
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Searching bug instances in gameplay video
repositories

Mohammad Reza Taesiri, Finlay Macklon, Sarra Habchi, and Cor-Paul Bezemer

Abstract—Gameplay videos offer valuable insights into player interactions and game responses, particularly data about game bugs.
Despite the abundance of gameplay videos online, extracting useful information remains a challenge. This paper introduces a method
for searching and extracting relevant videos from extensive video repositories using English text queries. Our approach requires no
external information, like video metadata; it solely depends on video content. Leveraging the zero-shot transfer capabilities of the
Contrastive Language-Image Pre-Training (CLIP) model, our approach does not require any data labeling or training. To evaluate our
approach, we present the GamePhysics dataset, comprising 26,954 videos from 1,873 games that were collected from the
GamePhysics section on the Reddit website. Our approach shows promising results in our extensive analysis of simple and compound
queries, indicating that our method is useful for detecting objects and events in gameplay videos. Moreover, we assess the
effectiveness of our method by analyzing a carefully annotated dataset of 220 gameplay videos. The results of our study demonstrate
the potential of our approach for applications such as the creation of a video search tool tailored to identifying video game bugs, which
could greatly benefit Quality Assurance (QA) teams in finding and reproducing bugs. The code and data used in this paper can be
found at https://zenodo.org/records/10211390

Index Terms—Software testing and debugging – video mining – bug reports – video games – video retrieval

✦

1 INTRODUCTION

V Ideo game development is a highly complex process.
There are many unique challenges when applying gen-

eral software engineering practices to video game develop-
ment [33], [41], [45], [48], [54], including challenges in game
testing. Manual testing is a widely accepted approach to
game testing [44], [47], [59], however, this manual process
is slow and error-prone, and most importantly, expensive.
On the other hand, it is challenging to automate game
testing [32], [44], [52] due to the unpredictable outputs of
video games. Despite progress towards automated game
testing methods [12], [36], [58], [59] and tools [5], [24], [46],
[68], new approaches to game testing must be researched.

The difficulty of game testing due to the unique nature
of games calls for unique testing methodologies as well.
For example, we could leverage the visual aspect of games
in the testing process. Having a gameplay video is very
helpful when trying to reproduce a bug in the develop-
ment environment for further analysis, as bug reports often
contain incomplete information [7]. The ability to search a
large repository of gameplay videos with a natural language
query would be useful to help reproduce such bug reports.
For example, in the game development domain, a bug report
might state “a horse is flying in the air” (Figure 1) without a
screenshot or video to show what is actually happening.
A gameplay video search would allow game developers
to find example instances of a specific bug in the pile
of gameplay videos from their playtesting sessions or the

• Mohammad Reza, Finlay, and Cor-Paul are with the Analytics of Soft-
ware, GAmes and Repository Data (ASGAARD) lab, University of
Alberta, Edmonton, Canada
Sarra is with Ubisoft Montreal, Montreal, Canada E-mail: see
https://github.com/asgaardlab/CLIPxGamePhysics

Manuscript received April 19, 2005; revised August 26, 2015.

Fig. 1: Video identified by our approach with the bug
query ‘A horse in the air’ for Red Dead Redemption 2.

internet (e.g., YouTube, Twitch).
Despite containing rich information, the challenges re-

lated to video parsing and understanding mean that game-
play videos are difficult to utilize. Manually identifying
bug instances is time-consuming, and there is limited prior
research on automatic methods for mining large repositories
of gameplay videos [34], [38].

In this paper, we address the challenges of extract-
ing useful information from large repositories of game-
play videos. We propose an approach for mining game-
play videos using natural language queries by leverag-
ing the Contrastive Language-Image Pre-Training (CLIP)
model [50] to identify similar text-image pairs without any
additional training (i.e., zero-shot prediction). We leverage
CLIP for videos by pre-processing the video frame em-
beddings and use Faiss [23] to perform a fast similarity
search for the pairs of text queries and video frames. In

https://zenodo.org/records/10211390
https://github.com/asgaardlab/CLIPxGamePhysics
https://www.reddit.com/r/GamePhysics/comments/9rqabp

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

our approach, we present two methods to aggregate the
similarity scores of each text-image pair to identify relevant
videos. Figure 1 shows an example of a video that was
identified by our approach when searching videos from the
Red Dead Redemption 2 game using the bug query ‘A horse
in the air’. The primary application of our approach is as a
gameplay video search engine to aid in reproducing game
bugs.

To evaluate our approach, we collected and prepared
the GamePhysics dataset, consisting of 26,954 gameplay
videos that contain outstanding game physics examples (in-
cluding many bugs). We first did a preliminary evaluation
of our approach with sets of simple queries, and compound
queries, to show that our approach can identify objects
and (bug-related) events in large repositories of gameplay
videos. Our approach and the preliminary evaluation were
published in our original paper at the Mining Software
Repositories conference [56]. In this paper, we extend our
original work with an in-depth evaluation of our approach
on a commercial game from our industry partner.

The main contributions of our paper are as follows:

• We propose an approach to search for objects and
events in gameplay videos using a natural language
text query. (Sec. 4)

• We present the GamePhysics dataset 1, consisting
of 26,954 gameplay videos from 1,873 games. (Sec. 5)

• We demonstrate the promising performance of our
approach in identifying game physics bugs through
2 experiments with simple and compound queries in
Sec. 6 and present the results in Sec. 7.

• We extend our original paper [56] by conducting an
extensive evaluation of our method on a game from
our industry partner in which we compare several
variations of CLIP. (Sec. 8)

The remainder of our paper is structured as follows.
Section 2 motivates our study by providing relevant back-
ground information. Section 3 discusses related work. Sec-
tion 4 presents our approach to mining large repositories
of gameplay videos. Section 5 discusses collecting and pre-
processing the GamePhysics dataset. Section 6 details the
experimental setup of our preliminary evaluation, and Sec-
tion 7 presents the results. Section 8 gives a detailed analysis
of our proposed method in a controlled (industrial) environ-
ment and compares it with several alternative approaches.
Section 9 provides discussion and insights on limitations

and the performance of our approach. Section 10 addresses
threats to validity, and Section 11 concludes the paper.

2 MOTIVATION AND BACKGROUND

2.1 Video game (physics) bugs
In this paper, we are interested in a specific category of bugs
in video games that we call ‘game physics’ bugs. Game
physics bugs are not necessarily related to an inaccurate
physics simulation. Many of these bugs are related to the
faulty representation of game objects due to an error in
the internal state of that object. A few sample instances of
game physics bugs can be seen in Figure 2. In Figure 2a,

1. https://huggingface.co/datasets/taesiri/GamePhysics

a bug from Grand Theft Auto V related to object collisions
is shown. Figure 2b shows a bug from The Elder Scrolls V:
Skyrim, related to object clipping. In Figure 2c, a bug from
Red Dead Redemption 2 related to ragdoll poses can be
seen. Figure 2d shows a bug from Cyberpunk 2077, related
to object collisions. Identifying game physics bugs is chal-
lenging because we need to be able to extract specific, high-
level (abstract) events from the gameplay videos, that are
often similar to correct behavior.

2.2 Challenges in mining gameplay videos
Until now, it has been challenging to extract valuable infor-
mation from large repositories of gameplay videos. Identi-
fying bug instances by manually checking the contents of
gameplay videos is time-consuming [34]. Therefore, auto-
matic methods for mining gameplay videos are required.
The only existing approach for automatically extracting
events from gameplay videos requires manual data labeling
(and the training of new models) [38], which itself is time-
consuming. Therefore, an effective method for extracting
valuable information from gameplay videos should be able
to automatically analyze the video contents without requir-
ing manual data labeling.

2.3 Contrastive learning and zero-shot transfer
While there are many approaches toward zero-shot learning,
we are interested in assessing the zero-shot performance
of pre-trained contrastive models. Contrastive learning is
a machine learning technique in which the goal is to learn a
representation of inputs such that similar items stay close to
each other in the learned space, while the dissimilar items
are far away [4], [9]. In recent years, contrastive learning
has been one of the key drivers in the success of self-
supervised learning methods and has been used for zero-
shot transfer learning [11], [18], [28], [50]. Zero-shot learning
tackles a family of problems in machine learning by letting
an algorithm solve a task without having a training set for
that specific task [30], [31]. To illustrate this idea, suppose
that a person has never seen a zebra before. If we give them
a detailed description of a zebra (e.g., an animal similar
to a horse, but with black-and-white stripes all over their
bodies), that person can identify a zebra when they see one.

2.4 The Contrastive Language-Image Pre-Training
(CLIP) model
One contrastive model that has proven zero-shot transfer
capabilities is the Contrastive Language-Image Pre-Training
(CLIP) model [50], which can leverage both text and image
inputs together. We decided to use CLIP in our original
paper because of its multimodal capabilities and the size
of its training dataset. CLIP consists of two parts: a text
encoder, and an image encoder. These two parts work
individually, and they can accept any English text and
image as input. When an encoder of this model receives an
input, it will transform it into an embedding vector. These
embedding vectors are high-level features that are extracted
by the network, representing the input. More specifically,
these embedding vectors are how the neural network rep-
resents, distinguishes, and reasons about different inputs.

https://huggingface.co/datasets/taesiri/GamePhysics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

(a) Bug in Grand Theft Auto V. Car stuck in a tree after
colliding.

(b) Bug in The Elder Scrolls V: Skyrim. Dragon stuck in the
ground.

(c) Bug in Red Dead Redemption 2. Incorrect sitting anima-
tion.

(d) Bug in Cyberpunk 2077. Cars stuck together after collid-
ing.

Fig. 2: Sample instances of game physics bugs.

Both encoders of this model will produce vectors of the
same dimension for image and text inputs. Not only do
these vectors have the same dimension, but they are also in
the same high-dimensional feature space and are therefore
compatible with each other. For example, the embedding
vector of the text ‘an apple’ and the embedding vector of an
image of an apple are very close to each other in this learned
space. CLIP was pre-trained on over 400 million pairs of
images and text descriptions that were scraped from the
internet and has several different backbone architectures:
RN50, RN101, RN50x16, ViT-B/32, ViT-B/16, etc. The
models with ‘RN’ in their name are ResNet-based [21] mod-
els using traditional convolutional layers, while the ‘ViT’
models are based on vision transformers [13].

3 RELATED WORK

Event extraction from video content is of special importance
for various data mining tasks [40], [49]. Only two prior
studies have explicitly explored automatic approaches for
mining gameplay videos, with varying success. Lin et al.
showed that using metadata (such as keywords) to identify
YouTube videos that contain video game bugs is feasi-
ble [34], but our approach looks at the video contents, which
Lin et al. do not take into account. Our approach is more
useful for game developers, as we can identify objects and
(bug-related) events within gameplay videos and do not rely
on metadata. Luo et al. proposed an approach for automatic

event retrieval in e-sport gameplay videos that requires
manual data labeling, a fixed set of classes (events), and the
training of new models [38]. Our approach is more robust
and easier to set up, as we can search gameplay videos
with any English text query to identify specific objects and
events without performing manual data labeling. Zhang et
al. [67] investigated the retrieval of specific moments in
narrative-driven games using natural language queries that
semantically match both the auditory and visual content of
scenes. In contrast, our approach focuses on video game
bugs and does not rely on audio information. Furthermore,
our approach works with a broader range of games.

Although there is limited prior work on mining large
repositories of gameplay videos, there are several studies
that propose approaches to automatically detect graphics
defects in video games. One of the earliest approaches for
automated detection of graphics defects was published in
2008, in which a semi-automated framework was proposed
to detect shadow glitches in a video game using traditional
computer vision techniques [42]. Recent studies have uti-
lized convolutional neural networks in their approach to
automatically detect a range of graphics defects [10], [12],
[36], [55]. Instead of detecting graphics defects, our work is
concerned with the automatic identification of game physics
bugs in gameplay videos.

Tuovenen et al. leveraged the visual aspect of games
through an image-matching approach to create a record-
and-replay tool for mobile game testing [58]. Our approach

https://www.reddit.com/r/GamePhysics/comments/4jirzj
https://www.reddit.com/r/GamePhysics/comments/6652mm
https://www.reddit.com/r/GamePhysics/comments/bur1ke
https://www.reddit.com/r/GamePhysics/comments/kv41nk

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

leverages the visual aspect of games in a different way; in-
stead of recording tests through gameplay, we automatically
identify bugs in gameplay videos.

Some studies have proposed approaches for the au-
tomated detection of video game bugs through static or
dynamic analysis of source code. Varvaressos et al. proposed
an approach for runtime monitoring of video games, in
which they instrument the source code of games to extract
game events and detect injected bugs [59]. Borrelli et al.
proposed an approach to detect several types of video game-
specific bad smells, which they formalize into a tool for code
linting [8]. Our approach differs as we do not require access
to the source code of games; instead, we identify video game
bugs based solely on the contents of gameplay videos.

In addition to related work on automatic bug detection
for video games, there exists a wide range of work that
leverages recent advancements in deep learning to provide
new tools and techniques that address problems faced by
game developers. Several studies have sought to make AI
methods accessible in the video game development and
testing cycle, either through the game’s internal state, raw
pixels or through a high-level neural network-based rep-
resentation [27], [39], [57]. Some studies have proposed
approaches to accompany a game designer through the
creation process of a game by providing suggestions and
explanations to the designer [19], [20], [26]. Other studies
have incorporated reinforcement learning and evolutionary
methods to create AI agents that can automatically play
games [6], [25], [63]. These AI agents can be further em-
ployed to perform automated game testing sessions [15],
[17], [51], [68]. Our work is different from those listed above,
as we focus on assisting game developers by providing an
approach to efficiently search large repositories of gameplay
videos to find bug instances.

4 OUR APPROACH

To assist with the detection and analysis of game bugs, we
propose an approach that quickly and effectively searches a
large repository of gameplay videos to find a specific object
or event in a particular game. For creating such a powerful
search system, one could utilize a traditional supervised
classification technique. However, any supervised classifi-
cation method needs a training dataset, a test dataset, and a
fixed number of classes. Maintaining these datasets and la-
beling each sample is demanding and labor-intensive. Con-
versely, CLIP provides zero-shot transfer learning capabili-
ties that allow us to develop an approach to automatically
mine gameplay videos while avoiding the aforementioned
issues. Figure 3 shows an overview of our approach.

4.1 Encoding video frames and the text query

Our approach accepts a set of videos and any English text
query as inputs. We first extract all frames from each video
and then use CLIP to transform our input text query and
input video frames into the embedding vector representa-
tions described in Section 2.4. We selected CLIP because it
is flexible enough to accept any arbitrary English text as
a query and compare it with a video frame, without any
additional training.

4.2 Calculating the similarity of embeddings
As well as avoiding manual data labeling, our approach
avoids depending upon any extra information, such as
metadata, to search gameplay videos. Instead, we are able
to calculate similarity scores solely based on the contents of
the video frames and the text query. The similarity score in
our problem is the distance between an embedding vector
representing a text query and another embedding vector
representing a video frame. To calculate similarity scores
for the pairs of embedding vectors, we opted for cosine sim-
ilarity, a widely-used similarity metric [14], [61], [62], [66].
We require an exhaustive search to calculate the similarity
score of the text query with each individual frame in each
input video. The performance of an exhaustive search will
decrease inversely with an increasing number of videos in a
repository. To combat this, we use Faiss [23] to conduct an
efficient similarity search.

4.3 Aggregating frame scores per video
Although CLIP is designed to accept text and images as
inputs, we can leverage CLIP for videos by treating each
video as a collection of video frames (i.e. a collection of
images). To identify specific events that could occur at any
moment in a gameplay video, we cannot subsample the
video frames as suggested in the original CLIP, because due
to the richness of events in a single gameplay video, skip-
ping any part of the video may lead to information loss and
inaccurate results. Therefore, we perform a similarity search
on all frames of all videos by comparing each individual
video frame with the target query text, and we subsequently
aggregate the similarity scores across each video. Below we
detail the design of two different methods for aggregating
the video frame similarity scores for each gameplay video.
Our approach supports the two aggregation methods with-
out the need to re-calculate the similarity scores.

Aggregating frame scores using the maximum score
Our first score aggregation method ranks videos based on
the maximum similarity score across all frames belonging
to each video. This method is highly sensitive, as a single
frame with high similarity can lead to an entire video being
identified as relevant to the query.

Aggregating frame scores using the similar frame count
In the second score aggregation method, we begin by rank-
ing all frames of the input videos based on their similarity
scores with the text query. Then, we select a predefined
number (the pool size hyperparameter) of the highest-ranked
frames across all videos. Finally, we count the number of
frames per video within this pool of highest-ranked frames.
This method is less sensitive than our first aggregation
method, as identified videos must have multiple frames
that are among the most similar to the input text query. We
selected 1,000 as the default pool size value in our study.

5 PREPARING THE GAMEPHYSICS DATASET

5.1 Collecting the GamePhysics dataset
Developing and testing a new machine learning system
requires a dataset. Unfortunately, there is no such dataset for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Encoding video frames
and the text query

Input video
frames

'a car flying
in the air'

Query

Aggregating
frame scores

per video

 embeddings

 embeddings

 embeddings

Calculating
the similarity
of embeddings

Search
Results

 embeddingsCLIP
Text Encoder

CLIP
Image Encoder

Fig. 3: Overview of our gameplay video search approach.

Extract post
metadata

GamePhysics
Subreddit

26,954
videosDownload

videos

Google
Search

Search game
name keywords

Extract game
information

Game
information

GamePhysics
DatasetLabel videos

with game name

Filter
posts

Post
metadata

Fig. 4: Overview of our data collection process.

gameplay bugs. To this end, we present the GamePhysics
dataset, which consists of 26,954 gameplay videos collected
from the GamePhysics subreddit. An overview of our data
collection process can be seen in Figure 4.

Extracting post metadata and downloading videos
To collect the data, we created a custom crawler that uses
both the official Reddit and the PushShift.io [3] APIs.
We use the PushShift.io API to get high-level informa-
tion about each submission in the GamePhysics subreddit.
After obtaining high-level data, we use Reddit’s official API
to update the scores and other metadata of each submission.
For downloading video files, we combine youtube-dl and
aria2c to extract links and download them.

Filtering posts
We applied several filters to our dataset during the data-
collecting process to remove spam posts, low-quality con-
tent, and outliers. There are several spam posts in the Game-
Physics subreddit, and these posts are marked explicitly
as spam by the subreddit’s moderators. Furthermore, we
treat post scores as a quality signal as this score captures
up/down votes from Reddit users, and consider any post
with a score of less than one as low-quality content. The
lengths of the video files vary from a few seconds to mul-
tiple hours. We avoid long videos in our dataset because
they can contain multiple events of different kinds and are
very hard to process. We only keep videos that are longer
than 2 seconds and shorter than 60 seconds. After applying
our filters, our final dataset contains 26,954 video files from
1,873 different games.

Labelling videos with the game name
In order to simulate the realistic scenario in which a game
developer would search a repository of gameplay videos
for a specific game, we extract the game name for each
gameplay video from the title of its respective post. De-
tecting the game’s name from a GamePhysics submission
is not straightforward. While there is a community guide-
line that suggests including the name of the game in the
submission’s title, people often forget to include the game
name or use several aliases for the game name, meaning the
task of detecting the game name can be hard. For example,
‘GTA V’ is a widely-used alias that refers to the ‘Grand
Theft Auto V’ game. To address this issue, we created a
second custom crawler to search game name keywords in
Google and subsequently map them to the full game name.
Google search results provide a specific section called the
Knowledge Panel that contains the game name, as well as
other relevant game information such as initial release date,
genre, development studio(s), and publisher.

5.2 Pre-processing the videos
As discussed in Section 4.2, our approach can search a
large repository of gameplay videos more efficiently by pre-
processing the embedding vectors of every frame for each
video in the repository before inputting any text queries.
Therefore, for our dataset to be suitable for our approach,
we pre-process all videos in the GamePhysics dataset
before proceeding with any experiments. We pre-processed
all 26,954 videos using a machine with two NVIDIA Titan
RTX graphics cards, but it is certainly possible to perform
this step with less powerful graphics cards too. It is worth
noting that this is by far the most computationally expensive
step in our approach.

6 PRELIMINARY EVALUATION SETUP

In this section, we describe the preliminary evaluation of our
approach on the GamePhysics dataset through a diverse
set of experiments. To evaluate our video search method,
we conducted multiple experiments with varying difficulty
levels. The main obstacle to evaluating our search system is
the lack of a benchmark dataset. To this end, we designed
two experiments with corresponding sets of queries to shed
light on the capabilities of our proposed method.

6.1 Experiment overview
In two experiments, we evaluate the accuracy of our ap-
proach when retrieving videos with particular objects in
them. The results for this step indicate the generalization
capability of the model.

6.2 Selecting CLIP architectures
To understand the relative performance of the available
ResNet-based and vision transformer-based CLIP models,
we tried the RN101 and ViT-B/32 backbone architectures.
We chose these backbones as fair baseline comparisons
because they are the largest backbone architectures in their
respective families, assuming we stipulate equivalent input
image sizes (224 × 224). For comparison, the ViT-B/32

https://www.reddit.com/r/GamePhysics/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

backbone architecture has 151 million total parameters,
while the RN101 backbone architecture contains 119 million
parameters. We selected the largest architectures as we only
perform inference and no training.

6.3 Selecting video games

Our dataset contains videos from 1,873 different video
games, and the differences in their high-level characteristics,
such as genre, visual style, game mechanics, and camera
view, can be vast. Therefore, we performed a comprehen-
sive evaluation in both experiments with 8 popular video
games that differ in their high-level characteristics. The only
uniting characteristic of our selected games is that they have
open-world mechanics because developers of open-world
games would find particular benefits from an effective video
search for bug reproduction. Open-world games allow a
player to freely explore the game world, providing a very
large set of potential interactions between the player and the
game environment. Open-world games are therefore more
likely to suffer from game physics bugs that are difficult
to reproduce. Table 1 shows the selected games, as well as
some game characteristics and the reason for inclusion. In
total, 23% of videos in the GamePhysics dataset are from
these 8 video games (6,192 videos).

6.4 Query formulation

To come up with a set of relevant search queries in the
experiments, we randomly picked 10 videos from each of
the 8 selected games. The first author manually reviewed
each of the 80 samples to understand what was happening
and how we could describe events in gameplay videos that
contain bugs. This sampling process helped us pick relevant
objects and events to use in our queries.

6.5 Preliminary Experiment 1: Simple Queries

In this experiment, we searched for specific objects in
videos, e.g. a car. Our main objective in this experiment
is to demonstrate the capability of our system for effective
zero-shot object identification. As a reminder, we never
trained or fine-tuned our neural network model for any
of these experiments or any video game. We created 22
distinct queries for Experiment 1, including transportation
vehicles, animals, and special words describing the weather
or environment. For this experiment, we wanted our ap-
proach to operate with very high detectability and to detect
smaller variations in the video, and so we selected our first
aggregation method, i.e. using maximum frame score per
video (Section 4.3).

6.6 Preliminary Experiment 2: Compound Queries

Continuing our evaluation, we search for compound
queries, i.e. queries in which an object is paired with some
descriptor. Similar to Experiment 1, we only use compound
queries that are relevant to each video game. For example,
in the previous experiment, we searched for videos in the
Grand Theft Auto V game that contained a car, but in this
experiment, we evaluate the performance of our approach
when searching for objects with a specific condition, like a

car with a particular color. For this second experiment, we
created a set of 22 compound queries and again selected our
first aggregation method (using maximum frame score per
video).

6.7 Evaluating the experiments
Evaluating preliminary experiments.
In the first and second experiments, we assess the detectabil-
ity of our approach by measuring Top-1 and Top-5 accuracy.
This is because for our approach to be useful to a game
developer, the search system should be able to reliably
identify objects specified in the text queries. Top-k accuracy
is a binary measure; if there is a correct result in the Top-k
results, the accuracy is 100%, otherwise, the accuracy is 0%
– there are no possible values in between.

7 RESULTS FOR PRELIMINARY EXPERIMENTS

In this section, we present experimental results to examine
our proposed search system’s ability.

Results for simple queries (Preliminary Experiment 1)
In the first experiment, we measured the Top-1 and Top-5
accuracy of our system with simple queries. The average
accuracy for experiment 1 per game can be seen in Table 2,
and per query in Table 4. The overall average Top-1 accuracy
and average Top-5 accuracy of ViT-B/32 is 60% and 76%
respectively, and for RN101 we have 64% and 86% respec-
tively. These results show that our system can identify a
majority of objects without fine-tuning or re-training.

Results for compound queries (Preliminary Experiment 2)
In the second experiment, we measure the Top-1 and Top-
5 accuracy of our approach with compound queries. The
average accuracy in Experiment 2 per game can be seen
in Table 3. For the second experiment, we find that our
approach shows particularly high performance for all of
our selected games, except for The Witcher 3: Wild Hunt.
Our approach achieves an overall average Top-5 accuracy
of 78% using ViT-B/32 and 82% using the RN101 model.
These results show that our approach is flexible enough to
effectively search gameplay videos with compound queries.

8 IN-DEPTH EVALUATION

Our preliminary findings demonstrate the effectiveness
of two CLIP architectures in retrieving relevant gameplay
video clips using simple queries. We expand our assessment
by focusing on finding relevant videos using descriptions of
bugs written in natural language. Each bug can be described
using simple phrases that explain the issue. We use such
descriptions as queries to search videos to find instances of
that particular bug. The in-depth evaluation reported in this
section was done in collaboration with Ubisoft La Forge.
8.1 Experiment setup
In this experiment, we search videos with bug queries, i.e.,
phrases that describe an event in the game that is related
to a bug. We create a new dataset in which each video
is associated with a list of text descriptions detailing the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 1: Selected games for the preliminary evaluation of our approach. All selected games are open-world.

Game Key Genre Visual style Reason for inclusion Videos

Grand Theft Auto V GTA Action-adventure Realism Variety of vehicles 2,230
Red Dead Redemption 2 RDR Action-adventure Realism Historical style 754
Just Cause 3 JC3 Action-adventure Realism Physical interactions 680
Fallout 4 F4 Action role-playing-game Fantasy realism (Retro-futuristic) Unique look and feel 614
Far Cry 5 FC5 First-person shooter Realism First-person camera 527
Cyberpunk 2077 C77 Action-adventure Fantasy realism (Futuristic) High-quality lighting 511
The Elder Scrolls V: Skyrim ESV Action role-playing-game Fantasy realism Magical effects 489
The Witcher 3: Wild Hunt W3 Action role-playing-game Fantasy realism Mythical beasts 387

TABLE 2: Average Top-k accuracy (%) per game for simple
queries (Preliminary Experiment 1).

GTA RDR JC3 F4 FC5 C77 ESV W3

ViT-B/32 Top-1 74 71 61 65 50 55 54 54
Top-5 89 86 67 71 88 73 62 62

RN101 Top-1 84 50 61 59 59 43 62 62
Top-5 89 79 83 82 94 71 92 85

TABLE 3: Average Top-k accuracy (%) per game for com-
pound queries (Preliminary Experiment 2).

GTA RDR JC3 F4 FC5 C77 ESV W3

ViT-B/32 Top-1 68 88 56 43 31 50 56 56
Top-5 100 100 81 64 69 75 89 67

RN101 Top-1 84 88 31 36 56 67 33 44
Top-5 95 100 75 79 94 83 78 56

TABLE 4: Average Top-k accuracy (%) per query for simple
queries (Preliminary Experiment 1). N is the number of
games searched.

ViT-B/32 RN101
Query N Top-1 Top-5 Top-1 Top-5

Airplane 4 75 100 100 100
Bear 5 80 100 60 100
Bike 4 50 75 50 100
Bridge 8 88 88 50 100
Car 5 80 100 80 100
Carriage 4 50 50 75 100
Cat 6 33 50 33 67
Cow 8 63 75 25 75
Deer 7 57 71 75 100
Dog 8 25 38 38 63
Fire 8 88 100 100 100
Helicopter 5 60 60 60 100
Horse 3 67 100 100 100
Mountain 7 100 100 100 100
Parachute 2 0 67 67 100
Ship 8 50 63 38 75
Snow 6 67 83 33 50
Tank 3 67 67 100 100
Traffic Light 5 40 40 20 20
Train 5 80 100 17 67
Truck 4 75 100 100 100
Wolf 6 17 50 86 86

Average 5.5 60 76 64 86

bugs occurring within the video. It is important to note
that these text descriptions are not utilized for retrieving
videos, but rather serve as a means to evaluate the retrieval
performance. For this particular experiment, we choose a

game from the Assassin’s Creed2 franchise.
We rank videos based on their similarity to a given

bug query and return a list of videos sorted by rank. We
report the Top-k accuracy for various values of k ranging
from 1 up to 50. The accuracy @25 and @50 is particularly
relevant, as reviewing each result takes roughly one second.
By presenting up to 50 results on a single page, users can
efficiently review all the results in under a minute3. In
order to enhance the efficiency of the review process, we
provide a segment of the video that closely corresponds to
the query and generate a GIF animation, which allows for
a quick review of the results. This approach is especially
advantageous for important bugs, as it allows for greater
effort to be invested in identifying a relevant video.

To offer a comprehensive understanding of model per-
formance and resource requirements, we present GPU mem-
ory usage for each model, in addition to the performance
metrics. By examining the accuracy and computational
costs, we provide a thorough analysis of the factors to
consider when selecting a model for real-world applications.

8.2 Dataset and labeling videos
We selected all 278 videos from an Assassin’s Creed game
from our GamePhysics dataset. We labeled all the videos
manually and annotated them with natural language de-
scriptions. We allowed multiple labels for each video since
multiple bugs can occur in one video. We used an iterative
process to label videos and in each iteration, we ensured
that different occurrences of the same bug have been labeled
with a unique bug description. That is, if multiple videos
exhibit the same bug but in different places, we assign
an identical label to all videos. After filtering out low-
quality videos (those with low resolution and significant
degradation due to video encoding) and eliminating those
without any apparent bug, our refined dataset ultimately
contains 220 videos. Some sample bug descriptions can be
seen in Table 5.

8.3 Models
In total, we evaluated five architectures for CLIP, and two
for OpenCLIP [22], an open-source replication of CLIP. In
addition, we evaluated four video-text contrastive models
(XCLIP [43], BridgeFormer [16], CLIP4Clip [37] and Frozen-
In-Time [2]), which work on more than one frame in con-
trast to CLIP, which operates at the individual frame level.

2. https://www.ubisoft.com/en-ca/game/assassins-creed
3. A sample search result is available at this URL.

https://www.ubisoft.com/en-ca/game/assassins-creed
https://asgaardlab.github.io/CLIPxGamePhysics/sample_results/query_136.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 5: Sample queries

Description # Videos

1 An axe is floating in the air. 1
2 A horse is walking in the air. 1
3 A whale is floating in the air. 1
4 A person is shaking very fast. 2
5 A sword is flying in the air. 2
6 A floating boat is rotating very fast. 4
7 A person swimming in the air. 4
8 A boat is floating in the air. 6
9 A person is standing in the air. 7

10 A horse is running on its two legs. 8
11 A person is falling from the sky. 12

Some gameplay bugs manifest themselves temporally, such
as when an object shakes rapidly in the game. Video-text
models can incorporate temporal information and, in theory,
have the ability to detect such bugs.

8.3.1 CLIP
We studied five architectures for the original CLIP model,
with different backbone architectures (ResNet and ViT). In
particular, we include ViT-B/16, ViT-B/32, ViT-L/14,
RN50x64, and ViT-L/14@336px in our study, which differ
in architecture and parameter sizes. The input dimension
of all the models is 224 × 224, with the exception of
ViT-L/14@336px and RN50x64 which require an input
image with the resolution of 336× 336 pixels and 448× 448
pixels, respectively.

8.3.2 OpenCLIP
OpenCLIP is an open-source replication of CLIP that con-
tains a diverse array of models with different sizes and ar-
chitectures. We selected two of the largest and most capable
OpenCLIP models; ViT-g/14 and ViT-H/14, to compare
with the original CLIP. OpenCLIP models were trained on
the LAION [53] dataset, consisting of 5.85 billion CLIP-
filtered image-text pairs. Both of the selected models have
an input spatial dimension of 224× 224 pixels.

8.3.3 XCLIP
XCLIP consists of a transformer [60] model trained on
features extracted by the original CLIP model to incorporate
and fuse temporal signals and information. Essentially, this
model receives a sequence of 32 frames with a resolution of
224 × 224, as its input and then compares the similarity of
this sequence to a given text.

8.3.4 CLIP4Clip
CLIP4Clip is a straightforward expansion of the original
CLIP model for learning representations of video-text data.
CLIP4Clip first extracts CLIP embeddings for each frame
and then combines them to create an embedding for the
entire video. Three types of aggregation methods can be
used with CLIP4Clip: ‘parameter-free’, ‘sequential type’,
and ‘tight type’. The first method is a basic averaging
technique that does not require any training. We opt for
this aggregation method because it is not limited to a
particular domain, and more importantly, it delivers similar

and competitive results across various benchmarks [37].
The CLIP4Clip model employs a ViT-B/32 model with an
input resolution of 224 × 224 pixels. Note that CLIP4Clip
is very similar to the approach used in our preliminary
evaluation (the approaches were developed and published
in parallel).

8.3.5 Frozen-In-Time
Frozen-In-Time is a transformer-based model that effec-
tively learns a joint representation of video and text. The
model supports single and multi-frame inputs, allowing it
to leverage the strengths of both image and video datasets.
This model treats image inputs as a special case of videos
that are “frozen” in time. This model accepts frames and
images with a 224× 224 pixels resolution.

8.3.6 BridgeFormer
BridgeFormer is a video-text pre-training model based on a
Multiple Choice Questions (MCQ) formulation. This model
is trained to answer questions constructed by the text fea-
tures, based on video features. This formulation enables the
model to capture additional regional content and temporal
dynamics in videos, in addition to semantic associations
between local video-text features. BridgeFormer works on
the input resolution of 224× 224 pixels.

8.3.7 Random baseline
Our labeled dataset comprises only 220 videos, which may
result in inflated accuracy rates across all models. We
include a Random Baseline to evaluate the efficacy of
our proposed methods compared to randomly reviewing
videos. This model assigns random similarity scores to
query and video pairs, returning a random order of videos
for queries. Therefore, this random retriever provides a way
to determine the actual benefit of the proposed models.

8.3.8 Implementation details
We used official libraries for the CLIP4 and OpenCLIP5 mod-
els. Since CLIP and OpenCLIP work at the individual frame
level, we used two aggregation methods for all models of
this kind, max and mean. For a given query and a video,
we calculate the similarity score between all embeddings of
frames and the embedding of the given query. For the max
aggregator, we choose the maximum score among all frames
with the query and use it as the final score, and for the mean
aggregator, we use the average of the top 5 similar frame
count scores (as discussed in Section 4).

We used the XCLIP implementation from the Hugging
Face library [64]. Since XCLIP expects an array of 32 frames
as input, we fed the model a rolling window of 32 frames
and stored multiple embeddings per video. For a given
query and a video, we calculated the text embedding of
the video with all window embeddings and used the max
aggregator to calculate the final similarity score.

We employed the Towhee framework6 to implement the
CLIP4Clip, Frozen-In-Time, and BridgeFormer models. For
each input video, we uniformly sampled frames and fed

4. Github - OpenAI CLIP
5. Github - mlfoundations OpenCLIP
6. https://towhee.io/

https://github.com/openai/CLIP
https://github.com/mlfoundations/open_clip
https://towhee.io/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

them to the respective model. Specifically, we utilized the
uniform temporal subsampling7 technique to extract frames
from each video.

8.4 Experimental Results
Table 6 shows the results of our experiment, and Figure 5
illustrates samples of successful retrieval. The considerable
gap between the results of the Random Baseline and the
other models demonstrates that the selected models are
genuinely detecting relevant information and are not simply
benefiting from chance.

ViT-L/14 and ViT-L/14@336px perform best, with
ViT-L/14@336px marginally better. Our results show the
ViT-L/14@336px model consistently outperforms all other
tested models. It achieves a Top-10 accuracy of 49.44% and
its Top-50 accuracy reaches up to 82.58%, suggesting it can
successfully identify relevant videos for most queries.

Both input resolution and architecture are important
factors in bug video identification performance. Among
all tested models, some have different input resolutions,
e.g., RN50x64 has an input size of 448 × 448 pixels, and
ViT-L/14@336px has 336 × 336 pixels. Higher-resolution
inputs provide more information for the model to pro-
cess, paving the way for better performance at the ex-
pense of increased computational resources (discussed in
Section 8.5). Comparing performance among architectures
based on ViT (ViT-L/14 vs ViT-L/14@336px), shows
indeed that higher resolution inputs lead to better perfor-
mance. However, the ViT architecture performs better than
the ResNet architecture (RN50x64 vs ViT-L/14@336px),
despite the fact that ResNet uses a higher input resolution.
This suggests that both model size and architecture play
roles in the final performance of a model.

Video-text models consistently perform worse than
image-text models for gameplay videos. Among all tested
video-text models, XCLIP achieves better Top-1 and Top-5
accuracies. However, as we gradually increase the accuracy
threshold, the advantage of XCLIP seems to diminish, and
all video-text models perform similarly and consistently
worse than image-text models. This low performance at
first is counter-intuitive since video-text models have the
ability to exploit temporal information in videos and should
perform better than image-text models. However, this low
performance happens because these models have been fine-
tuned on real-world videos, which are very different from
gameplay videos, i.e., gameplay videos are considered out-
of-distribution for these models. This finding is aligned with
the observations reported by other previous studies [29],
[65].

Image-text models cannot exploit the temporal dimen-
sion but are able to use other information to find relevant
videos. A subset of bugs in our dataset manifest themselves
over time, and one can not detect them from a single frame.
For instance, when an object is unintentionally shaking, in-
dividual frames do not reflect this behavior and we need to
incorporate the temporal aspects of the video. Even though
both CLIP and OpenCLIP are image-text models and lack
an understanding of the temporal aspects of a video, they
consistently performed better than video-text models. After

7. PyTorch Video Documentation

carefully analyzing some queries, we found that image-text
models oftentimes utilize a portion of the query to retrieve
the most relevant videos that represent the query as closely
as possible. For instance, for the query “A person is being
teleported into the sky”, CLIP retrieves videos showing aerial
views of the game world, which turn out to be the correct
videos for the given query.

8.5 GPU memory usage and search speed analysis

The ViT-L/14@336px model outperforms its counterparts
at every accuracy threshold; however, this performance
comes with the drawback of higher GPU memory usage,
which might hinder its usage compared to other models.
In this section, we present the GPU memory requirements
for each model. We used the gpustat8 Python package to
determine GPU memory usage for each model. We created
a sample script that loads and passes input to the model
and measures the maximum memory utilization. For both
CLIP and OpenCLIP families, we use a batch size of 256
images as input. This batch size is roughly equivalent to the
length of all frames in a short video (e.g., a 10-second video
with 24 frames per second). For all video-text models, we
use an input that matches the network input dimensions.
These measurements provide an approximate estimate of
the GPU memory required to calculate the similarity of a
gameplay video with a text query. Table 7 shows the GPU
memory usage measurements. As we can see, the OpenCLIP
ViT-g/14 model requires the most memory, but according
to our results in Table 6, its performance falls behind the
CLIP ViT-L/14@336px model. Also, the ResNet model
requires considerably more GPU memory than the better-
performing ViT models. Hence, model performance is not
necessarily correlated with GPU memory requirements.

An additional factor that impacts the practical applica-
tion of our method is the search speed, which refers to
how fast a video can be retrieved. Our method requires a
one-time pre-processing of videos into embeddings, which
can conveniently be performed overnight or as part of
a company’s continuous build process. This enables sub-
sequent search queries to be efficiently addressed using
the generated embedding files. By employing the Faiss
library [23], the search process can be executed in a matter
of milliseconds, even when handling a dataset comprising
millions of frames. This efficiency makes the search both
practical and realistic in real-world circumstances.

9 DISCUSSION & LIMITATIONS

In this section, we discuss the strengths and weaknesses of
our approach, based on the results of our experiments. Fig-
ure 5 shows several example video frames from videos iden-
tified when searching gameplay videos with text queries
using our approach. These examples help to illustrate the
promising potential of our approach. Given that our method
does not require any training in gameplay videos, our zero-
shot setup for detecting objects in videos is promising.
During our experiments, the first author manually analyzed
each video returned by our search approach, including

8. https://github.com/wookayin/gpustat

https://pytorchvideo.readthedocs.io/en/latest/_modules/pytorchvideo/transforms/functional.html
https://github.com/wookayin/gpustat

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 6: The performance of the studied models on our labeled dataset of 220 videos – The bold numbers highlight the
best-performing model. (%)

Model Name Modality Aggregator Top-1 Top-5 Top-10 Top-15 Top-20 Top-25 Top-50

Random Baseline video-text - 3.93 6.74 8.99 12.92 16.29 20.22 32.02

C
LI

P

ViT-L/14 image-text Max 17.42 33.15 42.70 52.25 55.62 62.36 79.21
ViT-L/14@336px image-text Max 21.91 38.20 47.19 52.81 56.74 62.92 80.34
ViT-B/16 image-text Max 15.73 31.46 41.57 48.31 51.12 53.37 75.28
ViT-B/32 image-text Max 15.73 25.84 34.83 42.70 48.31 53.93 68.54
RN50x64 image-text Max 16.29 35.39 41.57 48.31 51.69 56.18 74.16
ViT-L/14 image-text Mean 19.66 34.27 44.94 55.06 58.99 62.92 82.02
ViT-L/14@336px image-text Mean 22.47 40.45 49.44 56.74 62.36 66.85 82.58
ViT-B/16 image-text Mean 20.22 32.58 41.01 46.07 53.37 57.30 79.21
ViT-B/32 image-text Mean 15.73 32.02 41.57 46.07 53.37 55.62 73.03
RN50x64 image-text Mean 16.85 35.39 42.70 50.56 55.06 61.24 78.65

O
pe

nC
LI

P ViT-H/14 image-text Max 16.85 29.21 36.52 47.75 51.69 55.62 70.79
ViT-g/14 image-text Max 17.42 27.53 35.96 43.82 50.00 52.81 69.66
ViT-H/14 image-text Mean 19.10 32.02 42.13 48.88 52.25 55.06 73.60
ViT-g/14 image-text Mean 16.85 31.46 38.76 47.75 53.37 59.55 73.60

XCLIP [43] video-text Max 10.11 21.91 29.78 37.64 43.26 51.69 69.66
CLIP4Clip [37] video-text - 7.87 21.35 33.71 41.57 47.19 52.25 66.85
BridgeFormer [16] video-text - 7.87 18.54 29.78 40.45 46.63 52.81 70.22
Frozen-In-Time [2] video-text - 6.18 17.98 28.09 33.71 39.89 47.75 66.29

(a) Video of ‘A faceless person.’ (b) Video of ‘A horse is running on its two legs.’

(c) Video of ‘A boat is floating in the air.’ (d) Video of ‘A person is stuck in a tree.’

Fig. 5: Relevant gameplay videos identified using our approach with bug queries in a game from the Assassin’s Creed
franchise. Our method can effectively retrieve highly specific bugs using textual descriptions, without depending on
specialized vocabulary or technical terms.

false positives. Below, we highlight our observations about
retrieving buggy gameplay videos using our approach:

Handling technical and non-technical terms
Our observations suggest CLIP understands these technical
terms, and sometimes, describing a bug in simple words

https://www.reddit.com/r/GamePhysics/comments/kid09y
https://www.reddit.com/r/GamePhysics/comments/l7pixh
https://www.reddit.com/r/GamePhysics/comments/k1pz0v
https://www.reddit.com/r/GamePhysics/comments/k3gbdu

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 7: GPU memory usage of the studied models.

Model VRAM (MB) Input Size Embedding Size

ViT-L/14 5,861 224× 224px 768
ViT-L/14@336px 11,803 336× 336px 768
ViT-B/16 4,361 224× 224px 512
ViT-B/32 2,551 224× 224px 512
RN50x64 21,829 448× 448px 768

ViT-H/14 15,559 224× 224px 1024
ViT-g/14 13,275 224× 224px 1024

XCLIP 7,979 224× 224px 512
CLIP4Clip 2,987 224× 224px 512
BridgeFormer 3,463 224× 224px 512
Frozen-In-Time 3,405 224× 224px 512

retrieves relevant videos. For instance, Figure 5(a) illustrates
a game character without facial features. CLIP can retrieve
this video using both a specialized term like “a low-poly face,”
and a common and non-technical description such as “a
faceless person.” It is worth noting that non-technical users
and gamers could describe bugs using non-technical terms
in their bug reports. For example, game reviews tend to
contain implicit bug reports which are often written by non-
technical users [35]. Our approach would help developers
to gather more information about such bug reports.

Adversarial poses

An important category of problems is the unusual pose
of familiar objects. As extensively tested and reported by
Alcorn et al. [1], neural networks occasionally misclassify
objects when they have different poses than what they used
to have in the training set. For example, consider a neural
network that can detect a “car” in an image. It is possible to
find a particular camera angle for which the neural network
can not detect the “car” in that image. In a dataset of natural
images, there may be many examples of cars, but the camera
angle and the position of the car relative to the camera
usually does not vary much. A neural network trained on
such data will struggle to detect a car when it sees it from a
very unusual angle (e.g. when it is positioned vertically).

Embedding size

In our experiment, we used a range of models with
different architectures and modalities. A key variable in
these models is the embedding size. The embedding size
is a fixed-length vector that summarizes the contents of an
image or video. For the models we tested, the embedding
size varied from 512 to 1024. A natural question arises: Are
larger embedding sizes necessarily better? Our findings indicate
that there is no direct correlation between embedding size
and performance. This is evident by comparing the models
like ViT-L/14@336px and ViT-g/14 which have dimen-
sion sizes of 768 and 1024 respectively, but the performance
of ViT-L/14@336px is consistently better than ViT-g/14.
One explanation is that the final embedding size alone does
not guarantee the quality of the embedding, and this factor
is largely dependent on the architecture and the computa-
tional power spent on the training rather than other factors.

Rapid camera motion causes confusion in video-text models
Among video-text models, especially XCLIP, we noticed an
unexpected behavior of the model when the video contains
rapid camera motion. After reviewing a subset of queries
that result in retrieving unrelated videos, we observed
that the top matching video often contained rapid camera
movements, such as orbital movement (which is sometimes
known as the “death cam”9 in gaming communities). These
movements, which are present in many gameplay videos,
can be considered ‘adversarial samples,’ create distractions
and leading to incorrect query-video matching.

Video quality
Our dataset is constructed from internet videos, which are
often in low-resolution formats. However, due to lossy and
heavy video compression, a significant predictive signal is
lost, which can pose a challenge for any vision model. Fur-
thermore, we have observed that sometimes, the extracted
frames have very low quality. While human vision has no
problem detecting objects in the video, sometimes CLIP
models cannot properly detect them. It is worth mentioning
that, in a controlled testing environment within a gaming
company, high-quality videos can be recorded without in-
curring significant costs, thus avoiding any problems that
may arise due to video quality.

CLIP can recognize texts
Another observation is about text patches inside gameplay
videos. CLIP can read the text inside an image as well.
This feature is not something that the model was explicitly
trained for, but rather some emergent behavior of pre-
training in a contrastive setting. Sometimes searching a
particular text query will result in retrieving a video that
ignores the meaning of the text query, but the image con-
tains that text. For example, if any video frames include a
text field containing “a blue car”, searching for the query “a
blue car”, will retrieve that video. Obviously, depending on
the use case, this can be treated as both a feature and a bug.

Confusing textures and patterns in the images
The textures and patterns can pose influential distractions
and confusion for the neural network model in our ap-
proach. Sometimes a part of a game environment has a
texture similar to another object. For example, our model
confuses a striped colored wall in the Grand Theft Auto V
game with a “parachute.” This category of problems is hard
to encounter globally because each game has a diverse look
and feel and creative artistic directions.

Confusions in accurately recognizing objects with CLIP
The CLIP model struggles to accurately distinguish between
various objects, with vehicles and animals serving as notable
examples. In our analysis, we discovered instances where
the search results partially matched the textual description
but mistakenly featured a different object from the intended
category. Our manual evaluation showed that CLIP often
make errors in identifying various vehicles, such as cars,

9. You can view a sample by watching this video.

https://www.reddit.com/r/GamePhysics/comments/ks3pbk

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

airplanes and tanks. Likewise, the model struggles to differ-
entiate between four-legged animals, including dogs, cats,
wolves, cows, horses, etc.

10 THREATS TO VALIDITY

In this section, we discuss potential internal and external
factors that may affect our findings.

10.1 Threats to internal validity

Size of dataset in the industry-related evaluation

The validation set used in the industry experiment com-
prises 220 videos. Although this dataset encompasses all
videos from our selected game, it remains relatively small
compared to the entire GamePhysics dataset. Labeling a
dataset is a laborious, time-consuming, and costly task. In
this study, we selected a single, representative game illus-
trating the challenges of an underdeveloped industry game.
When adapting our method, it is important to consider that
depending on video game visuals and the size of the dataset,
the number of false positives can increase or decrease.

Effect of subsampling on the performance

Our straightforward extension of image-text models for
video data entails initially encoding all frames using the
model, followed by an aggregation step, to select one or
several frames that exhibit the highest degree of alignment
with the given query. Conversely, video-text models are
designed to inherently accept a collection of frames as input
and subsequently generate an embedding. Yet, these models
do not work on all frames, and in the initial step, they
subsample the input video. We employed uniform sampling
to select specific frames for these models; however, this ap-
proach may result in the loss of frames, potentially leading
to diminished performance.

10.2 Threats to external validity

Dataset generalizability and video length

As our dataset predominantly consists of gameplay videos
that contain game physics bugs, our approach may not be as
effective for other datasets of gameplay videos that contain
other types of bugs. Non-curated datasets may contain
many more videos of non-buggy gameplay, for example,
if using gameplay streaming footage. Additionally, we ex-
cluded long (>60 seconds) videos, meaning our approach
may not be effective for long videos. We also ignored videos
with scores of zero from the GamePhysics subreddit. After
manually checking a random sample of low-scored posts
we observed that a score of 0 almost always indicated low
quality/spam/etc. This threshold might not be applicable
for other subreddits. Future research is required to evaluate
our approach with long videos and non-curated datasets.

11 CONCLUSION

In this paper, we proposed a novel approach to mine large
repositories of gameplay videos by leveraging the zero-shot
transfer capabilities of CLIP to connect video frames with an
English text query. Our method can find objects in a large
video dataset using simple and compound queries. Addi-
tionally, our approach demonstrates promising performance
in detecting specific (bug-related) events, suggesting poten-
tial applicability in automatic bug identification for video
games. Without fine-tuning or re-training for the video
game domain, our method shows surprising effectiveness
in most studied games.

In a preliminary study, we evaluated our method on a
dataset of 6,192 videos from 8 games with different visual
styles and elements to assess its capability in identifying
objects in a gameplay video date. Our experiment confirms
that CLIP can generalize to video game data and can effec-
tively identify objects with simple and compound queries.

In a controlled setting, we evaluated our method on a
video game from the Assassin’s Creed franchise to under-
stand the benefits and limitations of our method in a real
game development environment. Our findings showcase
the usefulness and potential of our technique in retrieving
gameplay videos using natural language descriptions of
bugs. The Top-10 accuracy of our best-performing model
reaches 49.44Ġiven out-of-distribution nature of video game
footage and video game bugs, this result is quite promising.
Furthermore, our research demonstrates that, by employing
our CLIP-based search method, it is possible to retrieve
relevant videos for up to 82.58% of queries. Despite poten-
tially needing to review up to 8 minutes of video footage
per query, this approach highlights the practicality of our
method in aiding developers and quality assurance teams
to rapidly identify and resolve issues within their games.

Additionally, we carried out a comparative study be-
tween various video-text and image-text models to assess
their performance. Initially, it was anticipated that video-
text models would be at an advantage, given their ability
to integrate temporal information. However, our findings
demonstrate that all tested video-text models underper-
formed in comparison to their image-text counterparts. This
discrepancy can be attributed to factors such as out-of-
distribution visuals of the game as well as camera motions
that are very different from those in regular video datasets.

In conclusion, our novel method for retrieving gameplay
videos demonstrates a significant advancement in the field
of video game quality assurance. Our method provides a
rapid and efficient approach to search through large quan-
tities of video content, enabling quality assurance teams to
rapidly identify relevant data related to game bugs. Finally,
our approach lays the foundation for utilizing contrastive
learning models for zero-shot bug identification in video
games. Future work in this line of research will provide
more insights into video game bugs and will pave the way
to creating a new paradigm of automated bug detection
methods for video games.

REFERENCES

[1] M. A. Alcorn, Q. Li, Z. Gong, C. Wang, L. Mai, W.-S. Ku, and
A. Nguyen, “Strike (with) a pose: Neural networks are easily

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

fooled by strange poses of familiar objects,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4845–4854.

[2] M. Bain, A. Nagrani, G. Varol, and A. Zisserman, “Frozen in time:
A joint video and image encoder for end-to-end retrieval,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 1728–1738.

[3] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, and J. Black-
burn, “The pushshift reddit dataset,” in Proceedings of the interna-
tional AAAI conference on web and social media, vol. 14, 2020, pp.
830–839.

[4] S. Becker and G. E. Hinton, “Self-organizing neural network that
discovers surfaces in random-dot stereograms,” Nature, vol. 355,
no. 6356, pp. 161–163, 1992.

[5] J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gisslén, “Augmenting
automated game testing with deep reinforcement learning,” in
2020 IEEE Conference on Games (CoG). IEEE, 2020, pp. 600–603.

[6] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Den-
nison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota
2 with large scale deep reinforcement learning,” arXiv preprint
arXiv:1912.06680, 2019.

[7] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann, “What makes a good bug report?” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations
of software engineering, 2008, pp. 308–318.

[8] A. Borrelli, V. Nardone, G. A. Di Lucca, G. Canfora, and
M. Di Penta, “Detecting video game-specific bad smells in unity
projects,” in Proceedings of the 17th International Conference on
Mining Software Repositories, 2020, pp. 198–208.

[9] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. Säckinger, and R. Shah, “Signature verification using a
“siamese” time delay neural network,” International Journal of
Pattern Recognition and Artificial Intelligence, vol. 7, no. 04, pp. 669–
688, 1993.

[10] K. Chen, Y. Li, Y. Chen, C. Fan, Z. Hu, and W. Yang, “Glib:
towards automated test oracle for graphically-rich applications,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 1093–1104.

[11] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,” in
International conference on machine learning. PMLR, 2020, pp. 1597–
1607.

[12] P. Davarmanesh, K. Jiang, T. Ou, A. Vysogorets, S. Ivashkevich,
M. Kiehn, S. H. Joshi, and N. Malaya, “Automating artifact detec-
tion in video games,” arXiv preprint arXiv:2011.15103, 2020.

[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021.

[14] M. Fazli, A. Owfi, and M. R. Taesiri, “Under the skin of foundation
nft auctions,” arXiv preprint arXiv:2109.12321, 2021.

[15] P. García-Sánchez, A. Tonda, A. M. Mora, G. Squillero, and J. J.
Merelo, “Automated playtesting in collectible card games using
evolutionary algorithms: A case study in hearthstone,” Knowledge-
Based Systems, vol. 153, pp. 133–146, 2018.

[16] Y. Ge, Y. Ge, X. Liu, D. Li, Y. Shan, X. Qie, and P. Luo, “Bridging
video-text retrieval with multiple choice questions,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2022, pp. 16 167–16 176.

[17] C. Gordillo, J. Bergdahl, K. Tollmar, and L. Gisslén, “Improving
playtesting coverage via curiosity driven reinforcement learning
agents,” in 2021 IEEE Conference on Games (CoG), 2021, pp. 1–8.

[18] J. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. Á. Pires, Z. Guo, M. G. Azar, B. Piot,
K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own
latent - A new approach to self-supervised learning,” in Advances
in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[19] M. Guzdial, N. Liao, and M. Riedl, “Co-creative level design via
machine learning,” in Joint Proceedings of the AIIDE 2018 Workshops
co-located with 14th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE 2018), Edmonton, Canada,

November 13-14, 2018, ser. CEUR Workshop Proceedings, vol. 2282.
CEUR-WS.org, 2018.

[20] M. Guzdial and M. Riedl, “Game level generation from gameplay
videos,” in Twelfth Artificial Intelligence and Interactive Digital Enter-
tainment Conference, 2016.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[22] G. Ilharco, M. Wortsman, R. Wightman, C. Gordon, N. Carlini,
R. Taori, A. Dave, V. Shankar, H. Namkoong, J. Miller, H. Ha-
jishirzi, A. Farhadi, and L. Schmidt, “Openclip,” Jul. 2021, if you
use this software, please cite it as below.

[23] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Trans. Big Data, vol. 7, no. 3, pp. 535–547, 2021.

[24] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion,
C. Goy, Y. Gao, H. Henry, M. Mattar et al., “Unity: A general
platform for intelligent agents,” arXiv preprint arXiv:1809.02627,
2018.

[25] N. Justesen, P. Bontrager, J. Togelius, and S. Risi, “Deep learning
for video game playing,” IEEE Transactions on Games, vol. 12, no. 1,
pp. 1–20, 2019.

[26] F. Khadivpour and M. Guzdial, “Explainability via responsibility,”
in Proceedings of the AIIDE Workshop on Experimental AI in Games,
2020.

[27] N. Y. Khameneh and M. Guzdial, “Entity embedding as game rep-
resentation,” in Proceedings of the AIIDE Workshop on Experimental
AI in Games, 2020.

[28] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive
learning,” in Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[29] A. Kumar, A. Raghunathan, R. M. Jones, T. Ma, and P. Liang,
“Fine-tuning can distort pretrained features and underperform
out-of-distribution,” in The Tenth International Conference on Learn-
ing Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

[30] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect
unseen object classes by between-class attribute transfer,” in 2009
IEEE Conference on Computer Vision and Pattern Recognition, 2009,
pp. 951–958.

[31] H. Larochelle, D. Erhan, and Y. Bengio, “Zero-data learning of new
tasks.” in AAAI, vol. 1, no. 2, 2008, p. 3.

[32] C. Lewis and J. Whitehead, “The whats and the whys of games
and software engineering,” in Proceedings of the 1st international
workshop on games and software engineering, 2011, pp. 1–4.

[33] C. Lewis, J. Whitehead, and N. Wardrip-Fruin, “What went wrong:
a taxonomy of video game bugs,” in Proceedings of the fifth interna-
tional conference on the foundations of digital games, 2010, pp. 108–115.

[34] D. Lin, C.-P. Bezemer, and A. E. Hassan, “Identifying gameplay
videos that exhibit bugs in computer games,” Empirical Software
Engineering, vol. 24, no. 6, pp. 4006–4033, 2019.

[35] D. Lin, C.-P. Bezemer, Y. Zou, and A. E. Hassan, “An empirical
study of game reviews on the steam platform,” Empirical Software
Engineering, vol. 24, pp. 170–207, 2019.

[36] C. Ling, K. Tollmar, and L. Gisslén, “Using deep convolutional
neural networks to detect rendered glitches in video games,”
in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, no. 1, 2020, pp. 66–73.

[37] H. Luo, L. Ji, M. Zhong, Y. Chen, W. Lei, N. Duan, and T. Li,
“Clip4clip: An empirical study of clip for end to end video clip
retrieval and captioning,” Neurocomputing, vol. 508, pp. 293–304,
2022.

[38] Z. Luo, M. Guzdial, and M. Riedl, “Making CNNs for video
parsing accessible: event extraction from dota2 gameplay video
using transfer, zero-shot, and network pruning,” in Proceedings of
the 14th International Conference on the Foundations of Digital Games,
2019, pp. 1–10.

[39] F. Macklon, M. R. Taesiri, M. Viggiato, S. Antoszko, N. Romanova,
D. Paas, and C.-P. Bezemer, “Automatically detecting visual bugs
in html5 canvas games,” in 37th IEEE/ACM International Conference
on Automated Software Engineering, 2022, pp. 1–11.

[40] L. MacLeod, M.-A. Storey, and A. Bergen, “Code, camera, action:
How software developers document and share program knowl-
edge using youtube,” in 2015 IEEE 23rd International Conference on
Program Comprehension. IEEE, 2015, pp. 104–114.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[41] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys,
ankle sprains, and keepers of quality: How is video game devel-
opment different from software development?” in Proceedings of
the 36th International Conference on Software Engineering, 2014, pp.
1–11.

[42] A. Nantes, R. Brown, and F. Maire, “A framework for the semi-
automatic testing of video games.” in AIIDE, 2008.

[43] B. Ni, H. Peng, M. Chen, S. Zhang, G. Meng, J. Fu, S. Xiang,
and H. Ling, “Expanding language-image pretrained models for
general video recognition,” in Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part IV. Springer, 2022, pp. 1–18.

[44] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli, “How is
video game development different from software development in
open source?” in 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories (MSR). IEEE, 2018, pp. 392–402.

[45] F. Petrillo, M. Pimenta, F. Trindade, and C. Dietrich, “What went
wrong? a survey of problems in game development,” Computers
in Entertainment (CIE), vol. 7, no. 1, pp. 1–22, 2009.

[46] J. Pfau, A. Liapis, G. Volkmar, G. N. Yannakakis, and R. Malaka,
“Dungeons & replicants: automated game balancing via deep
player behavior modeling,” in 2020 IEEE Conference on Games
(CoG). IEEE, 2020, pp. 431–438.

[47] C. Politowski, F. Petrillo, and Y.-G. Guéhéneuc, “A survey of
video game testing,” in 2021 IEEE/ACM International Conference
on Automation of Software Test (AST). IEEE, 2021, pp. 90–99.

[48] C. Politowski, F. Petrillo, G. C. Ullmann, J. de Andrade Werly,
and Y.-G. Guéhéneuc, “Dataset of video game development prob-
lems,” in Proceedings of the 17th International Conference on Mining
Software Repositories, 2020, pp. 553–557.

[49] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto,
M. Hasan, B. Russo, S. Haiduc, and M. Lanza, “Too long; didn’t
watch! extracting relevant fragments from software development
video tutorials,” in Proceedings of the 38th international conference on
software engineering, 2016, pp. 261–272.

[50] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agar-
wal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and
I. Sutskever, “Learning transferable visual models from natural
language supervision,” in Proceedings of the 38th International Con-
ference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, ser. Proceedings of Machine Learning Research, vol. 139.
PMLR, 2021, pp. 8748–8763.

[51] S. Roohi, C. Guckelsberger, A. Relas, H. Heiskanen, J. Takatalo,
and P. Hämäläinen, “Predicting game difficulty and engagement
using AI players,” Proc. ACM Hum. Comput. Interact., vol. 5, no.
CHI, pp. 1–17, 2021.

[52] R. E. Santos, C. V. Magalhães, L. F. Capretz, J. S. Correia-Neto,
F. Q. da Silva, and A. Saher, “Computer games are serious business
and so is their quality: particularities of software testing in game
development from the perspective of practitioners,” in Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2018, pp. 1–10.

[53] C. Schuhmann, R. Beaumont, R. Vencu, C. W. Gordon, R. Wight-
man, M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Worts-
man, P. Schramowski, S. R. Kundurthy, K. Crowson, L. Schmidt,
R. Kaczmarczyk, and J. Jitsev, “LAION-5b: An open large-scale
dataset for training next generation image-text models,” in Thirty-
sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2022.

[54] P. Stacey and J. Nandhakumar, “A temporal perspective of the
computer game development process,” Information Systems Jour-
nal, vol. 19, no. 5, pp. 479–497, 2009.

[55] M. R. Taesiri, M. Habibi, and M. A. Fazli, “A video game testing
method utilizing deep learning,” Iran Journal of Computer Science,
vol. 17, no. 2, 2020.

[56] M. R. Taesiri, F. Macklon, and C.-P. Bezemer, “Clip meets game-
physics: Towards bug identification in gameplay videos using
zero-shot transfer learning,” in Proceedings of the 19th International
Conference on Mining Software Repositories, 2022, pp. 270–281.

[57] C. Trivedi, A. Liapis, and G. N. Yannakakis, “Contrastive learning
of generalized game representations,” in 2021 IEEE Conference on
Games (CoG), Copenhagen, Denmark, August 17-20, 2021. IEEE,
2021, pp. 1–8.

[58] J. Tuovenen, M. Oussalah, and P. Kostakos, “Mauto: Automatic
mobile game testing tool using image-matching based approach,”
The Computer Games Journal, vol. 8, no. 3, pp. 215–239, 2019.

[59] S. Varvaressos, K. Lavoie, S. Gaboury, and S. Hallé, “Automated
bug finding in video games: A case study for runtime monitoring,”
Computers in Entertainment (CIE), vol. 15, no. 1, pp. 1–28, 2017.

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[61] M. Viggiato, D. Paas, C. Buzon, and C.-P. Bezemer, “Identifying
similar test cases that are specified in natural language,” IEEE
Transactions on Software Engineering, 2022.

[62] ——, “Using natural language processing techniques to improve
manual test case descriptions,” in Proceedings of the 44th Interna-
tional Conference on Software Engineering: Software Engineering in
Practice, 2022, pp. 311–320.

[63] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev
et al., “Grandmaster level in starcraft ii using multi-agent rein-
forcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[64] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s
transformers: State-of-the-art natural language processing,” arXiv
preprint arXiv:1910.03771, 2019.

[65] M. Wortsman, G. Ilharco, J. W. Kim, M. Li, S. Kornblith, R. Roelofs,
R. G. Lopes, H. Hajishirzi, A. Farhadi, H. Namkoong et al., “Robust
fine-tuning of zero-shot models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
7959–7971.

[66] M. Zandigohar, M. Han, D. Erdoğmuş, and G. Schirner, “To-
wards creating a deployable grasp type probability estimator for
a prosthetic hand,” in Cyber Physical Systems. Model-Based Design,
R. Chamberlain, M. Edin Grimheden, and W. Taha, Eds. Cham:
Springer International Publishing, 2020, pp. 44–58.

[67] X. Zhang and A. M. Smith, “Retrieving videogame moments with
natural language queries,” in Proceedings of the 14th International
Conference on the Foundations of Digital Games, 2019, pp. 1–7.

[68] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing
using evolutionary deep reinforcement learning,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 772–784.

	Introduction
	Motivation and Background
	Video game (physics) bugs
	Challenges in mining gameplay videos
	Contrastive learning and zero-shot transfer
	The Contrastive Language-Image Pre-Training (CLIP) model

	Related Work
	Our Approach
	Encoding video frames and the text query
	Calculating the similarity of embeddings
	Aggregating frame scores per video

	Preparing the GamePhysics dataset
	Collecting the GamePhysics dataset
	Pre-processing the videos

	Preliminary evaluation setup
	Experiment overview
	Selecting CLIP architectures
	Selecting video games
	Query formulation
	Preliminary Experiment 1: Simple Queries
	Preliminary Experiment 2: Compound Queries
	Evaluating the experiments

	Results for Preliminary Experiments
	In-depth Evaluation
	Experiment setup
	Dataset and labeling videos
	Models
	CLIP
	OpenCLIP
	XCLIP
	CLIP4Clip
	Frozen-In-Time
	BridgeFormer
	Random baseline
	Implementation details

	Experimental Results
	GPU memory usage and search speed analysis

	Discussion & Limitations
	Threats to validity
	Threats to internal validity
	Threats to external validity

	Conclusion
	References

