defined SLA and reject the effect of change

in the number of users on the response time,i.e. disturbance rejection.

Three different provisioning efficiency metrics are considered according to the

Cumulative Distribution Function (CDF). The over-provisioning is defined as the

percentage of the time that response time is below 500ms, i.e., containers are more

than necessary. We prefer this value to be as low as possible. The under-provisioning

is defined as the percentage of the time that response time lies between 800−1, 000ms,

i.e., more containers are required—similarly, the less the under-provisioning, the

better. Efficient provisioning is defined as the percentage of the time that response

time is between 500-800ms, i.e., the number of containers is according to the system

requirements. It is ideal to have higher values for efficient provisioning.

2.6.3 Experimental Results

To evaluate the efficiency of the proposed method in maintaining the response time of

the three-tier containerized web application, several experiments have been carried

out with different controllers; in particular, the responsiveness and robustness of the

controllers under two types of workloads are investigated.
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The scaling heat algorithm is employed from [25] as the baseline, which represents

a robust reactive algorithm to maintain the performance metrics. According to this

algorithm, when a violation of the upper threshold occurs, indicating the saturation

of the container, we increase the heat factor by one, and if a violation from the

lower threshold happens, indicating resource under-utilization, we decrease the heat

factor by one. If no violations occur, i.e. the utilization is within the range, we

decrease the heat factor by one until the heat factor is zero. If the heat factor is

equal to a specific number (e.g., n/ − n), we create/terminate one container. The

primary distinction between the scaling heat algorithm and other threshold-based

algorithms is that it waits for several consecutive violations to react. This gives the

scaling algorithm robustness against the ping-pong effect. The ping-pong effect is an

undesirable alternating scale up and scale down of the resources (containers), which

results in oscillation in the number of containers and the performance metrics. In our

experiments, we chose the number of consecutive violations needed for the scaling to

occur to be 5 (n = 5), according to the [25], with an upper trigger point of 800 and a

lower trigger point of 500.

As for the non-adaptive control theoretical approach, we evaluate the fixed-PI (FPI)

and fixed PID (FPID) controllers. Note that in the absence of an appropriate linear

model for the target software system, these controllers’ gains are obtained after a short

period of experimentation and manual tuning. The gains were set to KP = 0.0004,

KI =0.0004, and KD =0.00005.

The obtained gains from the manual training are used as an initial condition for our

proposed adaptive controllers. We consider adaptive neural network based PI (NN-PI)

and adaptive neural network based PID (NN-PID) controllers for evaluation. The

controller learning rate ηc is set to 2e− 13 for KP and KI , and 2e− 14 for KD, which

is tuned manually. The reason for setting small values for these control parameters

and the learning rate is because the time is in millisecond and choosing larger values

may result in divergence in adaptation. Adam Optimizer is selected for training the
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weights and biases of the neural network with the training rate of η = 0.002, β1 = 0.99,

β2 = 0.9, and ϵ = 1e− 8. There is no specific way to find the optimal initial value for

controller learning rates, and we need to find it by trial and error.

The control objective is to maintain the response time of the system between 500-

800ms (set-point) by adjusting the number of containers (actuator) to immediately

react to the change in the number of users (disturbance). In this range, the control

error is considered zero, and hereafter we refer to this range as the desired operating

region. The motivation behind choosing this range is that most of the cloud providers

prefer to maintain the response time of their system in a pre-defined range, to prevent

SLA violations and over-provisioning at the same time. Therefore, we can evaluate the

controllers’ applicability to the real world control problems for cloud service providers.

For each workload, we conduct the experiment three times for reproducibility.

All the reports are given on average of these three experiments. Care has been

taken to carry out the experiment in similar conditions. In other words, we conduct

the experiments each day simultaneously and on the same infrastructure. In our

experiments, we used Google N1 standard machine types. These types of virtual

machines do not use shared CPUs, i.e. each of them has its own dedicated resources.

Therefore there is minimal interference between Virtual Machines, which is negligible.

According to GCP benchmarks, these instances only have 2.47% standard deviation

regarding their performance [82]. Finally, we compare and discuss the performance

metrics for all these controllers and enumerate the pros and cons of each.

2.6.4 Step-Change Workload

This experiment’s main objective is to investigate the efficiency of the controllers

against abrupt disturbance imposed on the system. Besides, we aim to observe the

effect of the PI and PID controllers’ adaptability when facing a recurrent disturbance

in the future.

Figure 2.7b depicts the response time of the system under study for the first
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(a) Variations in the number of containers imposed by the variation in the workload.

(b) Response time of the cloud software system for step change in number of users. Vertical
dashed lines indicate the time of these step changes.

Figure 2.7: Comparison of five controllers in managing the response time of the cloud
software system.

experiment. Upper and lower trigger points are shown by horizontal dashed and

dotted green lines, respectively. The dashed red line shows the SLA limit for the

response time.

Figure 2.7a shows the control signal (i.e., the number of successfully provisioned

containers) generated by each controller in response to the disturbance (i.e., number of

users) injected to the system. In Figure 2.8, Cumulative Distribution Function (CDF)

is shown separately for each conducted experiment. In this figure, the dashed/solid

vertical green line shows the lower/upper trigger point of the desired operating region.

Also, SLA is shown by a solid red line. Figure 2.9 shows the changes in the adaptive

controller parameters in response to the step-change workload. According to this figure,

the controller parameters’ changes become smaller with respect to time, indicating

the convergence to an optimal value. Moreover, since the controller parameters are
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(a) First experiment (b) Second experiment (c) Third experiment

Figure 2.8: Cumulative Distribution Function (CDF) for all the experiments.

Figure 2.9: Adaptation in control parameters for Step-Change workload.

adjusted when the number of users changes, we can conclude that the NN model has

a good prediction ability.

Table 2.2 shows a summary of the results by presenting the average and the

Standard Deviation (STD) of the three experiments performed in this study. Small

STD for these three experiments indicates that the results are reproducible. Table 2.3

demonstrates the improvements achieved by adaptive controllers, compared to the

scaling heat algorithm.

Response Time: According to Table 2.2, all controllers have average response-

time laying in the desired operating region.

Consequently, we need to do a deeper investigation on other metrics.

Provisioning Efficiency: According to Table 2.2, NN-PID and NN-PI signifi-

cantly decreased the resource over-provisioning ratio.

According to Table 2.3, our results indicate that adaptive controllers achieve an

improvement of 34.46% and 22.28% for handling under-provisioning for NN-PID and
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NN-PI, respectively. This finding suggests that adopting the proposed method uses

less resources and, consequently, less energy. This fact can be seen in Figure 2.8.

Magnification around lower trigger point (dashed green line) reveals that both NN-PI

and NN-PID are more capable of handling the problem of over-provisioning.

As reported in Table 2.3, similar behaviour is observed in the efficient provisioning

of the resources. NN-PID and NN-PI were successful in assigning an efficient amount

of resources to the cloud software application. According to the efficient provisioning

percentage reported in Table 2.3, the efficiency of the resource allocation improved by

74.31% for NN-PID and 65.83% for NN-PI compared to the scaling heat algorithm.

This observation can be made looking to both magnified lower and upper trigger

points in Figure 2.8.

Similarly, one can confirm these improvements by looking at the system’s behaviour

around the upper trigger point and SLA, which is magnified for better perception in

Figure 2.8.

From Table 2.2, leveraging adaptive controllers, we observed an increase in the

average number of containers used over the experiments. This is mainly due to the fact

that efficient resource provisioning doesn’t necessarily lead to using fewer containers

or to less changes in the resources used. On the contrary, the control algorithm should

instantly provide enough resources according to the control objective.

Service Level Agreement: This comparison is mainly based on the description

of SLA in Section 2.6. According to Table 2.2, results confirm that control-theoretical

controllers are more capable of preventing SLA violations. And among them, adaptive

controllers comply with the SLA requirements more effectively. This fact is highlighted

when comparing the improvements in SLA violations. As can be seen, compared to

the scaling heat algorithm, SLA violations decreased by 43.2% and 49.26% for NN-PI

and NN-PID, respectively.

Rise Time: In Section 2.6.2, we described the rise-time and the reason behind

considering this performance metric. In this experiment, we have four rise-times,
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i.e., two rising edge disturbance t1 and t3, and two falling edge disturbance t2 and t4.

Based on the results presented in Table 2.2, control-theoretical approaches considerably

outperform the scaling heat algorithm. Moreover, adaptive controllers exhibited better

disturbance rejection characteristics compared to the fixed PI and fixed PID controllers.

Evaluating this performance metric revealed two interesting observations. Consid-

ering the scaling heat algorithm as the baseline in Table 2.3, the first observation is

that there is a considerable improvement in the rise time of the system adopting the

proposed adaptive controller. For example, we observed an almost 50% improvement

in the control system’s rise time for the first rising edge disturbance. The second

observation is that the second rising/falling edge disturbance’s effect becomes less

severe, confirming the controller’s optimized behaviour for similar disturbances. This

shows the adaptability of the proposed controller when dealing with future distur-

bances. This phenomenon can be observed in Figure 2.7a. After the first rising edge

disturbance, NN-PI and NN-PID have the highest slope in creating containers. This

slope gets even steeper for the second rising edge disturbance. Similar behaviour is

seen for the falling edge.

Table 2.2: The average and standard deviation of the performance metrics for three
conducted experiments for step-change workload.

Controller Type

Performance Metrics Heat F-PI NN-PI F-PID NN-PID

avg. RT[STD] (ms) 699.82[11.30] 729.52[5.16] 672.98[10.48] 734.97[6.01] 667.07[27.19]

avg. Containers[STD] 7.50[0.02] 7.11[0.06] 9.26[0.30] 7.06[0.10] 8.86[0.06]

Over-Provisioning[STD] % 28.00[2.70] 33.88[1.18] 21.76[2.35] 31.27[0.87] 18.35[2.82]

Efficient Provisioning[STD] % 38.46[6.06] 28.83[2.27] 63.78[2.84] 35.20[4.06] 67.04[7.07]

Under-Provisioning[STD] % 9.20[1.07] 22.28[1.41] 1.31[0.85] 10.09[6.46] 2.24[2.45]

SLA Violations[STD] (s) 540.00[20.00] 413.33[11.55] 306.67[64.29] 366.67[23.09] 340.00[87.18]

t1[STD] (s) 460.00[34.64] 386.60[50.33] 240.00[40.00] 373.40[90.18] 233.40[30.55]

t2[STD] (s) 386.60[11.54] 293.40[11.55] 260.00[0.00] 346.60[46.18] 233.40[41.63]

t3[STD] (s) 413.34[41.63] 373.40[100.66] 140.00[20.00] 340.00[138.56] 146.60[[11.55]

t4[STD] (s) 393.40[11.54] 306.60[41.63] 160.00[20.00] 300.00[40.00] 140.00[40.00]
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Table 2.3: Improvement in the performance metrics for the first experiment compared
to the scaling heat algorithm, all reported in percentage.

Improvement %

Performance Metrics NN-PI NN-PID

Efficient Provisioning % 65.83 74.31

Under-Provisioning % 85.76 75.65

SLA Violations % 43.20 37.03

t1 % 47.82 49.26

t2 % 32.74 39.62

t3 % 66.12 64.53

t4 % 59.32 64.41

Discussion: Taking into account all the performance metrics, we can respond to

research questions 2 and 3. For RQ2.2, all controllers could maintain the average

response time in the desired operating region. However, the scaling heat algorithm

could not adequately react to the sharp disturbances, accounting for more SLA

violations. On the contrary, control theoretical methods had fewer SLA violations

and reacted to the disturbances faster. Amongst control-theoretical approaches, the

proposed adaptive controllers significantly outperformed the non-adaptive counterparts

in both SLA and rise time.

Regarding RQ2.3, considering the discussion made in provisioning efficiency, it

can be concluded that adaptive controllers are more capable of handling resource

management tasks by drastically improving the over-provisioning, Efficient provisioning,

and under-provisioning. Furthermore, we can see that both controllers show satisfactory

performance compared to the adaptive PI and PID performance. This experiment

motivated us to evaluate them against a more realistic workload.
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(a) Variations in the number of containers imposed by the variation in the workload.

(b) Response time of the cloud software system for FIFA Wold-Cup workload.

Figure 2.10: Comparison of five controllers in managing the response time of the cloud
software system against real world workload.

2.6.5 FIFA World-Cup Workload

In this experiment, exposing the cloud software system to the second workload

described in Section 2.6.2, we aim to examine the performance of the proposed

controllers against a more realistic workload for a longer time interval. The average

response time is shown in Figure 2.10b. All of the thresholds are defined similarly

to the step-change experiment. Figure 2.10a depicts the changes in the number of

containers in response to the workload variations.

Additionally, Figure 2.11 presents the cumulative distribution function of response

time for all these three experiments conducted for reproducibility validation. Fig-

ure 2.12 shows the changes in the adaptive controller parameters during the experiment.

According to this figure, the variations in the controller parameters decrease with

respect to time. This behaviour shows that the controller parameters are being
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(a) First experiment. (b) Second experiment. (c) Third experiment.

Figure 2.11: Cumulative Distribution Function (CDF) for all the experiments.

Figure 2.12: Adaptation in control parameters for FIFA World-Cup workload.

optimized, and the proposed adaptive controller is working properly. Details of the

experiments are summarized in Table 2.4 along with the STD of three experiments.

Small STD for these three experiments indicates that the results are consistent. Fur-

thermore, assuming the scaling heat algorithm as the baseline, improvements in the

metrics are reported in Table 2.5 for comparison.

Response Time: According to Table 2.4 and Table 2.5, the results are in

accordance with the findings of the previous experiment on the step-change workload.

All the controllers could maintain the average response time in the desired operating

region.

Provisioning Efficiency: Referring to Table 2.4, significant improvement is

observed for the proposed adaptive methods in terms of the resource over-provisioning.

Control theoretical approaches tend to allocate resources more cost-effectively. The

over-provisioning drops from 16.04% to 5.66% and 8.87% for NN-PI and NN-PID,

respectively, which results in 64.71% and 44.7% cost reduction. For the fixed versions
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of PI/PID controllers, this cost reduction is around 15%, which still is significant at a

large scale. This can be observed in Figure 2.11 around the lower trigger point shown

by the dashed green line. The magnified picture is presented for better perception.

NN-PID and NN-PI showed lower over-provisioning. On the contrary, the scaling heat

algorithm suffers from high resource over-provisioning.

In terms of efficient provisioning, results substantiate the capabilities of the adaptive

controllers in efficient resource management. According to Table 2.4, all control-

theoretical methods allocated the resources more efficiently compared to the scaling

heat algorithm. Results in Table 2.5 suggest 22.12% and 14.21% better resource

allocation for NN-PI and NN-PID, respectively. Referring to Figure 2.11, around

the upper trigger point (solid dashed line), all controllers maintain the response time

below the upper trigger point for almost 75% of the time. A similar performance is

observed in all experiments.

Although the performance was not ideal for under-provisioning, results reveal that

NN-PI and NN-PID are conservative in allocating more resources than the scaling

heat algorithm. This fact can be seen in Table 2.5 that shows the increase in under-

provisioning from 15.19% to 16.76% and 15.28%. However, this increase is negligible,

and results show that it does not affect the SLA. Therefore, we can infer that adaptive

controllers tend to use the resources close to the system capacity, without violating

the SLA.

Service Level Agreement: As can be seen in Table 2.4, surprisingly, the scaling

heat algorithm shows a decent performance compared to Fixed PI/PID and NN-PID

in terms of the number of SLA violations. However, adopting NN-PI decreased the

SLA violations by 27.11%, compared to the scaling heat algorithm. We found that

since in control-theoretical approaches, “controller gains” decide about the magnitude

of change in the number of containers, non-adaptive controllers are not suitable for

slowly varying workloads. In the absence of a system model, these gains cannot be

found accurately. And even if we have a model, we need to adapt the model to
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the environment changes. This fact highlights the need for leveraging an adaptive

controller.

Table 2.4 suggests an inferior performance for the adaptive PID controller. This

result could be because the auto-scaler has to deal with the cloud software system’s

stochastic behaviour, the presence of disturbances, noisy measurements, and delay in

the actuator. Having a derivative term would increase the controller’s sensitivity to

these artifacts, leading to system instability.

According to Table 2.4, all controllers tend to use the same number of containers

on average except NN-PID, which used 23.13% more containers. Besides, according

to Figure 2.10a, this controller applies a greater change in the number of containers

compared to other controllers with the expense of degraded performance (e.g., SLA).

The reason for this is that creating/removing containers will add a computational

overhead to the system. This influences the response time of the system for a while,

and if this happens a lot, it will drastically deteriorate the overall performance. This

behaviour contributes to the reason why 80% of the controllers prefer not to use the

derivative term in the controller [11].

Mean Squared Error: Mean squared error plays a crucial role in designing the

adaptive neural network-based PI/PID controller. The adaptive behaviour of the

controllers is achieved by minimizing the MSE. According to Table 2.5 and Table 2.4,

the optimization task is carried out successfully by causing 56.27% and 35.81% drop

in MSE compared to the scaling heat algorithm, for NN-PI and NN-PID, respectively.

This improvement can be observed in Fixed PI/PID as well. The reason is that the

control-theoretical approaches’ main objective is to decrease the system error with

respect to its magnitude. On the contrary, the scaling heat algorithm ignores the

magnitude of the error.

Mean Absolute Error: In addition to MSE, Mean Absolute Error (MAE) was

reduced by 42.72% and 14.10% for NN-PI and NN-PID, respectively.

Note that MSE denotes the controller’s performance in regulating the response
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time of the system and shows whether these regulation errors are significant or not in

magnitude, having more emphasis on larger errors. As opposed to MSE, MAE looks

at the errors with similar weights and ignores the magnitude.

Table 2.4: The average and standard deviation of the performance metrics for three
conducted experiments for FIFA workload.

Controller Type

Performance Metrics Heat F-PI NN-PI F-PID NN-PID

avg. RT[STD] (ms) 674.28[11.21] 693.54[19.13] 680.76[6.26] 684.62[1.05] 698.14[5.01]

avg. Containers[STD] 10.46[0.058] 11.33[1.61] 10.51[0.37] 10.35[1.12] 12.88[0.82]

MSE[STD] (×104) 11.12[1.30] 6.40[0.40] 4.86[0.48] 6.20[1.08] 7.14[1.10]

MAE[STD] 68.79[1.65] 76.06[3.16] 39.40[2.36] 72.89[4.86] 59.09[7.10]

Over-Provisioning[STD] % 16.04[0.50] 13.29[0.94] 5.66[0.20] 12.73[0.81] 8.87[1.84]

Efficient Provisioning[STD] % 60.94[0.63] 62.29[3.87] 74.42[0.25] 64.25[1.76] 69.60[1.31]

Under-Provisioning[STD] % 15.19[0.96] 14.99[2.70] 16.76[0.37] 13.75[0.53] 15.28[2.84]

SLA Violations[STD] (s) 393.33[57.74] 1,860.00[336.45] 286.67[50.33] 1,873.33[323.31] 873.33[133.16]

Table 2.5: Improvements in the second experiment, compared to the scaling heat
algorithm.

Improvement %

Performance Metrics NN-PI NN-PID

avg. Response Time % -0.96 -3.53

avg. Containers % -0.47 -23.13

Mean Squared Error % 56.27 35.81

Mean Absolute Error % 42.72 14.1

Over-Provisioning % 64.71 44.70

Efficient Provisioning % 22.12 14.21

Under-Provisioning % -10.33 -0.59

SLA Violations % 27.11 -122.03

Discussion: Exposing the controllers to a realistic workload for a longer time

revealed interesting findings. For RQ2.2, the same behaviour in maintaining the

average response time was observed, confirming the results of the previous experiment.
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Also, better MSE and MAE were achieved by the control-theoretical approaches.

However, surprisingly, fixed PI/PID exhibited unacceptable performance in terms of

the SLA violations. In contrast, the adaptive PI controller significantly decreased the

SLA violations compared to the other controllers.

Regarding the provisioning efficiency (RQ2.3), the control-theoretical approaches

present better resource management capabilities in almost all cases. However, the

scaling heat algorithm performs better in terms of under-provisioning. An interesting

observation is the tendency of the adaptive PID in creating/removing the containers,

which causes performance overhead and, consequently, SLA violations.

Comparing both adaptive controllers, we can conclude that adaptive PI performs

better than adaptive PID for real-world workloads and long term control purposes.

This is mainly due to the fact that it is less sensitive to the uncertainties and noise in

the system. Besides, it provides better resource management utilizing an almost equal

number of containers while achieving fewer SLA violations.

2.7 Limitations

There are some limitations on this work. First, since we require an initial condition for

our proposed controller, finding better initial conditions can lead to better performance.

However, in the long-run, the optimization task will push the system to a minimized

cost function. Furthermore, considering online model identification and the highly

stochastic behaviour of the cloud software systems, noisy measurements could result

in incorrect online system identification or controller divergence. It is better to select

the identification and controller training rate as low as possible to address this issue.

However, model training and controller optimization will take a longer time.

The second limitation is the extent of the generalizability of our experiments. In

this study, we selected the WordPress application as a standard three-tier application

for evaluating the adaptive behaviour of our proposed adaptive PID-controller in

optimizing the performance of the containerized cloud software systems. The rationale

48



behind this decision is that WordPress is one of the main drivers for many websites

nowadays. It worth noting that the focus of this study is to propose an adaptive

control theoretical approach for optimizing the auto-scalers at runtime and the way

we can benefit from a massive amount of collected performance data to obtain a

non-linear model of the cloud software system, which can be used to optimize the

performance and the auto-scaler. To the best of our knowledge, our study is the first to

adopt neural networks to propose a model suitable for control theoretical auto-scalers,

and we aim to pave the road for future studies in the area of cloud software system

performance optimization. We expect the same efficiency and the same outcome for

other applications. However, future studies may further investigate the impact of

selecting different applications on the neural networks’ architecture.

The third limitation of this study is the sampling rate selection. The sampling

rate plays a crucial role, both in the system identification and the control mechanism.

Increasing the sampling rate helps improve the reaction time to any change in the

measurements while adding some overhead to the system monitoring and data acqui-

sition. Moreover, a high sampling rate will not necessarily improve the controller’s

performance due to the presence of uncertainty in the measurements. Selecting differ-

ent sampling rates results in different system models; therefore, we cannot make a fair

comparison between these models. As a result, we relied on a widely used sampling

rate, a sampling rate of 20 seconds, in the cloud infrastructures. Also, considering that

the proposed controller itself is more complicated than a simple heat-based method,

we impose a computation overhead to the system, which is not measured here.

Another limitation of this study is the stability analysis for the proposed controller.

According to [206], the stability of a software system guarantees the ability of the

system to converge to the objectives. A system can be stable without goals; however,

a goal cannot be achieved in an unstable system. In our study, we defined this

goal as the controller’s ability to maintain the system’s response time in a specific

range, in other words minimizing the regulation error. For different software qualities,
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we have different interpretations of stability. Also, to analyze a system’s stability

mathematically, we require the dynamic model of the system. Since our model is

data-driven, we cannot directly use it to find the attraction region of the controller.

2.8 Conclusion and Future Work

In this research study, we proposed and evaluated various adaptive and non-adaptive

controllers for containerized cloud applications. Through extensive experimentation,

we identified the best adaptive controller that can optimize the performance and SLA

under different parameter settings and configurations. To this end, we leveraged the

power of black-box modelling, i.e., neural networks and PID controllers, to make

controllers adaptive, scalable, efficient, and extendable to other containerized cloud

applications. The key is to use a simple, pure reactive auto-scaler at the beginning of

the software system operation and then hand over the auto-scaling to the adaptive

controller when it has reached satisfactory accuracy in prediction. Afterward, the

software system’s performance under control will be kept optimized due to the neural

network’s online training and modifying the controller’s parameters accordingly at

run time.

Our experimental results show that the proposed adaptive PID controller works

well even without a precise model for updating the controller’s parameters. This

makes them well suited for controlling cloud software systems.

For future studies, we plan to investigate the performance of different data-driven

modelling approaches, such as Long Short Term Memory (LSTM), and introduce other

optimization terms in our proposed adaptive controller’s cost function,e.g. constraints

on the number of containers. Moreover, we aim to study the effect of different sources of

uncertainty on the performance of self-adaptive systems such as actuator uncertainties.
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Chapter 3

Studying the Performance Risks of
Upgrading Docker Hub Images: A
Case Study of WordPress

3.1 Abstract

The Docker Hub repository contains Docker images of applications, which allow users

to do in-place upgrades to benefit from the latest released features and security patches.

However, prior work showed that upgrading a Docker image not only changes the

main application, but can also change many dependencies. In a performance-critical

production environment, one generally avoids changing multiple dependencies at once,

since it may give rise to hard-to-diagnose performance degradation issues. In this

chapter, we present a methodology to study the performance impact of upgrading the

Docker Hub image of an application, thereby focusing on changes to dependencies.

We demonstrate our methodology through a case study of 90 official images of the

WordPress application. We observe that the performance of WordPress is mostly

mandated by the dependency versions that are used by its official image, rather than

the main application code itself. We further demonstrate how our methodology can

be used to investigate the impact of major, minor and patch upgrades of WordPress’

two main dependencies (Apache and PHP) on its performance. Our study shows

that Docker image users should be cautious and conduct a performance test before
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upgrading to a newer Docker image in most cases. Our methodology can assist them

to better understand the performance risks of such upgrades, and helps them to decide

how thorough such a performance test should be.

3.2 Introduction

The last decade has seen enormous advances in cloud computing, such as faster

development cycles, better security and a lower cost of utilizing cloud-based resources.

One core-enabling technology for cloud computing is the containerization of applica-

tions. Most modern cloud-based applications are dependent on many services and

applications. This dependency gives rise to several issues, e.g., a conflict between the

dependencies, missing dependencies, and platform differences [161]. A containerization

technology, such as Docker, addresses these problems by packaging software code along

with its dependencies to run on any computing environment or infrastructure [93]. A

containerized application runs in fully isolated environments called containers.

The growth in the use of containerized applications has captivated researchers’

attention to several aspects of this technology. Most research in this field studies

Docker containers and repositories from the security [42, 57, 207, 246] and storage

management [213, 251] perspective. For instance, Shu et al. [207] show that both

official and community images on Docker Hub have security issues, and that the

vulnerabilities propagate from parent images to the child images. Such security issues

can often be addressed by upgrading the Docker image. However, upgrading a Docker

image may change many dependencies at once. In a study of 37K Docker images,

Gholami et al. [80] showed that a median of 8.6 dependencies change in one image

upgrade. As prior work showed that changes to dependencies can cause quality issues

for the software that depends on them [108, 163, 186], there is always the challenge

of deciding how a Docker image upgrade will affect the quality of the containerized

application.

One quality aspect that is increasingly important for modern software is perfor-
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mance – Harman and Hearn even state that it should now be considered “the new

correctness” [87]. However, performance testing is not a widely implemented practice

in industry [33], or by developers [135] in general. Our hypothesis is that the same

applies to Docker images. While in cases, the individual performance of the software

components inside the image may have been tested, their performance most likely has

never been tested when they operate in tandem.

In this research study, we propose a methodology for better understanding the

performance risks of upgrading a Docker image, thereby focusing on its dependencies.

We demonstrate our methodology through a case study of a performance-critical

application, WordPress. First, we conduct load tests on 90 images from the official

WordPress Docker Hub repository. These 90 images span a total of 27 WordPress

versions with different combinations of dependencies (i.e., ranging from PHP 5.6.x

to PHP 7.x.x and from Apache 2.4.10 to 2.4.38). Second, we demonstrate how

our methodology can be used to investigate the changes in the performance of the

WordPress application between these images. We demonstrate our methodology

through the following research questions (RQs):

• RQ3.1: What is the impact of upgrading the Docker image of WordPress on its

performance?

Motivation: We analyze how the performance of WordPress changes through

several types of upgrades of its official Docker image. This analysis shows which

image upgrades are problematic in terms of performance.

Results: There are considerable variations in average response time for images

with the same WordPress version, implying that the changes in its dependencies

cause performance variations. We observed that doing a patch to patch upgrade

in the Docker images of WordPress results in unpredictable impact, causing up

to a 340% drop in performance or an improvement of up to 77%. The same

behaviour was observed for minor and major upgrades as well.
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• RQ3.2: What is the relation between the performance of the WordPress appli-

cation and updates of its dependencies?

Motivation: As we could not attribute the performance changes to a specific

WordPress version or type of upgrade in RQ3.1, we investigated how changes in

the main dependencies of WordPress (Apache and PHP) were correlated with

the changes in performance.

Results: We observed that all studied WordPress Docker images that use PHP

with major version 5 have a considerably lower performance. Hence, upgrading an

image with PHP version 5.6.x to one with PHP 7.0.x improved the performance

for all studied images. Also, upgrading to the next available PHP patch version

degraded WordPress’ performance in 71 out of 123 (58%) of the cases. We

observed that upgrading the last patch version in a minor/major version to the

first available patch version in a minor/major version of PHP (e.g., from 7.1.33

to 7.2.01) always improved the performance of WordPress. Finally, we observed

that doing a minor to minor upgrade was more likely to result in performance

improvement than a patch to patch upgrade. We did not observe a relation

between changes to the Apache dependency and the performance of WordPress.

Our case study shows how our methodology can be employed to study the per-

formance risks of a Docker image upgrade. For example, our case study shows that

WordPress users who are planning to upgrade their WordPress image with PHP

version 5.x.x to 7.0, can do so safely from a performance point of view.

The remainder of this chapter is organized as follows. Section 3.3 discusses the

background concepts of the research study and outlines the related work to the

study. In addition, we give background information about our case study subject

(WordPress). Section 3.4 presents our methodology for analyzing the performance

risks when upgrading a Docker image. Section 3.5 presents the results of our case

study. Section 3.6 provides suggestions and recommendations for practitioners and
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researchers. In Section 3.7, we discuss the threats to the validity of our work, and we

give directions for future research based on those threats. Section 3.8 concludes the

chapter.

3.3 Background and Related Work

In this section, we introduce the essential technologies used throughout the study

and discuss the prior work that is related to our study of the performance risks of

upgrading Docker Hub images. Finally, we give background information about our

case study subject (WordPress).

Docker

As an open-source container system, Docker provides a lightweight, low overhead, fast

and efficient solution to implement containerized applications [161]. Before Docker,

installing, and deploying software on different environments was a painstaking task.

Leveraging Docker, one can pull the application images from a repository such as

Docker Hub, or one can build their own image and deploy it. Docker images consist

of several layers. The first layer is the base image, which is the foundation of the

application. Additional layers can be added on top of the base image. The instructions

to create the image are specified in the Dockerfile, in which each instruction corresponds

to a layer in the image. This Dockerfile can be used by others to recreate that Docker

image from a base image. A Docker container is a runnable instance of a Docker

image [35], which consists of all the required dependencies required for an application

to perform correctly.

Docker Hub

Docker Hub [62] is a repository for sharing Docker images. In May 2021, Docker

Hub hosted more than seven million Docker images. These images are distributed

using private or public repositories, which provide a convenient way for software
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versioning. Public repositories are divided into groups, namely, official and community.

Official repositories provide authentic releases of the Docker image of an applica-

tion since they are reviewed and published by a team that is sponsored by Docker

Inc. A Docker image can be retrieved from a repository by its tag. For example,

wordpress:5.2.2-php7.1-apache is a Docker image for WordPress version 5.2.2 with

PHP version 7.1 and the latest supported version of Apache. Many applications on

Docker Hub provide convenience tags for their images, such as wordpress:latest,

which always points to the latest WordPress image.

Docker Performance Analysis

With the increased use of Docker containers in the cloud, performance evaluation of

these containers is getting more attention. Felter et al. [69] extensively studied the

performance of a native Linux environment, Docker and KVM. They evaluated these

environments in the presence of CPU intensive, I/O intensive, and network-intensive

workloads. They concluded that Linux containers provide better or equal performance

in contrast to VMs in almost all cases. Lingayat et al. [146] evaluated the performance

of deploying Docker containers on bare-metal and virtual machines and provided a

clear sketch of the necessity of deploying Docker containers in bare-metal environments.

Lingayat et al. reported about 50% performance gain when running the containerized

Docker applications on bare-metal as opposed to virtual machines. They attributed

the performance degradation of deploying the application on VMs to the architecture

of VMs, specifically since VMs run on emulated hardware, introducing additional

layers and consequently unnecessary performance overhead. Ruan et al. [194] analyzed

the performance of containers in the cloud and presented several recommendations for

developers to determine which container to use for different usage scenarios. Ruan et

al. conducted various experiments to measure the difference in performance among

application containers (e.g., Docker) and system containers (e.g., LXC). Furthermore,

they assessed the overhead of an additional layer of the VM between the bare-metal
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and containers. They pointed out that system containers can better manage I/O

extensive workloads than application containers, and that running containers in

the VM environment would result in a degradation of disk I/O performance up to

42.7%, and of network latency up to 233%. Casalicchio et al. [46] investigated the

available tools for measuring Docker’s performance from the host operating system and

virtualization environment perspective. They presented a characterization of the CPU

and disk I/O overhead introduced by containers. After evaluating four open-source

performance profilers (mpstat, iostat, docker stats, and cAdvisor) they pointed

out that characterizing the overhead and workload is not a straightforward task due to

the instability and lack of dedicated tools for measuring a wide range of performance

metrics. Their results show that available container monitoring tools give different

results and should be properly interpreted. Xu et al. [242] evaluated the performance

of deep learning tools in Docker containers. Many deep learning software frameworks

have been developed and updated frequently to benefit from new hardware features and

software libraries. They evaluated Docker containers’ impact on the performance of

deep learning applications by benchmarking I/O, CPU, and GPU in Docker containers.

Xu et al. pointed out that the Docker engine minimizes the introduced overhead by

extra layers added between applications and hardware resources. They concluded that

encapsulating deep learning tools into Docker containers can address the problems

mentioned earlier and performs as well as the host system. However, it is more flexible,

lightweight, and provides resource isolation. While there are several studies on the

performance of Docker, we are the first to study the performance impact of upgrading

Docker images.

Performance Evolution

A closely-related study area is performance evolution, in which the performance

of a system is studied as it evolves. In the remainder of this section, we give a

non-exhaustive overview of prior work on performance evolution.
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Part of prior work on performance evolution focused on how to conduct load tests

for multiple software versions. For example, Alcocer [7] proposed a multi-dimensional

profiler Rizel as a way to test different software versions by adjusting variables of

the execution context such as function inputs and benchmarks. They showed in a

case study that their proposed method can successfully identify the piece of code that

introduced a loss of performance. Additionally, Alcocer et al. [8] conducted an extensive

performance analysis to study the evolution of the performance of 49 benchmarks

along with the evolution of 1,439 versions from a variety of 19 open-source projects.

They identified the patterns for performance regression and performance improvement

by contrasting differences of source code and variation in the execution patch and

calling context tree. Mostafa et al. [168] studied a framework for “Performance-aware”

repository and revision control for Java programs. They introduce the PARCS system

that automatically tracks the behavioural differences across revisions of a program to

figure out the impact of changes on its performance.

In addition, a large body of prior work on performance evolution focused on

identifying performance regressions through repository analysis techniques in various

types of software systems [4, 10, 31, 32, 65, 73, 92, 152, 171, 172].

Former studies have always focused on performance changes that are caused by the

source code of the system itself (e.g., to identify performance regressions). In contrast,

we focus on performance changes that are caused by the environment in which the

system runs (e.g., by its dependencies).

3.4 Methodology

In this section, we present our methodology for analyzing the performance risks of

upgrading Docker images. Our methodology consists of the following steps (depicted by

Fig. 3.1): (1) collecting image information for WordPress from the Docker Hub image

repository, (2) deploying WordPress and identifying the used dependency versions,

and (3) collecting and analyzing the performance data. Each of the steps will be
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Figure 3.1: Overview of the empirical study design.

discussed in the following subsections.

3.4.1 Collecting Image Information for WordPress

In this section, we discuss the steps taken to collect the WordPress Docker images

and the inclusion criteria for the Docker images.

Collect WordPress Docker Image Tags: As the first step, a web crawler was

developed to automatically collect the WordPress Docker image tags from the official

WordPress Docker Hub repository1. Since Docker images with a WordPress version

before 4.7.2 did not have information regarding the operating system and architecture

or were not working after deploying, we did not include them in our data set.The

crawler collected 4,153 WordPress Docker image tags, including all different WordPress

Docker images with different operating systems and architectures.

Filter the WordPress Docker Images: Since not all collected WordPress Docker

1https://hub.docker.com/ /wordpress
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images are deployable on our available infrastructure, such as images for the Arm

architecture, we defined several filtering criteria. The inclusion criteria for Docker

images are as follows:

• The image must be an official Docker image.

• The image must target the amd64 architecture.

• The image must depend on the Apache web server rather than Nginx.

After applying these filtering criteria, we selected 165 WordPress Docker images to

conduct the performance test and identify the dependency versions.

3.4.2 Deploying WordPress and Identifying Dependency Ver-
sions

In this section, we elaborate on the developed two-tier containerized WordPress

application and procedure to identify the application and dependency versions at

runtime.

To carry out the performance analysis, we employed three Virtual Machines (VMs),

namely Cluster Master and Kubernetes Node 1 and 2. The cluster configuration

used in the experiment can be found in Table 3.1. All these VMs are deployed on

the Cybera cloud2 with the same resources and configuration. Fig. 3.2 presents the

overview of the Kubernetes cluster. The cluster master manages the deployment of

application and services in a cloud environment. The first Kubernetes node contains

the WordPress application with the Apache webserver in one container, and MySQL in

another container. The second Kubernetes node, contains the Locust [149] application

for load testing and monitoring. The rationale behind using seperate VMs for Locust

and the main application is that generating users adds overhead on the running

VM, which may affect the performance of the application under study. The MySQL

(version 5.6) and Locust versions are kept constant throughout the experiment. We

2https://www.cybera.ca/rapid-access-cloud/
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Figure 3.2: The deployment setup of the WordPress images.

Table 3.1: Configuration of the Kubernetes Cluster.

Property Value

Cluster Location Edmonton

VM Type Medium

vCPU 2

RAM 3.75 GB

Storage 40 GB HDD

OS Ubuntu

Client Version 1.16.3

Server Version 1.16.3

used MySQL version 5.6 because it is still one of the most used versions of MySQL3.

The WordPress images are changed through a configuration setting in the YAML file.

All the VMs run in the same network to reduce the effect of transmission time.

Therefore, measuring the response time of the system will roughly show the service

time of the system. All the deployment steps are executed in an automatic fashion.

Therefore, we do not need to do anything manually, which is a convenient way of

carrying out performance analysis across many Docker images.

Create the YAML File: The image information collected in the previous section

is used to create YAML configuration files for the automated deployment of the

applications. This YAML configuration file is created based on the selected WordPress

Docker images in Section 3.4.1. Also, in this file, we allocate a 200 milli-core vCPU

and 256MB of RAM for each WordPress container.

3https://www.eversql.com/mysql-8-adoption-usage-rate/
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Deploy The WordPress Images: The created YAML file is sent to the cluster master

to control the Kubernetes orchestration platform to first pull the Docker image from

Docker Hub and then deploy and run the WordPress application.

Identify the Application and Dependency Versions: To identify the version used

by the WordPress images, we used the “Wappalyzer” library [231]. This library can

detect the version of the content management systems, e-commerce platforms, web

frameworks, server software, and analytic tools at runtime. From all 165 images, 6

images could not be analyzed at runtime and were removed from the data set. After

identifying the application and dependency versions of the WordPress Docker images,

we realized that some of the Docker images used convenience tags for names and

were using the identical dependency versions. For example, we identified 8 WordPress

Docker images with WordPress version 5.3, Apache version 2.4.38 and PHP version

7.3.12, all with different image names. Therefore, we removed 69 duplicate images

from our analysis.

Table 3.2 shows the 7 different minor versions of WordPress including the number

of patch versions for each minor version. Table 3.3 shows the number of different

minor versions for PHP and the corresponding patch versions. Table 3.4 shows the

distribution of the Apache patch versions. Note that the number of images in these

tables are larger than the number of patches. This is because there can be several

images for a patch version that have different dependency versions, e.g., WordPress

version 4.7.x contains three images with patch version 4.7.2 and two images with patch

version 4.7.5 (both with different PHP versions). The complete list of included unique

WordPress Docker images with their corresponding dependency versions is available

online [12].
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Table 3.2: Distribution of the studied WordPress versions.

WordPress Version #Images #Patches

4.7.x 4 2

4.8.x 12 4

4.9.x 35 9

5.0.x 15 4

5.1.x 6 2

5.2.x 15 5

5.3.x 3 1

Total 90 27

Table 3.3: Distribution of the PHP versions in the data set.

PHP version #Images #Patches

5.6.x 17 9

7.0.x 18 12

7.1.x 26 19

7.2.x 20 16

7.3.x 9 8

Total 90 64

3.4.3 Collecting and Analyzing Performance Data

Run the Load Test And Measure the Response Time of the Application: To acquire

the performance data, an extended version4 of Locust [149] is used for load testing

purposes. This extended version can collect the data with a fixed sample rate and

is able to calculate the average response time of the application for these fixed

time windows. Furthermore, to send requests to the application and measure the

performance metrics, we used the REST API of the load testing tool. Our tool is

publicly available online [12].

To measure the performance of each image, we introduced 20 users to the WordPress

4https://github.com/pacslab/pacs locust
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Table 3.4: Distribution of the Apache versions in the data set.

Apache Version #Images

2.4.10 34

2.4.25 44

2.4.38 12

Total 90

application through the Locust user generator, and then measured the response time of

the application every two seconds and for 5 minutes. We repeated this test 3 times for

every image to reduce the impact of variability in the cloud on our measurements (see

Section 3.7 for more details). After studying the measurements, we observed that the

measurements across the 3 executions were relatively stable. Therefore, we used only

the measurements from the first execution in our analysis. We refer to these values

as the average response times (RT) hereafter. The type of the workload is a simple

HTTP GET request to the main page of the WordPress website. The motivation behind

selecting such a simple workload is to show that the performance can vary considerably

even with the simplest workload. The WordPress website is using “Twenty Seventeen”

as the default theme.

Performance Risk Analysis: Generally, the version number of software follows the

“MAJOR:MINOR:PATCH” semantic versioning principle [181] (e.g. for version “7.2.15”

7, 2, and 15 are the major, minor, and patch version of the application, respectively).

According to the semantic versioning definition, major updates will make incompatible

API changes, minor updates will add functionality in a backward-compatible manner,

and patch updates make backward-compatible bug fixes. Semantic versioning does

not officially impose restrictions on how the performance of an application can be

affected. However, our expectation is that because of the magnitude of the changes in

each type of version, we can use changes in version numbers as a (rough) proxy for

changes in performance. Based on the semantic versioning principle, we group the
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images as follows:

• Patch groups: Images with the same major, minor and patch version of an

application. For example, we group all the Docker images of WordPress with

major version 4, minor version 8, and patch version 1 into the same patch group

(WordPress 4.8.1). This group contains 3 images with PHP versions 5.6.31,

7.0.23, and 7.1.9 and all with Apache version 2.4.10.

• Minor groups : Images with the same major and minor version of an application.

For example, the WordPress 4.8.x minor group contains all 12 images with major

version 4 and minor version 8 of WordPress.

• Major groups : Images with the same major version of an application.

We create patch, minor and major groups for WordPress itself, and the two main

dependencies of WordPress on which we focus in this study (PHP and Apache). Note

that we only have one minor (2.4.x) and major (2.x.x) group for Apache.

After conducting the load test on each WordPress Docker image, we calculate

the average response time for that WordPress Docker image as explained above. To

investigate the performance risks of upgrading to that Docker image, we calculate the

relative response time by comparing the average response time of that Docker image

(RTvern) to that of all images in the previous (RTvern−1) patch, minor, or major group,

as shown in Equation 3.1.

RTRelativeImprovement(%) :
RTvern−1 − RTvern

RTvern−1

(3.1)

If the relative improvement is negative, it means that the performance has degraded;

and if it is positive, there was an improvement in the performance. For example,

upgrading a WordPress Docker image from 4.9.1 to another image with WordPress

4.9.2 resulted in 75.5% relative improvement, which means that this patch to patch
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upgrade improved the average response time of the former WordPress Docker image

by 75.5%.

3.5 Case Study Results

In this section, we present the results of our case study in which we apply our

methodology for analyzing the performance risks of upgrading Docker Hub images to

the WordPress web application. For each research question, we discuss the motivation,

approach, and results accordingly.

3.5.1 RQ3.1: What Is the Impact of Upgrading the Docker
Image of WordPress on its Performance?

Motivation: Using Docker images allows users to upgrade an application easily.

However, instead of a careful, managed upgrade, one may be dealing with an upgrade

that changes many dependencies as well. Prior work [80] showed that a median of

8.6 dependencies change when a Docker image is upgraded. These changes may have

an impact on the main application’s performance. In this RQ, we study how the

performance of WordPress is affected by upgrading its official image from Docker Hub.

Approach: We grouped the WordPress images in patch, minor and major groups as

explained in Section 3.4. We then conducted the following analyses:

• Patch Version Analysis: In the patch version analysis, we first analyzed the

distribution of the average response times for each patch version group. We

then analyzed the distribution of the relative response time improvements as

a consequence of upgrading from one patch group to the next available patch

group. We compute this by taking the Cartesian product of the images in

both groups and computing the relative performance improvement according

to Equation 3.1 for each upgrade in that product. In this analysis, we included

upgrades from the last patch version in a minor version to the first available
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version in the next minor version (e.g., from WordPress 4.7.5 to 4.8), as this

would be the next ‘natural’ upgrade for that version.

• Minor Version Analysis: For the minor version analysis, we studied the distri-

bution of the average response times for each minor version group. We then

analyzed the performance change after upgrading from all images in a specific

minor group (e.g., 4.8.x) to all images in the next minor group (e.g., 4.9.x).

Similar to the patch version analysis, in this analysis, we included upgrades from

the last minor version in a major version to the next major version (e.g., from

WordPress 4.9.x to 5.0.x).

• Major Version Analysis: In the major version analysis, we look into the distri-

bution of the average response times for each major version group. We then

study the effect of upgrading from all images in a specific major version group

(e.g. 4.x.x) to all images in the next major version group (e.g. 5.x.x).

To compare the distributions of the patch to patch, minor to minor and major to

major upgrades, we employ the Mann-Whitney U test [154] with an α-value of 0.05.

The null hypothesis of this statistical test is that the two input distributions are equal.

If the p-value of the test is smaller than 0.05, the null hypothesis is rejected and we

conclude that the difference between the distributions is statistically significant. In

addition, we quantify the difference using Cliff’s Delta effect size [150]. We use the

following thresholds for Cliff’s Delta d [192]:

Effect size =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
negligible(N), if |d| ≤ 0.147.

small(S), if 0.147 < |d| ≤ 0.33.

medium(M), if 0.33 < |d| ≤ 0.474.

large(L), if 0.474 < |d| ≤ 1.
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Patch Version Analysis of WordPress

There are considerable variations in average response time for images

with the same patch version of the WordPress application. Fig. 3.3 shows

the distribution of the average response times of the studied WordPress Docker

images for each WordPress patch group. Each data point corresponds to the average

response time of a specific WordPress Docker image. Fig. 3.3 shows that there is a

considerable variation in the average response times of different Docker images for

the same WordPress patch version. As shown in Section 3.7, this variation was not

caused by variability in our measurements due to the cloud environment in which our

experiments were executed. The variation implies that the performance of a group of

WordPress Docker images with the same patch version of WordPress is not mandated

by WordPress itself, but dependent on other component(s). In the next RQ, we will

look further into how dependencies are related to the main application’s performance.

In 158 out of 302 (52%) patch to patch upgrades, WordPress’ performance

is degraded. The last box plot in Fig. 3.4 shows all 302 possible consecutive patch

to patch upgrades for the WordPress application. Fig. 3.4 shows that more than half

of the possible patch to patch upgrades of the WordPress Docker images resulted in

performance degradation. This finding shows that we cannot make accurate predictions

about the effect of doing an image upgrade on the performance of the application

based on the WordPress version of the image alone.

At worst, a patch to patch upgrade of a WordPress image resulted in

9% to 340% degradation in WordPress’ performance. This degradation can

be small such as when upgrading from WordPress 5.2.1 with PHP version 7.3.6 and

Apache 2.4.25 to WordPress 5.2.2 with PHP version 7.1.32 and Apache version 2.4.38

(with a performance degradation of 9%). The worst-case occurred when upgrading

WordPress 4.9.8 with PHP 7.2.12 and Apache 2.4.25 to WordPress 5.0.0 with PHP

version 5.6.39 and Apache 2.4.25 (with a performance degradation of 340%). Clearly,
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Figure 3.3: The distributions of the average response times for the studied patch
versions of the WordPress application.
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Figure 3.4: The distribution of relative response time improvements for patch to
patch upgrades of the WordPress application images. The last box plot shows the
distribution of relative response time improvements for all consecutive patch to patch
upgrades of WordPress Docker images.

not all of these upgrades are intuitive ones (e.g., downgrading from PHP 7 to 5), but

they do demonstrate the problems that can occur when deciding to upgrade solely

based on the WordPress version in the image.

At best, a patch to patch upgrade resulted in a 5% to 77% improvement

in the performance of the WordPress application. This improvement can be

small (5%), such as upgrading from WordPress 4.7.5 with PHP version 7.1.5 and

Apache 2.4.10 to WordPress 4.8 with PHP version 7.0.21 and Apache version 2.4.10.

The improvement could also be large (77%), such as when upgrading from WordPress

5.0.2 with PHP version 5.6.39 and Apache 2.4.25 to WordPress 5.0.3 with PHP version

7.3.2 and Apache version 2.4.25.

The performance degradation was relatively larger when upgrading older

patch versions of WordPress. Fig. 3.4 depicts the distribution of the relative
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Figure 3.5: The distribution of relative response time improvements for minor to
minor upgrades of the WordPress application images. The last box plot shows the
distribution of relative response time improvements for all consecutive minor to minor
upgrades of WordPress Docker images.

average response time improvements grouped by patch version. For example, in

Fig. 3.4, 4.9.7 shows the distribution of relative average response time improvements

after upgrading each WordPress Docker image in patch version 4.9.6 to each WordPress

Docker image in patch version 4.9.7. Fig. 3.4 shows that doing a patch to patch

upgrade before 5.0.2 may result in drastic performance degradation (e.g., up to 340%

when upgrading version 4.9.8 to 5). However, the risk of getting a severe performance

degradation became lower after upgrading to version 5.0.3. For patch versions released

after 5.0.3 in the worst-case scenario, we observed a performance degradation of 54%

when upgrading from a WordPress Docker image in 5.2.2 to a WordPress Docker

image in 5.2.3. Nevertheless, for many applications – in particular performance-critical

ones – 54% degradation is too large.

Minor Version Analysis of WordPress

In 786 out of 1,218 (65%) minor to minor upgrades of WordPress, the

average response time is degraded. The last box plot in Fig. 3.5 shows the

relative average response time improvements for all possible consecutive upgrades of

the WordPress Docker image from a minor version to the next minor version. For

example, we consider upgrading all WordPress Docker images with minor version 4.7.x
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to 4.8.x and 4.8.x to 4.9.x and so on, resulting in 1,218 possible upgrades. Fig. 3.5

shows that 65% of these upgrades resulted in a lower performance than the previous

version. Comparing this finding with its patch to patch counterpart, we observe that

the risk of performance degradation is 13 percent points higher than a patch to patch

upgrade, which was 52%. The Mann-Whitney U test shows that the performance risk

of a minor to minor upgrade without conducting a performance test is significantly

higher than for a patch to patch upgrade (albeit with a negligible effect size).

In the worst case, a minor to minor upgrade of the WordPress image

resulted in 32% to 354% degradation of WordPress’ performance. Fig. 3.5

presents the distribution of the relative response time improvements when upgrading

the WordPress application from a minor version group to the next one. Fig. 3.5 shows

that doing minor to minor upgrades may result in large variations in performance,

for instance, upgrading to 4.8.x, 4.9.x, and 5.0.x from their previous minor version

groups. This degradation may be small such as when upgrading from minor version

5.0.x to 5.1.x (with a performance degradation of 32%). The worst-case occurred

when upgrading from minor version group 4.8.x to 4.9.x (which resulted in a 354%

degradation of the performance).

In the best case, minor to minor upgrades improved WordPress’ per-

formance by 25% to 79%. Fig. 3.5 shows that there are some minor to minor

upgrades that considerably improve the performance of the WordPress application.

For example, there was a minor upgrade for the slowest WordPress Docker image in

version 5.1.x to 5.2.x that improved the WordPress application’s performance by 25%.

Also, for a WordPress Docker image in version 5.0.x there was an upgrade to version

5.1.x, which resulted in a 79% boost in the performance. Similar to what the patch

version analysis showed, it is hard to make predictions about the performance changes

that are caused by an upgrade based on the WordPress minor version alone.
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Figure 3.6: The distribution of the relative response time improvements for all
consecutive major to major upgrades of WordPress Docker images.

Major Version Analysis of WordPress

Conducting a performance test is essential for WordPress Docker images

even in a major upgrade. Fig. 3.6 shows the distribution of the relative response

time improvements for all consecutive major to major upgrades of the WordPress

application (from 4.x.x to 5.x.x, 1,989 cases).It is interesting to know that this

upgrade can result in 400% performance degradation or 78% performance improvement.

Moreover, there is a 58% chance of performance degradation. This indicates that it is

hard to predict the impact of upgrading the WordPress Docker image from one major

version to the next one, based on the WordPress version alone.

The wide variation in relative response time improvements for the studied
upgrades indicate that it is hard to predict how performance will be affected
based on the WordPress version in the image alone. This implies that the
performance of WordPress is mostly driven by other components in the image.

Summary of RQ3.1
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3.5.2 RQ3.2: What is the Relation Between the Performance
of the WordPress Application and Updates of its De-
pendencies?

Motivation: The two major dependencies of WordPress are the Apache web server

and PHP. As we observed in RQ3.1, upgrading the Docker image of WordPress may

change these dependencies as well, which could in turn affect the performance. In

this RQ, we analyze the impact of changes in the Apache and PHP versions on the

response time of WordPress.

Approach: We grouped the performance measurements of images that use the same

patch, minor or major versions of PHP or Apache, as specified in Section 3.5.1. For

example, we grouped the average response time of each Docker image of WordPress

with PHP major version 5, minor version 6, and patch version 33 (5.6.33) in the PHP

5.6.33 patch group. We analyze these groups for both dependencies in a similar fashion

as to what was done for WordPress in Section 3.5.1. Note that in our case study, we

have no minor and major version analysis for Apache due to the used Apache versions.

Patch Version Analysis of PHP

Upgrading to the next available PHP patch version degraded WordPress’

performance in 71 (58%) out of 123 cases. The last box plot in Fig. 3.7 shows

the distribution of the relative average response time improvements for all consecutive

patch to patch upgrades of PHP. As the box plot shows, 58% of the time, upgrading

to the next patch version of PHP degraded WordPress’ performance. The most

severe degradation after an upgrade was 25%, while the best upgrade resulted in 80%

improvement on the average response time.

Upgrading the last patch version in a minor/major version to the first

available patch version in a minor/major version always improved the

performance of WordPress. Fig. 3.7 shows the distribution of the relative average

response times grouped by PHP patch version. For example, 5.6.32 shows the relative
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Figure 3.7: Distribution of relative response time improvements for upgrading PHP to
the next available patch version. The last box plot shows the distribution of all relative
average response improvements for all consecutive PHP patch to patch upgrades.
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average response time improvements for upgrading all WordPress Docker images with

PHP version 5.6.31 to all WordPress Docker images with PHP version 5.6.32. Fig. 3.7

shows that performing a patch to patch upgrade to the first patch version in a newer

minor or major version always resulted in a performance improvement. The highest

impact is when upgrading Docker images from PHP patch version 5.6.39 to 7.0.19,

resulting in 79-80% improvement. Similar behaviour is observed when upgrading

WordPress Docker images with PHP version 7.0.33 to 7.1.05, 7.1.33 to 7.2.01 and

7.2.25 to 7.3.02, boosting the performance by 20-22%, 20-23%, and 13%.

Performing a patch to patch upgrade of PHP within a minor version

resulted in an unpredictable impact on the performance of the application.

Fig. 3.7 shows that upgrading WordPress Docker images from 5.6.31 to 5.6.32 caused

a performance degradation of 1% to 12%, which means that upgrading a WordPress

Docker image with PHP version 5.6.31 to the next PHP patch version worsened

the performance in all cases. On the contrary, when upgrading from PHP version

7.2.01 to 7.2.02, there was a performance improvement from 3% to 12%. While

these improvements and degradations may look small, they can quickly add up when

conducting several upgrades in succession. For example, one may do four consecutive

patch to patch upgrades from version 7.0.29 to 7.0.33, which could result in a cumulative

impact of 14% performance degradation.

Minor Version Analysis of PHP

Upgrading the minor version of PHP in WordPress Docker images resulted

in an improved performance in 970 out of 1,474 (66%) cases. The last box

plot in Fig. 3.8 depicts the distribution of relative average response time improvements

when upgrading all WordPress Docker images with the same PHP minor version

to the next minor version (1,474 possible upgrades). In 970 upgrades, we achieved

a better average response time. Comparing this finding with the patch to patch

upgrade results, we observe that doing a minor to minor upgrade is 58% more likely
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Figure 3.8: Distribution of relative response time improvements for a minor to minor
upgrade for different minor versions of PHP. The last box plot shows the distribution
of relative response time improvements for all consecutive minor to minor upgrades of
PHP in WordPress Docker images.

to result in performance improvement than a patch to patch one. The Mann-Whitney

U test confirms that this difference is statistically significant, with a small effect size.

Therefore, one who is doing a minor to minor upgrade on the PHP version of the

WordPress Docker is less in risk of deteriorating the performance.

In all studied WordPress Docker images, upgrading an image with

PHP minor version 5.6 to one with PHP 7.0 improved the performance.

Fig. 3.8 shows that for all 306 possible upgrades from PHP version 5.6.x to 7.0.x,

an improvement from 63% to 80% was observed for the average response time. This

finding indicates that older minor versions of PHP suffered from a relatively bad

performance. Taken into account our other observations, we can conclude that the

main contributing factor to the performance of WordPress images that use PHP 5.6.x

was the PHP dependency.

Major Version Analysis of PHP

Performing a major to major upgrade of PHP improved the performance

of the WordPress application in all 1,241 cases. Fig. 3.9 shows the distribution

of the relative average response time improvements for all consecutive major to major

upgrades of PHP in WordPress Docker images. Based on the studied WordPress

Docker images, in all cases, this upgrade had a positive impact on the performance. In
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Figure 3.9: The distribution of the relative response time improvements for all
consecutive major to major upgrades of PHP in WordPress Docker images.
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Figure 3.10: Distribution of relative response time improvements for upgrading an
Apache patch version to the next available patch version. The last box plot shows the
distribution of the average response times of WordPress Docker images with different
patch versions of Apache.

other words, selecting a random WordPress Docker image that uses PHP version 5.x.x

and upgrading that to another WordPress Docker image with PHP major version 7.x.x

resulted in performance improvements ranging from 54% to 80%. This observation

confirms our previous observations and highlights how dependent the performance of

WordPress is on PHP.

Patch Version Analysis of the Apache Web Server

Upgrading to the next available Apache patch version improved WordPress’

performance in 1,183 (58%) out of 2,024 cases. Fig. 3.10 shows the distribution

of relative average response time improvements for all patch to patch upgrades of
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WordPress Docker images with the same Apache patch version to the next patch

version. Fig. 3.10 shows that the chance of performance degradation is 42%, indicating

that it is more likely that a patch to patch upgrade of Apache version improves the

performance. However, these upgrades can result in 342% performance degradation

or 79% performance improvement, such as upgrading from Apache 2.4.10 to 2.4.25.

Together with our findings in the PHP analysis, we can conclude that it is hard to

predict how upgrading an image will affect WordPress performance, based on its

Apache version.

It is hard to predict how upgrading a WordPress image will change the perfor-
mance, based on its WordPress or Apache version. A major version upgrade
of the PHP considerably improved WordPress’ performance in all cases, im-
plying that WordPress’ performance is highly dependent on the PHP version.
Upgrading the last patch version in a minor/major version to the first available
patch version in a minor/major version of PHP always improved WordPress’
performance.

Summary of RQ3.2

3.6 Discussion

In our case study, we demonstrated how our methodology can help to analyze the

performance risks of Docker image upgrades. Ideally, the performance of an image is

thoroughly tested before it is being upgraded to. However, performance tests are not

popular among developers [33, 135], and they are hard to execute correctly. Hence,

our expectation is that many users of images from Docker Hub will conduct an image

upgrade without doing such performance tests. The goal of our methodology is to give

such users insights about the performance change of doing an image upgrade without

conducting a performance test. Below, we discuss the caveats of our methodology.

Caveat 1: The recommendations apply to the studied application only.

While we were able to extract several recommendations for the WordPress application

(e.g., upgrades of images with PHP 5.x.x to PHP 7.x.x always resulted in improved
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performance), these recommendations apply to the WordPress application only. Until

there is a large body of performance measurements available for Docker Hub images

of many applications, the recommendations of our approach can be applied to the

studied application only. Our vision is that through community effort (e.g., as

described in Recommendation 1 below), or a future large-scale study, broader-ranging

recommendations can be given.

Caveat 2: Collecting the performance measurements of an application

takes a considerable amount of time. While the analysis step of our methodology

is lightweight in terms of computation, collecting the performance measurements takes

a relatively long time. The (short) performance tests that were conducted during our

case study took a total of approximately 3 days to complete. For longer performance

tests, or a larger number of Docker images, this can be problematic. One could

argue whether doing such analysis is beneficial as compared to simply testing the

performance of the target image. However, as said above, it is important to keep in

mind that many developers and practitioners prefer to avoid performance tests.

In addition, we make the following recommendations.

Recommendation 1: Docker Hub should allow users to provide perfor-

mance measurements of an image. During our case study, we observed that none

of the official WordPress images mentioned anything about performance or response

time. As a result, users of such images have to either resort to other sources of

information, conduct their own performance tests, or simply take a gamble in terms of

performance when doing an image upgrade. We recommend that Docker Hub provides

a mechanism for submitting the results of performance tests of the offered images.

The analysis done through our methodology (e.g., the patch/minor/major version

analysis) can then offer insights for users who wonder about the performance changes

of upgrading to an image that does not have performance measurements yet.

Recommendation 2: Semantic versioning should be extended to cover

performance changes. At the time of writing, the types of changes that are allowed
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by the semantic versioning principle do not cover performance. However, as mentioned

before, performance is increasingly important for software and is considered ‘the

new correct’ [87]. Hence, it is a missed opportunity that changes to performance

are not covered by semantic versioning. During our case study, we observed that

some recommendations can be made for the WordPress application based on the

versioning of its dependencies (in particular, PHP). However, we expect that such

recommendations would be much stronger when supported by the official semantic

versioning specification.

Recommendation 3: Researchers of Docker Hub images must be aware

of the relatively large number of convenience tags. During our case study,

we were surprised by a large number of convenience tags in the official WordPress

repository on Docker Hub. We highly recommend that researchers of Docker Hub

images filter such tags as they point to images that already exist in the data set under

their original tag, and can bias the analysis.

Recommendation 4: Developers of performance - sensitive Docker images

should include an easy way to test the performance of the image. As said

above, performance testing is not a popular task, and designing and conducting such

tests is complicated. We recommend that developers of Docker images include an easy

way to test the performance of the image, for example, a performance test of which

the execution steps do not change across images. Such an inclusion would benefit

practitioners who wish to conduct a performance test, but are not sure how to. In

addition, it would benefit a community effort for collecting performance measurements

as suggested in Recommendation 1.

3.7 Threats to Validity

Internal Validity. Threats to internal validity are related to bias and errors in the

experimental procedure. One threat is the short period of load testing for each image.

We emphasize that the goal of this research study is not to provide a deep analysis
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of the performance of WordPress. Instead, we demonstrate through a case study

on WordPress how our methodology can be used to study the performance risks of

upgrading Docker images of applications with several dependencies.

Another threat to the internal validity of our findings is the variability of mea-

surements that are done within a cloud environment. To investigate the impact of

this variability, we tested the performance of the images that had convenience tags

and studied the variation between the repeated measurements. For example, if an

image had its original tag and three convenience tags, this allowed us to collect four

times three repetitions of the performance test of the same image. We found that 95%

of the duplicate images have less than ∼ 40 ms standard deviation, which is small

given that the average response times are roughly between 400 and 1,000 ms. This

shows that the variations in the average response times of the duplicate images are

negligible and that the selected cloud environment did not impact the performance

test measurements.

Another threat to the internal validity of our findings is that some of the studied

upgrades are unlikely to be conducted in the real world. For example, it may be

unlikely that users of an image with WordPress 4.x.x and PHP 7.x.x upgrade to an

image with WordPress 5.x.x and PHP 5.x.x. However, it is important to study such

upgrades as well for two reasons: (1) users may have a very specific reason for doing

this upgrade (e.g., avoiding a vulnerability in PHP 7.x.x), and (2) users may not be

aware that they are also changing the Apache version. While this change is described

quite clearly for WordPress, dependency changes for other applications are much less

obvious yet plentiful [80].

External Validity. Threats to external validity question the extent of gener-

alizability of our findings. In this study, we proposed a methodology to study the

performance risks of upgrading the Docker Hub image of an application. The findings

for the specific dependency versions apply to WordPress and its two main dependen-

cies, PHP and Apache only. However, our methodology is agnostic to the studied
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application and dependencies, and can easily be applied to study the performance

risks of other applications on Docker Hub.

In this study, we relied solely on the average response time of the application to

draw conclusions about its performance. Many other performance metrics exist that

can be relevant to capture the performance of an application. While our methodology

is agnostic to the studied performance metric, future studies should further investigate

the effectiveness of our methodology to study other metrics.

Construct Validity. Threats to construct validity show how well a test can

measure what it is supposed to measure. In our case study, we used the simplest

performance test available for a webpage: loading its main page. Our case study

findings show that even for such a simple performance test, dependencies can already

strongly influence the performance of the main application. As our methodology is

agnostic to the type of performance test that is executed, we invite researchers to

conduct more thorough performance tests for WordPress, but also for other applications

(as explained in Section 3.6).

Conclusion Validity. Threats to conclusion validity are concerned with issues

that may affect the ability to draw conclusions regarding the experiment setting and

the results [234]. To ensure the validity of our approach and the data, we provide a

publicly available repository of the automated performance testing tool along with

the list of studied WordPress Docker images and a summary of the results [12].

3.8 Conclusion

In this chapter, we propose a methodology to study the performance risks of upgrading

Docker Hub images. We demonstrate our methodology through a case study on 90

official Docker Hub images of the WordPress application. In particular, we show

how conducting an analysis at the patch, minor and major level can reveal how the

performance of an application is tied to its dependencies, rather than to the main

application itself. We make the following contributions:
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• The first methodology for studying the performance risks of upgrading Docker

Hub images.

• A case study on WordPress that shows that there are considerable variations in

the performance of Docker Hub images with the same version of the WordPress

application (yet different dependency versions), highlighting the impact of

dependencies on the performance of WordPress.

Our methodology can be beneficial for practitioners who wish to be informed about

the change in performance they can expect when upgrading a Docker Hub image,

without conducting a performance test of that image themselves. In particular, we call

upon the community to start collecting performance measurements for Docker Hub

images of a wide range of applications. These measurements can then be collected

into a performance repository, which in turn can be leveraged by our methodology

to provide recommendations about the expected performance of Docker images for

which no performance measurements exist yet.
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Chapter 4

Micro-FL: A Fault-Tolerant
Scalable Microservice-Based
Federated Learning Platform

4.1 Abstract

As the number of applications of machine learning (ML) increases, rising data privacy

concerns expose the limitations of traditional cloud-based ML methods that depend on

centralized data collection and processing. Federated learning emerges as a promising

alternative, providing a novel approach to training machine learning models that

protects data privacy. Federated learning facilitates collaborative model training

across different entities, with each user training models locally and only sharing the

local model parameters with a central server, which then generates a global model

based on these individual updates. This approach ensures data privacy as the training

data itself is never directly shared with a central entity.

However, existing federated ML frameworks are not without challenges. Considering

the federated learning server design, these frameworks exhibit limited scalability as

the number of clients increase and are highly vulnerable to system faults, particularly

as the central server becomes a single point of failure. In this chapter we introduce

Micro-FL, a federated learning framework that uses a microservices architecture to

implement the federated learning system. We show that the framework is fault-tolerant
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and can be scaled to handle increases in the number of clients. Our comprehensive

performance evaluation confirms that Micro-FL proficiently handles component faults,

thereby enabling smooth and uninterrupted operation.

4.2 Introduction

Over the last decade, the rapid progression of machine learning technologies has

propelled a wave of artificial intelligence applications, encompassing fields such as

computer vision, anomaly detection, fault diagnosis, and natural language processing.

The ascendency of machine learning is largely attributable to two key factors: the

accessibility of vast volumes of data and significant advancements in computational

techniques and resources.

Nevertheless, the availability of extensive data, metaphorically a “double-edged

sword” [142], poses significant personal information leakage risks when customer,

industrial, or public data are not appropriately managed and utilized. As an illus-

tration, stringent regulations such as the European Union’s General Data Protection

Requirements (GDPR) [188] and the United States’ California Consumer Privacy Act

(CCPA) [44] have been put in place to enhance the protection of personal data and

privacy by regulating corporate behaviour [244].

With the escalating focus on data privacy, ownership, and confidentiality in con-

temporary society, there is a growing apprehension that personal information could be

exploited for commercial or political motives without the individual’s consent. This

concern has catalyzed the emergence of a novel era in machine learning, characterized

by approaches specifically designed to safeguard user data privacy. An example of

such an approach is Federated Learning (FL), a technique introduced by McMahan et

al. [156].

Federated learning serves as a privacy-focused alternative to machine learning

approaches that require central data collection, allowing models to be trained directly

at the data storage site of each user. This approach eliminates the need for data
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transmission, as only the locally trained model parameters are used to develop and

refine a more effective global model.

Federated learning systems, depending on the communication scheme between

components, can be implemented in either centralized (client-server) or decentralized

(peer-to-peer) fashion [104, 138]. In a centralized scheme, the central server primarily

orchestrates the training process and sets up the communication infrastructure among

users. However, its pivotal role also introduces a potential vulnerability, rendering it a

single point of failure within the system. Conversely, in a decentralized scheme, all

clients can autonomously coordinate to acquire the global model, facilitating model

updates and aggregations via peer-to-peer client interactions.

Although decentralized federated learning methods, such as those based on blockchain [50,

51, 119, 127, 229, 230], can mitigate the challenges of centralized federated learning by

eliminating the central server, they introduce their own challenges [148, 214]. These

include performance degradation, as well as increased computational and storage costs.

Consequently, in this study, we will focus on federated learning systems that employ a

centralized communication scheme and tackle its specific challenges.

In a centralized federated learning system, a central server might become a vulnera-

bility, acting as a single point of failure due to physical damage, server node failure,

or network disruptions. This can potentially interrupt the federated learning process.

While large organizations may handle such server roles in some scenarios, collaborative

learning often faces constraints regarding the availability and reliability of a robust

central server [222]. The server may also become a bottleneck when serving numerous

clients, as highlighted by Lian et al. [143].

Hence, when conceptualizing a federated learning system based on a centralized

design, it is essential to adopt a design pattern that is both fault-tolerant and perfor-

mant. Even though numerous platforms and frameworks exist for federated learning,

challenges related to performance, scalability, and fault tolerance remain. While these

platforms often emphasize user scalability and fault management at the user-end,
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they frequently neglect the vital aspect of server-side fault management and system

scalability as the user base expands. Ideally, a federated learning system should

inherently possess scalability and fault tolerance.

Scalability in the context of federated learning denotes the ability of the system

to incorporate additional devices in the federated learning process. More devices can

improve the accuracy and speed up the convergence of federated learning process [77,

211]. Techniques such as resource optimization, prioritizing devices with high compu-

tational power, and implementing compression schemes for learning model parameter

transfer can aid scalability. Effective resource optimization allows more devices to

partake in the federated learning process, thereby enhancing performance. However,

increasing device participation necessitates an expansion of server-side computational

resources.

Fault-tolerance in the context of federated learning indicates the system’s capa-

bility to manage the federated learning process effectively, even when the server

fails. Traditional federated learning, relying on a centralized cloud server for global

aggregation, can be disrupted if the aggregation server malfunctions [109]. Current

concerns about fault tolerance in federated learning systems often revolve around

adversarial or Byzantine attacks targeting the central server [34, 203, 217]. While

numerous studies have investigated system performance, research into the effects of

server faults, such as physical damage, on the federated learning system’s performance

is relatively scant.

To fulfill these properties for a performant federated learning system, we present

Micro-FL in this chapter. Micro-FL is a microservices-based federated learning

platform engineered to handle an expanding user base, guarantee high availability,

and offer fault tolerance. Suitable for deployment either on-site or in the cloud, it

harnesses the flexibility, modularity, scalability, and reliability that microservices

provide. Micro-FL streamlines the testing, deployment, and maintenance of federated

learning algorithms, while allowing dynamic resource allocation based on workload or
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user count, thus improving the resource efficiency.

4.3 Background

This section describes the fundamental concepts leveraged in this study, specifically

focusing on federated learning and microserives.

4.3.1 Federated Learning

Federated Learning, introduced by Google [156], is a distributed machine learning

strategy focused on data privacy. It brings together numerous clients, such as edge

devices and organizations, to collaboratively train a shared statistical model, known

as a global model. The process, facilitated by a central server, occurs across remote

client devices without directly sharing data.

Federated learning is characterized by two main features: 1) It involves a multi-party

collaboration, with at least two entities, to construct a machine learning model. Each

participant holds unique data that contributes to model training. 2) During the

training process, each party’s data is kept localized and is not transferred elsewhere.

Federated learning can be formulated as follows: consider a scenario with N clients,

denoted as {𭟋}Ni , each possessing unique datasets {Di}Ni . In traditional machine

learning, these datasets {Di}Ni would be sent to a central server to train the unified

model MSUM. However, this process requires each client 𭟋i to disclose its dataset Di

to the central server, which poses potential data leakage risks.

On the other hand, in federated learning, clients work together to train a model

MFED without needing to share their respective datasets {Di}Ni . Suppose VSUM and

VFED represent the performance metrics (such as accuracy, recall, or F1-score) of the

traditional machine learning model MSUM and the federated model MFED, respectively.

If we denote δ as a non-negative real number, we can say that the federated learning

model MFED experiences δ-performance loss if:
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|VSUM − VFED| < δ. (4.1)

Equation 4.1 implies that while federated learning builds a machine learning model

using decentralized data sources, the model’s performance on unseen data closely

matches that of a model built on centrally collected data [244].

The federated learning training process can be broadly classified into three steps,

as delineated by Lim et al. [145]. The model trained at each client’s end is termed the

local model, whereas the model synthesized by the federated learning server is denoted

as the global model. Figure 4.1 provides a visual representation of the federated

learning architecture and its training process.

Client 1

Client 2

Client N

Central Server

Aggregated
 Model

.

.

.

Local
Model 1

Loca
l

Model 
N

Local
Model 2

Model Initialization

Local Model
 Training and update

Global Model
Aggregtion and Update

Figure 4.1: An example of a federated learning architecture: client-server model.

1. Initialization: The server defines the machine learning task, data prerequisites,

and training hyperparameters. It then broadcasts the initial global model

parameters w0
G to the selected clients [56, 173, 227].

90



2. Local model training and update: Each client i downloads the broadcasted model

parameters wt
G from the server, for iteration number t. They train the model

on their local data to obtain updated model parameters, wt
i , which minimize

a specific loss function, L(wt
i). These updated model parameters are then sent

back to the server.

3. Global model aggregation and update: The server aggregates the local models

generated by the clients and prepares the model parameters for the subsequent

training iteration, wt+1
G , with the aim of minimizing the global loss function,

L(wt
G).

Steps 2 and 3 are repeated until the global loss function converges or a targeted

training accuracy is achieved.

Federated Averaging (FedAvg) is a straightforward and commonly used method

for aggregating local models in federated learning, proposed by McMahan et al. [156].

This algorithm, averages the updated weights from each client’s local model to create

a new global model.

4.3.2 Microservices

Monolithic and microservice-based architectures currently dominate the realm of

business application development [74]. The monolithic architecture, a traditional

approach, constructs an application as a single extensive codebase or repository that

encompasses various services and they are not independently executable [37]. This

tightly-coupled architecture operates as a singular process in the application server’s

environment during request handling, with all internal communications managed by

an intra-process mechanism. However, as new features are continually integrated in

today’s fast-paced development cycle, the growing codebase and complexity make

code understanding and modification more challenging [75, 190], leading to slower

deployment. Another issue with the monolithic architecture is its lack of fault tolerance.
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In other words, there is no provision for a system component to function independently

when another component fails [19], which is possible with the microservices-based

architecture.

In contrast, microservices, a rising trend in software architecture, emphasize the

design and development of software that is highly maintainable and scalable [63]. By

functionally breaking down large systems into a collection of independent, smaller

systems, microservices help manage the growing complexity of software systems.

Microservices typically employ containerization technologies, such as Docker, which

encapsulate each service and run it within a container. This structure allows for

effortless scalability with minimal latency and hardware resource footprint. Docker

containers, which are lightweight, efficient, and can swiftly scale based on needs [161],

prove particularly beneficial for a microservices architecture. For this reason, Docker

containers have been utilized for the proposed federated learning platform in this

study.

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and

management of containerized applications [129]. It offers scalability by dynamically

adjusting containers based on resource demands. It ensures high availability through

automatic restart or rescheduling of failed containers, and promotes portability and

prevents vendor lock-in through infrastructure abstraction. Furthermore, it optimizes

resource utilization by efficiently scheduling containers.

Hence, integrating a federated learning framework that uses a microservices archi-

tecture can facilitate the creation of a performant federated learning system that is

both scalable and fault-tolerant.

4.4 Related Work

Addressing the single point of failure and enhancing fault tolerance in centralized

federated learning has garnered substantial research attention. One approach is the

implementation of a decentralized federated learning design, which eliminates the cen-
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tral server from the federated learning system, thus averting any single point of failure.

This is made possible through the use of different blockchain technologies [50, 182, 229],

such as proof-of-work [119], proof-of-authority [127], and proof-of-contribution [214],

in conjunction with smart contracts [230, 239]. Such a setup enables model updates

and aggregations via direct client-to-client interactions[51], enhancing the overall

robustness and fault-tolerance of the system.

However, blockchain-integrated federated learning systems face several challenges [148,

214], including: 1) Performance issues due to a constrained number of transactions,

which can result in high latency; 2) The high computational cost of aggregation

processes due to typically limited resources on client devices; 3) Increased storage

demands, as machine learning models must be stored on all client devices, leading

to considerable strain on storage resources; and 4) Potential data privacy risks as all

models are accessible to client devices.

Given these challenges with decentralized federated learning, our research proposes

an alternative approach to improve the fault tolerance of centralized federated learning.

This approach involves implementing a microservices-based design pattern for federated

learning.

The following section examines previous research relevant to our study of a

microservice-based platform for federated learning. In particular, we delve into

existing tools that use a centralized server design for federated learning and their

unique features.

TensorFlow Federated (TFF) [83] is an open-source framework for machine learning

on decentralized data. Its interfaces include the high-level Federated Learning API

for federated learning training with pre-existing TensorFlow models, and the lower-

level Federated Core API for developing new federated learning algorithms. While

it supports various aggregation functions, it currently lacks GPU utilization for ML

model training and only supports simulation mode. The framework is still under

development, and its current limitations suggest it might not be suitable for all use
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cases.

Federated AI Technology Enabler (FATE) [67] is an open-source project by We-

bank’s AI Department, designed to provide a secure computational framework for a

federated AI ecosystem. FATE offers a suite of features like federated statistics, feature

engineering capabilities, machine learning algorithm support, and secure protocols.

It can be deployed in simulation or federated modes, with installation streamlined

via Docker containers. However, its high resource requirements, including 6GB RAM

and 100GB disk space on both client and server-side, may render it impractical for

real-world federated learning scenarios.

Paddle Federated Learning (PFL) [20]is an open-source platform that supports

both horizontally and vertically partitioned data, and can handle neural networks

and linear regression models. It leverages techniques like Federated Averaging, Se-

cure Aggregation, and Differentially Private Stochastic Gradient Descent for model

construction. Communication in PFL is managed using the ZeroMQ protocol, and

it supports both simulation and federated modes, making it adaptable for various

deployment scenarios.

PySyft [175] is an open-source project focusing on secure, private deep learning. It

comprises components like PyGrid for connecting data owners and data scientists in a

peer-to-peer network, KotlinSyft for training PySyft models on Android, SwiftSyft

for iOS, and Syft.js for web interfacing. These elements collectively enable secure,

collaborative training of models using PySyft.

The Federated Learning and Differential Privacy (FL&DP) [205] Framework is

an open-source framework that uses TensorFlow for deep learning tasks and the

SciKit-Learn library for linear models and clustering. It offers various aggregation

algorithms for and uses adaptive Differential Privacy and randomized response coins

to enhance data privacy protection during the learning process.

LEAF [43] is an open-source benchmark tailored for federated learning settings. It

provides open-source datasets suitable for federated learning, metrics for evaluating
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federated learning algorithms, and a repository of standard methods such as minibatch

Stochastic Gradient Descent and Federated Averaging. Serving as a valuable resource,

LEAF aids in benchmarking and comparing federated learning algorithms.

Flower [30] is an open-source framework that supports large-cohort training on

edge devices and compute clusters. It offers aggregation methods like SecAgg [40]

and SecAgg+ [28], and supports both simulation and federated modes of operation.

Notably, Flower is language and machine learning framework-agnostic, ensuring broad

compatibility.

Serverless federated learning (FedLess) [84] is a system designed for federated

learning on diverse Function-as-a-Service platforms, supporting major commercial

FaaS platforms such as AWS Lambda, Google Cloud Functions, Azure Functions, and

IBM Cloud Functions. Implemented in Python3, FedLess provides a command-line

tool for orchestrating the training process and supports TensorFlow and Keras for

deep learning models. Its default federated learning strategy is the FedAvg algorithm,

commonly used for model updates aggregation. Other research projects, such as [100],

have also adopted serverless design for federated learning.

FedML [89] is an open-source research library and benchmark platform designed

to aid the development of Federated Learning algorithms and provide objective

performance comparisons. It supports on-device training, distributed computing, and

single machine simulation. FedML offers resources such as algorithmic implementations,

benchmarks with evaluation metrics, access to real-world datasets, and validated

baseline results. It is organized into FedML-API for high-level APIs and FedML-core

for low-level APIs, using the Message Passing Interface for system communication.

FedML supports various federated learning algorithms including FedAvg, Decentralized

FL, Vertical Federated Learning, and Split Learning.

Numerous other tools strive to address scalability issues in federated learning

systems, predominantly concerning the scaling in the number client [120, 170, 184, 233,

253]. Despite providing several beneficial features, these platforms fail to implement
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an efficient central server design that is scalable and fault tolerant. To mitigate

these deficiencies, we introduce Micro-FL. Grounded in the principles of microservices

system architecture, Micro-FL-FL is designed to enhance the scalability and robustness

of centralized federated learning systems, effectively addressing these significant gaps

in contemporary solutions.

4.5 Micro-FL

Figure 4.2 contrasts the building blocks of a commonly-used federated learning server

design (monolithic architecture) with the microservices-based design we propose in

this study. In a monolithic federated learning server design, all components (e.g.,

user interface and communication services) are encapsulated into a single process,

utilizing a single database. A fault in any of these components can completely halt

the federated learning process. This issue, known as a ’single point of failure’ within

the server, could cause substantial downtime and undermine system reliability. More

importantly, scaling monolithic applications requires scaling the whole application,

necessitating a considerable increase in resource requirements.

Conversely, when employing a microservices architecture, these components are

decoupled from each another (i.e. isolated), each operating as an individual scalable

process (microservice) with its own dedicated database. Furthermore, a communication

mechanism is implemented for these services to interact with one another. As these

microservices are horizontally scalable, multiple instances of each microservice can

be created to enhance the fault tolerance of the federated learning system. We refer

to this proposed architectural framework as Microservice-based Federated Learning

(Micro-FL)1.

Micro-FL accommodates both Linear and Deep Neural Network (DNN) models,

leveraging TensorFlow and Keras. Additionally, as a microservices-based application,

Micro-FL possesses several notable attributes:

1https://github.com/MikaelSabuhi/Micro-FL
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Monolithic Federated Learning Server
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User Interface
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Figure 4.2: Comparison of monolithic and microservices based federated learning
systems architectures.

• Micro-FL’s distinct modules handle specific functions, contributing to a compact

codebase and easier debugging, while also enabling incremental upgrades. These

upgrades allow coexistence of old and new versions for compatibility testing,

and changes in a module don’t require a system-wide reset, thus reducing the

re-deployment cycle.

• The framework fault tolerant capabilities of Kubernetes; even with a commu-

nication microservice failure, the federated learning process continues without

interruption.

• Utilizing containerization, Micro-FL allows extensive customization of the de-

ployment environment and facilitates scaling of individual microservices without

impacting the whole application. This functionality supports easy deployment

or retraction of services based on demand and accommodates both horizontal

and vertical scaling.
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4.5.1 Micro-FL workflow

The following subsection provides an insight into the workflow of the Micro-FL system.

The process is characterized by a series of steps that ensure the smooth execution of

federated learning tasks. Each of these steps is explained in detail below:

➊ Clients initiate a registration process with Micro-FL via a dedicated web applica-

tion interface. ➋ Based on the number of clients registered and prepared to contribute

to the federated learning process, the Micro-FL administrator issues a notification

signaling the clients regarding the start of a new training iteration. ➌ The Aggregator

service actively monitors the connected clients and their statuses. Upon reaching a

certain number of participating clients, it triggers the initialization of a model, which is

subsequently disseminated to all the clients. ➍ Clients continuously listen for updates

from the aggregator service. Upon receipt of the model from the aggregator service,

they start training on their local datasets. ➎ Post training, the clients transmit their

model parameters to the server through communication service. ➏ All messages

submitted by the clients are securely transmitted via the communication service and

are logged into the database. ➐ The aggregator microservice constantly monitors

client messages during each iteration. When the number of messages equals the total

number of clients, the aggregator synthesizes a new global model using the individual

client models. ➑ The Aggregator service dispatches a fresh message to the clients,

and the cycle from steps ➌ to ➑ repeats. This iterative process continues and is

monitored until a specified number of iterations are completed or a pre-defined model

performance metric is achieved.

4.5.2 Framework Design

A minimalistic implementation of the proposed Micro-FL architectural design is

presented in Figure 4.3. All services operate as Docker containers and are orchestrated

using Kubernetes. Additionally, load balancing is utilized to distribute clients requests

between the user interface and communication microservices. Building upon the
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Figure 4.3: Overview of the proposed Micro-FL framework design and its components
running on a Kubernetes cluster.

previous section, we discuss the essential components, services, and applications used

to actualize Micro-FL. We selected these components for their performance, scalability

with Kubernetes, and open-source nature. Each microservice is briefly explained as

follows:

1. User Interface. The web application is developed using the Flask library for

Python and Nginx as web server. A federated learning client can register and

authenticate using this web UI. Also, Google Cloud Load balancing is used to

balance the workload to the web application. Both web application and server

are deployed with 3 replicas to improve their performance and reliability.

2. Database. The database governs federated learning database access and caching.

Elasticsearch (ES), a NoSQL database, retains Federated Learning models, accu-

racy metrics, and client information. The proposed Micro-FL platform employs

Elasticsearch due to its scalable and fault-tolerant design, which incorporates

index replication and sharding. It uses REST APIs for data storage and search,

with a document-based structure in place of tables and schemas. Furthermore,

Kibana is utilized for visualizing the federated learning process.

3. Communication. This microservice enables data exchange across various
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applications, services, and systems, critical for microservices and clients commu-

nication. We use Apache Kafka as our message broker, known for its scalability,

fault tolerance, and ability to handle trillions of daily messages with minimal

latency. Within Kafka, partitions serve as the foundational units for parallelism

and scalability. These partitions segment a Kafka topic into multiple smaller,

immutable, ordered sequences of records, each hosted on a distinct Kafka broker

within a Kafka cluster. The existence of multiple partitions in a Kafka topic

paves the way for parallel processing and scalability. Producers can write to var-

ious partitions simultaneously, and consumers can consume data from numerous

partitions concurrently. This design fosters high throughput and fault tolerance.

Kafka employs replication to ensure fault tolerance and high availability. Each

partition in a topic is replicated across several brokers to offer redundancy. The

replication factor outlines the number of copies of each partition that should

be preserved in the cluster. We utilized Strimzi Kafka [103] for Kafka brokers’

deployment on Kubernetes and Apache Camel Elasticsearch sink connector

(Kafka Connect) for message transfer to the Elasticsearch database.

4. Aggregator. Aggregator microservice is responsible for aggregating client

updates. It retrieves model updates from the database and creates a new global

model for the subsequent federated learning iteration once all chosen users

have reported their local model updates. Although numerous methods and

structures can be used for aggregation, we opted for the simple and popular

FedAvg algorithm in our tests. Since the aggregation happens at the end of

the federated learning process and being a synchronous process, we did not

replicate this microservice. In other words, in case of fault in this microservice,

the Kubernetes controller manager will automatically restart it and it does not

impact the training process.
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4.6 Evaluation Methodology

In this section, we describe our methodology for evaluating the fault tolerance capabil-

ities of the proposed Micro-FL platform. The working environment will be provisioned

utilizing Google Cloud Platform (GCP) and Google Kubernetes Engine. The vari-

ous steps encompassing our methodology are illustrated in Figure. 4.4. Subsequent

subsections will provide an in-depth explanation of each of these steps.

Deploy the Micro-FL
Framework Generating Clients

Monitor and Collect the
performance metrics

Injecting Faults

Evaluate the performance

Deploy services and load testing

Performance monitoring and analysis

Figure 4.4: Overview of our methodology to evaluate the fault tolerance of Micro-FL.

4.6.1 Deploying the Micro-FL framework

The specifics of the Micro-FL deployment are detailed in Table 4.2, with the Kubernetes

cluster configuration demonstrated in Table 4.1. We used the Google Cloud Kubernetes

Engine to deploy the Micro-FL frameworks, employing three Kubernetes nodes. This

setup will be used to evaluated the fault tolerance behaviour of the microservices,

maintaining system robustness in the face of potential faults in the instances.

For the Kafka broker and Kafka connect, we implemented a replication factor

of three across all Kafka topics (which is recommended for production level [160]).

Simultaneously, the minimum in-sync replicas parameter was configured to two,

providing resilience against any single instance failure. We have also established three

replicas for the ZooKeeper microservice. In the case of Elasticsearch, indices were
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Table 4.1: Configuration of the Micro-FL Kubernetes instance.

Property Value

Machine Family E2-Standard-16

Number of Nodes 3

vCPUs 16

RAM 64GB

Image Type Ubuntu With Containerd

Boot Disk Type Balanced Persistent Disk

Boot Disk Size 100GB

Zone us-central-c

GKE Ver. 1.25.8-gke.500

configured with a replication factor of three. Kibana is utilized for data visualization

tasks within the Micro-FL platform.

Table 4.2: Micro-FL deployment allocated resources.

Service Name vCPU RAM(GB) Replica Ver.

Kafka 2 8 3 3.4.0

Zookeeper 0.5 4 3 3.7.1

Connect 2 8 3 3.4.0

ES-Master Node 1 4 3 8.7.0

ES-Data/Ingest Node 4 16 3 8.7.0

Kibana 1 4 1 8.7.0

Aggregator 1 4 1 N/A

4.6.2 Generating Clients

Clients are integral to the federated learning process. To evaluate the performance of

the proposed Micro-FL system under varying user counts, we simulated clients. Given
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the substantial resources required to run multiple clients concurrently, we utilized

Docker containers and Kubernetes for client simulation. Google Cloud Kubernetes

Engine is employed to orchestrate variable client counts. The clients contribute to

the federated learning process using two popular datasets, MNIST [134] and CIFAR-

10 [128], on two distinct models, as shown in Figure 4.5a and Figure 4.5b respectively.

The datasets are randomly selected and evenly distributed among the clients and

do not have any overlap, as described in Table 4.3. Client-side training employs 5

epochs with a batch size of 10. For optimization, we utilized the Adam optimizer

with a learning rate of 0.001 and the training runs for 100 iteration. For conciseness,

these datasets and their corresponding models will be referred to as the MNIST and

CIFAR-10 workloads. Additionally, the computational resources assigned to each

workload are outlined in Table 4.4. It is important to clarify that our primary focus is

server-side faults. Hence, we operate under the assumption that clients function as

expected, without any faults.

Table 4.3: Distribution of MNIST and CIFAR-10 datasets for different number of
users.

Dataset Clients Training Samples Testing Samples

MNIST

100 600 100

500 120 20

1000 60 10

CIFAR-10

100 500 100

500 100 20

1000 50 10

Table 4.4: Resource allocation for each client for the MNIST and CIFAR-10 datasets.

Dataset Instance Type vCPU
Client

RAM
client Zone

MNIST General Purpose 0.1 0.6 GB us-central1(a,b,c,f)

CIFAR-10 General Purpose 0.25 1.4 GB us-central1(a,b,c,f)
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(a) Model trained on MNIST.

z z

(b) Model trained on CIFAR-10.

Figure 4.5: Trained models for performance analysis of the Micro-FL framework. The
model trained on MNIST has 25,450 trainable parameters and for CIFAR-10 it has
89,834.
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4.6.3 Injecting Faults

To evaluate the fault tolerance properties of the Micro-FL system, we utilized Chaos-

Mesh [1], a robust chaos engineering platform specifically designed for Kubernetes.

Chaos-Mesh supports a comprehensive array of fault types, including pod and network

faults, while also being safe and manageable. For our experiments, we employed

Chaos-Mesh version 2.5.2.

We consider the Kafka broker to be the most essential component of the Micro-FL

system, as all communications between services and clients pass through it. Message

loss may result from a malfunction in this module, severely impeding the federated

learning process. Thus, we restrict our fault analysis to Kafka brokers.

We conducted federated learning using the MNIST and CIFAR-10 workloads under

two distinct conditions, specifically the healthy and faulty scenarios. Under the healthy

scenario, the system operates without any injected faults. In the faulty scenario, a

POD FAIL fault is injected every 20 iterations (in 100 iterations) during the federated

learning training process and lasts for 5 minutes. This fault is randomly inserted

into one of the Kafka brokers. The aim of this experiment is to assess whether

the Micro-FL system can effectively manage these faults and maintain a seamless

operation throughout the process.

4.6.4 Monitoring and Evaluating the Performance

We assessed the performance of Micro-FL from two perspectives: 1) Federated learning

performance, which encompasses the efficiency of the global model and execution

time of the experiments, and 2) Software system performance, which includes CPU

utilization and metrics pertinent to the message broker.

Federated Learning Performance Metrics

Performance metrics associated with federated learning are gathered and assessed in

the Aggregator microservice and are defined as follows:
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• Global Model Performance: is measured as training and testing accuracy. These

metrics indicate the efficacy of the global model in the federated learning process.

The aim is to obtain high performance during training and testing. Given that

our datasets are addressing a classification issue, our goal is achieving high

training and testing accuracies. Notably, in this study, the aggregator evaluates

these accuracies on the entire training and testing datasets, to which it has

complete access.

• Experiment Execution Time: denotes the time taken to complete each experiment.

In assessing the fault tolerance of the proposed architecture, the objective is to

maintain consistent execution times for each experiment, regardless of whether

the operation conditions are healthy or faulty.

Software Performance Metrics

To collect and evaluate software performance metrics, we utilized Prometheus as

our monitoring system and Grafana for data visualization. To assess the messaging

system’s (Kafka) performance, we leveraged the Kafka exporter, which assists in

gathering metrics like CPU utilization and partition statuses of the brokers, as well

as their throughput. Simultaneously, we employed cAdvisor metrics for pods and

containers along with their associated performance metrics such as CPU utilization.

We collect the following software performance metrics:

• Online Partitions: are active Kafka partitions, also called leaders, that handle

data service. In the leader-follower model, the leader broker manages read/write

requests while others replicate its data for high availability and fault tolerance.

If a leader fails or a broker goes offline, Kafka automatically assigns a new leader

or marks replicas as ‘under replicated’, respectively.

• Under Replicated Partitions: in Kafka have fewer replicas than the set replication

factor. Kafka actively manages this by monitoring replication status, electing
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new leaders for under-replicated partitions, and initiating replication processes.

Once replication is caught up, the partitions become fully replicated again.

• Partitions at Minimum In-Sync Replicas (ISR): Kafka ensures data integrity by

defining a minimum number of replicas (ISR) that must sync with the leader

for successful writes. When a message is sent, it is written to the leader and

copied to follower replicas. If enough replicas acknowledge the message to meet

the ISR, the write is successful. Our Kafka cluster has an ISR of 2, ensuring

that messages are stored in at least two brokers, providing tolerance against a

single broker failure. The replication factor and ISR can be customized to meet

SLA needs.

• Offline Partitions: In Kafka, partitions lacking a leader replica are called

offline partitions. They cannot perform read/write operations if all replicas are

unavailable or have failed. This can disrupt data availability, hindering data

writing and consumption. Our goal is a federated learning platform without

offline partitions, ensuring continuous operation and data availability, even

during Kafka cluster faults.

• Broker CPU Utilization reflects the proportion of CPU core used by each Kafka

broker during the federated learning process. The objective is to utilize allocated

resources efficiently, avoiding overutilization.

• Broker Throughput signifies the data transmission rate to or from Kafka brokers.

As a critical performance indicator of a Kafka cluster, it demonstrates the speed

at which producers can relay messages to brokers. High throughput, a core

aspect of Kafka’s design, enables it to manage real-time processing of substantial,

rapid data streams.
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4.7 Results

In this section we will discuss the results of the experiments. We first evaluate the

federated learning performance of the Micro-FL framework to show that the platform

can carry out federated learning with a good model convergence for the MNIST and

CIFAR-10 workloads.

4.7.1 Federated Learning Performance
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(a) MNIST in the healthy operation scenario.
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(b) MNIST in the faulty operation scenario.

Figure 4.6: Global model’s training and testing accuracies on the MNIST dataset
across 100 iterations of training.

The global model of the federated learning system, even under faulty

conditions, performs robustly without any significant adverse effects. Fig-

ures 4.6 and 4.7 depict the training and testing accuracy of the global model for each

108



0 20 40 60 80 100
Iteration Number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Acc. 100 Clients
Testing Acc. 100 Clients
Training Acc. 500 Clients
Testing Acc. 500 Clients
Training Acc. 1,000 Clients
Testing Acc. 1,000 Clients

(a) CIFAR-10 in the healthy operation scenario.
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(b) CIFAR-10 in the faulty operation scenario.

Figure 4.7: Global model’s training and testing accuracies on the CIFAR-10 dataset
across 100 iterations of training.

iteration number under healthy and faulty conditions for the workloads discussed

earlier. It is evident that faults in the communication microservice do not adversely

affect the global model’s performance, demonstrating its robust machine learning

operation. Table 4.5 details the accuracies achieved for different numbers of users

under both healthy and faulty conditions, following 100 iterations of training. These

results corroborate the expected performance and uninterrupted convergence of the

simple Federated Averaging algorithm, even amidst faults. Minor variations in the

training and testing accuracies (such as in the CIFAR-10 workload with 500 clients)

are anticipated due to the random dataset sampling.

For optimal machine learning performance, a robust and fault-tolerant

federated learning system is necessary, particularly when handling many
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clients and large models. In the MNIST workload, an increase in the number

of users from 100 to 1,000 induces a minor shift in training accuracy (∼ 2%) and

testing accuracy (∼ 4%). However, this impact amplifies for CIFAR-10, resulting

in a substantial ∼ 25% decline in both training and testing accuracy, attributed to

larger model parameters. Enhanced model performance can be achieved by extending

federated aggregation to more iterations and prolonging training durations[77, 211],

albeit raising the risk of faults. This observation underscores the need for a robust,

long-running federated learning platform. Such a platform should be reliable, fault-

tolerant, and capable of integrating an increasing number of users, thereby allowing

them to contribute to and improve model performance.

Table 4.5: Training and testing accuracies of the aggregator after training the model
for 100 iterations.

Dataset #Clients

Training Accuracy Testing Accuracy

Healthy Faulty Healthy Faulty

MNIST

100 96.86 96.89 96.02 96.35

500 94.24 93.26 94.07 93.14

1000 92.76 92.80 92.83 93.12

CIFAR-10

100 76.69 75.94 60.23 59.60

500 57.78 59.83 51.90 55.24

1000 50.84 50.69 48.45 48.58

The proposed Micro-FL platform maintains consistent execution times,

with minor fluctuations even under faults, demonstrating its robustness

and fault tolerance. Table 4.6 provides the execution times for same workload and

healthy and faulty scenarios. From this data, we observe that for the MNIST dataset,

there is a minimal variation of less than 3.5% in the experiment execution time. This

variation occurred during our experiments with 100 and 500 users on the MNIST

dataset, but these fluctuations can be deemed negligible given the short experiment
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Table 4.6: Experiment execution time for healthy and faulty scenarios. Positive change
indicates shortened execution time and negative shows extended execution time.

Dataset #Clients

Experiment Duration (s)

Change
Healthy Faulty

MNIST

100 5,230 5,070 -3.06

500 5,888 6,090 3.43

1,000 10,231 10,144 -0.85

CIFAR-10

100 11,160 11,014 -1.30

500 18,819 18,757 -0.33

1,000 31,256 31,236 -0.06

durations and fluctiations in the cloud infrastructure. For more extensive federated

training procedures, such variations become even less pronounced. For instance, with

the CIFAR-10 dataset and 1,000 users, the discrepancy between the execution times

under healthy and faulty conditions is a mere 0.06%. This observation highlights that

the proposed Micro-FL platform and its fault-tolerant design does not allow faults

to influence the execution time. Therefore, the federated learning process does not

experience delays due to faults.

4.7.2 Software Performance Analysis

Micro-FL maintains consistent communication and contribution to fed-

erated learning even during faults, demonstrating robust fault tolerance.

Figure 4.8 illustrates the partition status during the MNIST experiment with 100

users in the presence of faults. Initially, all partitions are online and accessible. When

a fault occurs, the affected Kafka broker’s partitions become under-replicated but

remain available due to the minimum ISR policy, thus preventing any offline partitions.

This reveals the fault-tolerance of Micro-FL, which maintains continuous communi-

cation and contribution to the federated learning system despite faults. Once the

111



fault is resolved, the Kafka cluster quickly recovers, restoring the number of online

partitions and reducing the under-replicated and minimum ISR partitions to zero,

thus reaffirming message availability. This resilient behaviour is consistent across all

experiments.
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Figure 4.8: Number of online and under replicated partitions and partitions at
minimum ISR for Kafka broker during the faulty scenario for MNIST with 100 users.
The fault period is marked in gray.

The Micro-FL framework effectively maintains constant throughput and

CPU utilization under healthy conditions, and adapts to faults by redis-

tributing load amongst operational Kafka brokers, thereby demonstrating

its fault-tolerant nature. Figure 4.9 presents the throughput and CPU utilization

under the MNIST workload with 100 users across the three Kafka brokers in the cluster

in faulty scenario. In normal operational conditions of Micro-FL, the throughput and

the CPU utilization of the Kafka brokers remain relatively constant, fluctuating around

a specific value. However, according to Figure 4.9, a distinct change is noticeable

during a fault occurrence, with darker shades of grey marking the period of time with

faulty Kafka broker. Upon fault occurrence, there is a decline in throughput and CPU
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Figure 4.9: Throughput and CPU utilization for all three Kafka brokers in the cluster
during the faulty experiment with the MNIST dataset and 100 users. The darker grey
denotes the period when the broker is faulty.

utilization for the broker in question. Concurrently, a minor increase is seen in the

throughput and CPU utilization of the remaining two operational Kafka brokers. This

increase is an adaptive response to compensate for the faulty broker, enabling the

system to continue processing messages. Once the fault is resolved, the throughput of

the faulty broker remains at zero while the CPU utilization spikes across all Kafka

brokers. This is indicative of the faulty Kafka broker retrieving under-replicated

partitions from the other brokers.

Micro-FL efficiently manages federated learning with minimal resources

utilization, allowing cost-efficient dynamic resource adjustment. As shown

in Table 4.7, with an increase in the number of users, the average throughput of

brokers linearly increases in both healthy and faulty conditions. The most intensive

experiments, involving 1,000 users, show minimal change in average throughput
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Table 4.7: Average throughput (MB/s) and CPU core utilization for different experi-
ments.

Metrics Scenario
MNIST CIFAR-10

100 500 1,000 100 500 1,000

Throughput
Healthy 1.12 5.43 10.28 2.83 17.52 35.59

Faulty 1.45 6.26 11.06 3.18 17.60 35.76

CPU
Healthy 0.17 0.54 0.74 0.23 0.61 0.76

Faulty 0.24 0.57 0.85 0.29 0.55 0.87

between healthy and faulty conditions for both MNIST and CIFAR-10 workloads.

Despite increasing workload intensity, the rise in CPU utilization is minimal. Even

under the most demanding CIFAR-10 workload with 1000 clients, the overall CPU

utilization only reaches 38% and 43% in healthy and faulty scenarios respectively.

These observations affirm that Micro-FL efficiently handles federated learning even

with minimal resource allocation, accommodating dynamic resource adjustment for

cost-effective system design.

4.8 Conclusion

In this chapter, we highlighted the shortcomings of traditional centralized server

designs for federated learning, emphasizing the need for enhanced fault tolerance,

scalability, and resource management. We introduced Micro-FL, a microservices-based,

fault-tolerant system design uniquely created for centralized federated learning setups.

Our empirical performance analysis of Micro-FL, conducted across varying user counts

and two different workloads, showcased its ability to seamlessly manage faults while

ensuring an uninterrupted federated learning process. The proposed design facilitates

dynamic resource allocation, promoting efficient computational resource management,

representing a significant advancement towards more resilient and efficient system

designs in federated learning. In future research, we plan to optimize federated learning
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system communications using message compression and aggregation techniques that

leverage message queuing systems like Kafka to decrease aggregation execution time.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In light of recent progress in the field of performant cloud applications, we acknowledge

the continued journey toward developing a cloud application that encompasses all

core characteristics of performance: reliability, scalability, efficiency, fault tolerance,

and responsiveness. This thesis presents three distinct yet interconnected research

studies aiming to advance our understanding of strategies to enhance these qualities

in the context of performant cloud applications.

In the first research study (Chapter 2), we explored the application of machine

learning and adaptive control theory in devising autoscaling techniques. These methods

underpin the construction of a cloud software system designed to improve scalability,

resource utilization, and responsiveness of the cloud applications. The second research

study (Chapter 3) put forward a methodology to investigate the performance risks

intrinsic to the process of upgrading Docker images in containerized applications.

This research emphasized the critical role of performance testing, shining a light on

its significance in the development of performant cloud applications. In our final

research study (Chapter 4), we delved into the advantages offered by the microservices

architecture in the conceptualization and execution of performant cloud applications.

The study accentuates the utility of microservices architecture in the design of cloud-

based machine learning platforms, such as federated learning platforms. This serves
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to amplify their scalability, reliability, fault tolerance, and efficiency.

Below, we provide a succinct discussion of the methodologies employed, major

findings and significant contributions made by each of our research studies:

• In Chapter 2, we demonstrated how performance modeling of cloud

applications can lead to improved scalability by integrating it with a

control theoretical autoscaler. This improvement results from an enhanced

understanding of cloud application behavior, including alterations in the cloud

infrastructure and workload. To achieve this, we leveraged neural networks as a

‘black box’ model, capitalizing on their exceptional abilities in learning non-linear

functions. Through a comprehensive experimental methodology, we identified

the most effective autoscaler system among our adaptive PID controller, its

non-adaptive counterpart, and the scaling heat autoscaler. These comparisons

aimed at optimizing cloud application performance while maximizing resource

utilization and minimizing SLA violations. Our results suggest that the proposed

adaptive PID controller offers a robust solution for developing performant cloud

software systems.

• In Chapter 3, we put forth a methodology to investigate the perfor-

mance risks that arise when upgrading Docker Hub images. To illustrate

this, we used 90 official Docker Hub images of the WordPress application as

our case study. Our findings indicate that the performance of an application

depends significantly on its dependencies, rather than the application itself.

This observation was made possible by conducting an in-depth analysis at the

patch, minor, and major levels. Our methodology could benefit practitioners

seeking to predict potential performance changes when upgrading a Docker

Hub image without the need for individual performance tests. We urge the

community to gather performance data for Docker Hub images across a range

of applications, which can then be consolidated into a performance repository.
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Using our methodology, this repository can then facilitate informed predictions

about the performance of Docker images without existing performance mea-

surements. This strategy can guide developers and users of Docker images in

designing performant containerized applications, providing a knowledge base for

anticipated performance changes in new versions of their applications.

• In Chapter 4, we discussed the advantages of using microservices

architecture in designing cloud-based machine learning platforms,

specifically federated learning systems, by proposing Micro-FL. We

drew attention to the limitations of traditional centralized server designs for

federated learning, emphasizing the need for improvements in fault tolerance,

resource allocation, and scalability. We proposed Micro-FL, a scalable fault

tolerant microservices-based system design, tailored for federated learning servers.

Our comprehensive empirical performance evaluation of Micro-FL, with various

user counts and two distinct workloads, indicated that the proposed platform

could efficiently handle faults, thereby ensuring uninterrupted federated learning

processes. Moreover, our design supports dynamic resource allocation, leading to

more cost-effective management of computational resources. This development

marks a significant stride toward more scalable, fault tolerant and efficient system

designs in cloud software systems.

5.2 Future Work

While our thesis offers in-depth investigations into several strategies for developing

performant cloud software systems, suggesting practical solutions and improvements,

there remains a wealth of possibilities for future research extensions. We outline

several such research directions below:

• Examine other machine learning modeling techniques for autoscaler

design. In Chapter 2, we utilized dense neural networks with time delays for
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performance modeling of the cloud application. Exploring other methodologies,

such as Long-Short-Term-Memory (LSTMs), transformers [223], or Gaussian

Process models [226], could potentially enhance the performance modeling stage.

Given the stochastic nature of cloud infrastructure, Gaussian Process models

may prove particularly effective.

• Investigate model-free controller design for autoscalers. Chapter 2

discussed the use of adaptive PID controllers in implementing the autoscaler sys-

tem. An alternative approach could involve model-free control design[71], which

employs an ultra-local equation to design an intelligent PID controller—namely,

iPID. However, system identification will remain a necessary component.

• Explore predictive control design for autoscaler systems. In Chapter 2,

we leveraged adaptive controller design for scaling up/down the cloud application.

Predictive controller design [53] could further improve the robustness of the

autoscaler, given its capabilities in forecasting the future trend of the cloud

application.

• Integrate actuator (e.g. containers) uncertainty and faults into the

fault-tolerant autoscaler design. Chapter 2 operated under the assumption

that containers would deploy readily, without encountering any uncertainties

or faults. In reality, containerized applications may experience failures due to

internal errors or network issues. Further study into fault tolerance design for

autoscalers is necessary, ensuring they can handle application scaling even in

the event of container failures.

• Perform root cause analysis on Docker Images to identify potential

incompatibility in application dependencies. In Chapter 3, our aim was

to comprehend the impact of Docker image upgrades on performance and its

correlation with dependencies. However, there is a need for methodologies
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to identify the root cause of performance degradation, possibly through the

application of root cause analysis techniques. Certain application dependencies

may prove incompatible and trigger performance degradation, necessitating

further investigation.

• Design tools for automated performance testing of Docker images. In

Chapter 3, we outlined a methodology for performance testing to evaluate the

risks of Docker image upgrades. However, our focus was limited to WordPress,

a web application. For other applications, such as machine learning applications

deployed on the cloud, alternative performance testing approaches are required.

We see a need for a tool capable of performance testing a wide variety of

containerized applications, with the ability to automatically conduct these tests

alongside Docker images. This would allow users to be aware of potential

performance risks before upgrading to a newer Docker image version.

• Explore message compression techniques to enhance the network

efficiency of the proposed Micro-FL. In Chapter 4, we proposed Micro-FL,

a federated learning platform using microservices architecture. This architecture

adds network overhead to the system, potentially creating a system bottleneck.

We suggest that using efficient message compression techniques could significantly

reduce network overhead, leading to improved performance.

• Design a new aggregation algorithm that leverages the queuing system.

In Chapter 4, we utilized the federated averaging algorithm to aggregate the

model parameters of the federated learning process. This approach required

waiting for all clients to report their parameters to the server, potentially leading

to inefficiencies and longer processing times. There is a need for an aggregation

algorithm that scales better and can aggregate parameters as soon as they

become available on the message broker.
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