
Citation: Sabuhi, M.; Musilek, P.;

Bezemer, C.P. Micro-FL: A

Fault-Tolerant Scalable

Microservice-Based Platform for

Federated Learning. Future Internet

2024, 1, 0. https://doi.org/

Received: 15 January 2024

Revised: 14 February 2024

Accepted: 19 February 2024

Published:

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Micro-FL: A Fault-Tolerant Scalable Microservice-Based Platform
for Federated Learning
Mikael Sabuhi , Petr Musilek * and Cor-Paul Bezemer

Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
sabuhi@ualberta.ca (M.S.); bezemer@ualberta.ca (C.-P.B.)
* Correspondence: pmusilek@ualberta.ca

Abstract: As the number of machine learning applications increases, growing concerns about data
privacy expose the limitations of traditional cloud-based machine learning methods that rely on
centralized data collection and processing. Federated learning emerges as a promising alternative,
offering a novel approach to training machine learning models that safeguards data privacy. Federated
learning facilitates collaborative model training across various entities. In this approach, each user
trains models locally and shares only the local model parameters with a central server, which then
generates a global model based on these individual updates. This approach ensures data privacy
since the training data itself is never directly shared with a central entity. However, existing federated
machine learning frameworks are not without challenges. In terms of server design, these frameworks
exhibit limited scalability with an increasing number of clients and are highly vulnerable to system
faults, particularly as the central server becomes a single point of failure. This paper introduces
Micro-FL, a federated learning framework that uses a microservices architecture to implement the
federated learning system. It demonstrates that the framework is fault-tolerant and scalable, showing
its ability to handle an increasing number of clients. A comprehensive performance evaluation
confirms that Micro-FL proficiently handles component faults, enabling a smooth and uninterrupted
operation.

Keywords: federated learning; microservices; fault tolerant system design

1. Introduction

Over the last decade, the rapid progression of machine learning technologies has pro-
pelled a wave of artificial intelligence applications, encompassing fields such as computer
vision, anomaly detection, fault diagnosis, and natural language processing, among others.
The rise of machine learning can be largely attributed to two key factors: the accessibil-
ity of vast volumes of data and significant advancements in computational techniques
and resources.

Nevertheless, the availability of extensive data, metaphorically a “double-edged
sword” [1], poses significant risks of personal information leakage when customer, in-
dustrial or public data are not properly managed and used. As an illustration, stringent
regulations such as the European Union’s General Data Protection Regulation (GDPR) [2]
and the United States’ California Consumer Privacy Act (CCPA) [3] have been imple-
mented to enhance the protection of personal data and privacy by regulating corporate
behaviour [4].

With the increasing focus on data privacy, ownership, and confidentiality in contempo-
rary society, there is a growing apprehension that personal information could be exploited
for commercial or political purposes without the individual’s consent. This concern has
catalyzed the emergence of a novel era in machine learning, characterized by approaches
specifically designed to safeguard user data privacy. An example of such an approach is
Federated Learning (FL), a technique introduced by McMahan et al. [5].

Future Internet 2024, 1, 0. https://doi.org/10.3390/fi1010000 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/article/10.3390/fi1010000?type=check_update&version=1
https://doi.org/10.3390/fi1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-7694-7813
https://doi.org/10.3390/fi1010000
https://www.mdpi.com/journal/futureinternet

Future Internet 2024, 1, 0 2 of 20

Federated learning serves as a privacy-focused alternative to machine learning ap-
proaches that require central data collection, allowing models to be trained directly at the
data storage site of each user. This approach eliminates the need for data transmission, as
only the locally trained model parameters are used to develop and refine a more effective
global model.

Federated learning systems, depending on the communication scheme between com-
ponents, can be implemented in a centralized (client-server) or decentralized (peer-to-peer)
fashion [6,7]. In a centralized scheme, the central server primarily orchestrates the training
process and sets up the communication infrastructure among users. However, its pivotal
role also introduces a potential vulnerability, rendering it a single point of failure within
the system. Conversely, in a decentralized scheme, all clients can autonomously coordinate
to acquire the global model, facilitating model updates and aggregations via peer-to-peer
client interactions.

Although decentralized federated learning methods, such as those based on
blockchain [8–13], can mitigate the challenges of centralized federated learning by elim-
inating the central server, they introduce their own challenges [14,15]. These include
performance degradation as well as increased computational and storage costs. Conse-
quently, this study will focus on federated learning systems that employ a centralized
communication scheme and tackle its specific challenges.

In a centralized federated learning system, a central server might become a vulner-
ability, acting as a single point of failure due to physical damage, server node failure, or
network disruptions. This can potentially interrupt the federated learning process. Al-
though large organizations may handle such server roles in some scenarios, collaborative
learning often faces constraints regarding the availability and reliability of a robust central
server [16]. The server may also become a bottleneck when serving numerous clients, as
highlighted by Lian et al. [17].

Hence, when conceptualizing a federated learning system based on a centralized
design, it is essential to adopt a design pattern that is both fault-tolerant and performant.
Although there are numerous platforms and frameworks for federated learning, challenges
related to performance, scalability, and fault tolerance remain. While these platforms often
emphasize user scalability and fault management at the user-end, they frequently neglect
the vital aspect of server-side fault management and system scalability as the user base
expands. Ideally, a federated learning system should inherently possess scalability and
fault tolerance.

Scalability pertains to the capacity of the system to include additional devices in
the federated learning process. More devices can improve the accuracy and speed up
the convergence of the federated learning process [18,19]. Techniques such as resource
optimization, prioritizing devices with high computational power, and implementing
compression schemes for learning model parameter transfer, can aid in scalability. Effective
resource optimization allows more devices to participate in the federated learning process,
thereby enhancing performance. However, increasing device participation requires an
expansion of server-side computational resources.

Fault-tolerance in the context of federated learning indicates the system’s capability to
manage the federated learning process effectively, even when the server fails. Traditional
federated learning, which relies on a centralized cloud server for global aggregation, can
be disrupted if the aggregation server malfunctions [20]. Current concerns about fault
tolerance in federated learning systems often revolve around adversarial or Byzantine
attacks targeting the central server [21–24] and data related faults such as handling missing
data [25]. While numerous studies have investigated the system performance, research into
the effects of server faults, such as physical damage, on the federated learning system’s
performance is relatively scant.

To achieve these properties for a performant federated learning system, this paper
presents Micro-FL: a microservice-based federated learning platform designed to handle
an expanding user base, guarantee high availability, and offer fault tolerance. Suitable for

Future Internet 2024, 1, 0 3 of 20

deployment on-site or in the cloud, it leverages the flexibility, modularity, scalability, and
reliability that microservices provide. Micro-FL streamlines the testing, deployment, and
maintenance of federated learning algorithms, while allowing dynamic resource allocation
based on workload or user count, thus improving resource efficiency.

The principal contributions of this research paper are as follows:

1. Introduction of a Microservice-based Federated Learning (Micro-FL) Platform: This re-
search paper proposes a novel Micro-FL platform that leverages microservices ar-
chitecture to address the challenges of fault tolerance and scalability of federated
learning systems. This approach significantly differs from the traditional centralized
federated learning frameworks by decomposing the monolithic architecture of the
traditional centralized federated learning frameworks into smaller, manageable mi-
croservices. This decomposition enhances scalability, fortifies fault tolerance, and
facilitates efficient resource management for the federated learning server.

2. Emphasis on Server-side Fault Management: Unlike other federated learning frame-
works that mainly concentrate on user-end scalability and fault management, the
current study emphasizes server-side challenges. This paper presents solutions for
managing faults in the communication system of the federated learning system, which
is crucial for maintaining the integrity of the federated learning process.

3. Scalability and Dynamic Resource Allocation: The Micro-FL platform facilitates dy-
namic resource allocation, which allows for the more efficient management of compu-
tational resources. This feature is crucial for accommodating a growing number of
federated learning clients without compromising performance or reliability.

These contributions underscore the innovation and significance of the proposed
Micro-FL platform in enhancing the resilience, efficiency, and scalability of federated
learning systems.

2. Background

This section describes the fundamental concepts used in this study, specifically focus-
ing on federated learning and microservices.

2.1. Federated Learning

Federated learning, introduced by Google [5], is a distributed machine learning strat-
egy focused on data privacy. It brings together numerous clients, such as edge devices and
organizations, to collaboratively train a shared statistical model, known as a global model.
The process, facilitated by a central server, occurs across remote client devices without
directly sharing data.

Federated learning is characterized by two main features: (1) It involves a multi-party
collaboration, with at least two entities, to construct a machine learning model. Each
participant holds unique data that contributes to model training. (2) During the training
process, each party’s data are kept localized and are not transferred elsewhere.

Federated learning can be formulated as follows: Consider a scenario with N clients,
denoted as {𭟋}N

i , each possessing unique datasets {Di}N
i . In traditional machine learning,

these datasets {Di}N
i would be sent to a central server to train the unified model MSUM.

However, this process requires each client 𭟋i to disclose its dataset Di to the central server,
which poses potential data leakage risks.

On the other hand, in federated learning, clients work together to train a model MFED

without having to share their respective datasets {Di}N
i . Suppose VSUM and VFED represent

the performance metrics (such as accuracy, recall, or F1-score) of the traditional machine
learning model MSUM and the federated model MFED, respectively. Assuming that δ is
a non-negative real number, the federated learning model MFED is said to experience
δ-performance loss if:

|VSUM − VFED| < δ. (1)

Future Internet 2024, 1, 0 4 of 20

Equation (1) implies that while federated learning builds a machine learning model
using decentralized data sources, the model performance on unseen data closely matches
that of a model built on centrally collected data [4].

The federated learning training process can be broadly classified into three steps, as
defined by Lim et al. [26]. The model trained at each client’s end is termed the local model,
whereas the model synthesized by the federated learning server is denoted the global
model. Figure 1 provides a visual representation of the federated learning architecture and
its training process.

Client 1

Client 2

Client N

Central Server

Aggregated
 Model

.

.

.

Local
Model 1

Loca
l

Model
N

Local
Model 2

Model Initialization

Local Model
 Training and update

Global Model
Aggregtion and Update

Figure 1. An example of a federated learning architecture: client-server model.

1. Initialization: The server defines the machine learning task, data prerequisites, and
training hyperparameters. It then broadcasts the initial global model parameters w0

G
to selected clients [27–29].

2. Local model training and update: Each client i downloads the broadcast model
parameters wt

G from the server, for the iteration number t. They train the model on
their local data to obtain updated model parameters, wt

i , which minimize a specific
loss function, L(wt

i). These updated model parameters are then sent back to the server.
3. Global model aggregation and update: The server aggregates the local models gener-

ated by the clients and prepares the model parameters for the subsequent training
iteration, wt+1

G , with the aim of minimizing the global loss function, L(wt
G).

Steps 2 and 3 are repeated until the global loss function converges or a targeted
training accuracy is achieved.

Federated averaging (FedAvg) is a straightforward and commonly used method for
aggregating local models in federated learning, proposed by McMahan et al. [5]. This
algorithm averages the updated weights from each client’s local model to create a new
global model.

Future Internet 2024, 1, 0 5 of 20

2.2. Microservices

Monolithic and microservice-based architectures currently dominate the realm of
business application development [30]. Monolithic architecture, a traditional approach,
constructs an application as a single extensive codebase or repository that encompasses
various services that are not executable independently [31]. This tightly coupled architec-
ture operates as a singular process in the application server’s environment during request
handling, with all internal communications managed by an intra-process mechanism. How-
ever, as new features are continually integrated in today’s fast-paced development cycle,
the growing codebase and complexity make code understanding and modification more
challenging [32,33], leading to slower deployment. Another issue with the monolithic
architecture is its lack of fault tolerance. In other words, there is no provision for a system
component to function independently when another component fails [34], which is possible
with the microservices-based architecture.

In contrast, microservices, a rising trend in software architecture, emphasize the
design and development of highly maintainable and scalable software [35]. Thus, by
functionally breaking down large systems into a collection of independent smaller systems,
microservices help manage the growing complexity of software systems.

Microservices typically employ containerization technologies, such as Docker, which
encapsulate each service and run it within a container. This structure allows for effortless
scalability with minimal latency and hardware resource footprints. Docker containers,
which are lightweight, efficient, and can scale quickly based on needs [36], prove particu-
larly beneficial for a microservices architecture. For this reason, Docker containers have
been selected for the federated learning platform proposed in this study.

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and
management of containerized applications [37]. It offers scalability by dynamically ad-
justing containers based on resource demands. It ensures high availability through the
automatic restart or rescheduling of failed containers, promotes portability, and prevents
vendor lock-in through infrastructure abstraction. Furthermore, it optimizes resource
utilization by efficiently scheduling containers.

Hence, integrating a federated learning framework that uses a microservices archi-
tecture can facilitate the creation of a performant federated learning system that is both
scalable and fault-tolerant.

3. Related Work

Addressing the single point of failure and improving fault tolerance in centralized
federated learning has garnered substantial research attention. One approach is the im-
plementation of a decentralized federated learning design, which eliminates the central
server from the federated learning system, thus averting any single point of failure. This
is made possible through the use of different blockchain technologies [8,9,38], such as
proof-of-work [11], proof-of-authority [13], and proof-of-contribution [14], in conjunction
with smart contracts [10,39]. Such a setup enables model updates and aggregations via
direct client-to-client interactions [12], enhancing the overall robustness and fault tolerance
of the system.

However, blockchain-integrated federated learning systems face several challenges [14,15],
including: (1) Performance issues due to a limited number of transactions, which can result
in high latency; (2) the high computational cost of aggregation processes due to typically
limited resources on client devices; (3) increased storage demands, as machine learning
models must be stored on all client devices, leading to considerable strain on storage
resources; and (4) potential data privacy risks as all models are accessible to client devices.

Given these challenges with decentralized federated learning, our research pro-
poses an alternative approach to improve the fault tolerance of centralized federated
learning. This approach involves implementing a microservice-based design pattern for
federated learning.

Future Internet 2024, 1, 0 6 of 20

The following section examines previous research relevant to the area of microservice-
based platforms for federated learning. In particular, it delves into existing tools that use a
centralized server design for federated learning and their unique features.

TensorFlow Federated (TFF) [40] is an open-source framework for machine learning
on decentralized data. Its interfaces include the high-level Federated Learning API for
federated learning training with pre-existing TensorFlow models and the lower-level
Federated Core API for developing new federated learning algorithms. While it supports
various aggregation functions, it currently does not allow the use of GPU for ML model
training and only supports the simulation mode. The framework is still under development,
and its current limitations suggest that it might not be suitable for all use cases.

Federated AI Technology Enabler (FATE) [41] is an open-source project by Webank’s
AI Department, designed to provide a secure computational framework for a federated AI
ecosystem. FATE offers a suite of features such as federated statistics, feature engineering
capabilities, machine learning algorithm support, and secure protocols. It can be deployed
in simulation or federated modes, with installation streamlined via Docker containers.
However, its high resource requirements, including 6GB RAM and 100GB disk space on
both the client and server side, may render it impractical for real-world federated learning
scenarios.

Paddle Federated Learning (PFL) [42] is an open-source platform that supports both
horizontally and vertically partitioned data, and can handle neural networks and linear
regression models. It leverages techniques like Federated Averaging, Secure Aggregation,
and Differentially Private Stochastic Gradient Descent for model construction. Communi-
cation in PFL is managed using the ZeroMQ protocol, and it supports both simulation and
federated modes, making it adaptable for various deployment scenarios.

PySyft [43] is an open-source project focusing on secure, private deep learning. It
comprises components like PyGrid for connecting data owners and data scientists in a
peer-to-peer network, KotlinSyft for training PySyft models on Android, SwiftSyft for iOS,
and Syft.js for web interfacing. These elements collectively enable the secure, collaborative
training of models using PySyft.

The Federated Learning and Differential Privacy (FL&DP) [44] Framework is an open-
source framework that uses TensorFlow for deep learning tasks and the SciKit-Learn library
for linear models and clustering. It offers various aggregation algorithms and uses adaptive
Differential Privacy and randomized response coins to enhance data privacy protection
during the learning process.

LEAF [45] is an open-source benchmark tailored for federated learning settings. It pro-
vides open-source datasets suitable for federated learning, metrics for evaluating federated
learning algorithms, and a repository of standard methods such as minibatch Stochastic
Gradient Descent and Federated Averaging. Serving as a valuable resource, LEAF aids in
benchmarking and comparing federated learning algorithms.

Flower [46] is an open-source framework that supports large-cohort training on
edge devices and compute clusters. It offers aggregation methods like SecAgg [47] and
SecAgg+ [48], and supports both simulation and federated modes of operation. Notably,
Flower is language and machine learning framework-agnostic, ensuring broad compatibil-
ity.

Serverless federated learning (FedLess) [49] is a system designed for federated learning
on diverse Function-as-a-Service platforms, supporting major commercial FaaS platforms
such as AWS Lambda, Google Cloud Functions, Azure Functions, and IBM Cloud Functions.
Implemented in Python3, FedLess provides a command-line tool for orchestrating the
training process and supports TensorFlow and Keras for deep learning models. Its default
federated learning strategy is the FedAvg algorithm, commonly used for the aggregation of
model updates. Other research projects, such as [50], have also adopted a serverless design
for federated learning.

FedML [51] is an open-source research library and benchmark platform designed to
aid the development of Federated Learning algorithms and provide objective performance

Future Internet 2024, 1, 0 7 of 20

comparisons. It supports on-device training, distributed computing, and single machine
simulation. FedML offers resources such as algorithmic implementations, benchmarks
with evaluation metrics, access to real-world datasets, and validated baseline results. It
is organized into FedML-API for high-level APIs and FedML-core for low-level APIs,
using the Message Passing Interface for system communication. FedML supports various
federated learning algorithms including FedAvg, Decentralized FL, Vertical Federated
Learning, and Split Learning.

Numerous other tools are designed to address scalability issues in federated learning
systems, mainly with regard to scaling in the number of clients [52–56]. Despite providing
several beneficial features, these platforms fail to implement an efficient central server
design that is scalable and fault tolerant. Micro-FL is introduced to mitigate these deficien-
cies. Based on the principles of microservices system architecture, Micro-FL is designed to
enhance the scalability and robustness of centralized federated learning systems, effectively
addressing these significant gaps in contemporary solutions.

4. Micro-FL

Figure 2 contrasts the building blocks of a commonly used federated learning server
design (monolithic architecture) with the microservices-based design proposed in this study.
In a monolithic federated learning server design, all components (e.g., user interface and
communication services) are encapsulated into a single process, using a single database.
A fault in any of these components can completely halt the federated learning process.
This issue, known as a ’single point of failure’ within the server, could cause substantial
downtime and undermine system reliability. More importantly, scaling monolithic ap-
plications requires scaling the whole application, necessitating a considerable increase in
resource requirements.

Conversely, when employing a microservices architecture, these components are
decoupled from each other (i.e., isolated), each operating as an individual scalable pro-
cess (microservice) with its own dedicated database. Furthermore, a communication
mechanism is implemented to allow these services to interact with each other. As these
microservices are horizontally scalable, multiple instances of each microservice can be
created to enhance the fault tolerance of the federated learning system. The proposed
architectural framework is called Microservice-based Federated Learning (Micro-FL) (https:
//github.com/asgaardlab/Micro-FL, (accessed on 21 February 2024)).

Monolithic Federated Learning Server

User Interface Client Selection Communication Privacy Mechanism Aggregator

Microservices Based Federated Learning Server

User Interface

Client Selection Communication Privacy Mechanism Aggregator

Figure 2. Comparison of monolithic and microservices-based federated learning systems architectures.

https://github.com/asgaardlab/Micro-FL
https://github.com/asgaardlab/Micro-FL

Future Internet 2024, 1, 0 8 of 20

Micro-FL accommodates both Linear and Deep Neural Network (DNN) models,
leveraging TensorFlow and Keras. Additionally, as a microservice-based application,
Micro-FL possesses several notable attributes:

• Micro-FL’s distinct modules handle specific functions, contributing to a compact
codebase and easier debugging, while also enabling incremental upgrades. These
upgrades allow for the coexistence of old and new versions for compatibility testing,
and changes in a module do not require a system-wide reset, thus reducing the
re-deployment cycle.

• The framework enhances fault tolerance capabilities with Kubernetes; even with a
communication microservice failure, the federated learning process continues without
interruption.

• Using containerization, Micro-FL allows for an extensive customization of the de-
ployment environment and facilitates the scaling of individual microservices without
impacting the whole application. This functionality supports the easy deployment
or retraction of services based on demand and accommodates both horizontal and
vertical scaling.

4.1. Micro-FL workflow

The following subsection provides an overview of the workflow of the Micro-FL
system. The process is characterized by a series of steps that ensure the smooth execution
of federated learning tasks. Each of these steps is explained in detail below:

➊ Clients initiate a registration process with Micro-FL via a dedicated web application
interface. ➋ Based on the number of clients registered and prepared to contribute to the
federated learning process, the Micro-FL administrator notifies registered clients ready to
contribute, signaling the start of a new training iteration. ➌ The Aggregator service actively
monitors connected clients and their statuses. When a certain number of participating
clients is reached, it triggers the initialization of a model, which is subsequently dissem-
inated to all the clients. ➍ Clients continuously listen for updates from the aggregator
service. Upon receipt of the model from the aggregator service, they start training on their
local datasets. ➎ After training, the clients transmit their model parameters to the server
through the communication service. ➏ All messages submitted by clients are transmitted
securely through the communication service and are logged into the database. ➐ The aggre-
gator microservice continuously monitors the client messages during each iteration. When
the number of messages is equal to the total number of clients, the aggregator synthesizes a
new global model using the individual client models. ➑ The Aggregator service dispatches
a fresh message to the clients, and the cycle from steps ➌ to ➑ repeats. This iterative
process continues and is monitored until a specified number of iterations are completed or
a pre-defined model performance metric is achieved.

4.2. Framework Design

A minimalistic implementation of the proposed Micro-FL architectural design is
presented in Figure 3. All services operate as Docker containers and are orchestrated using
Kubernetes. Additionally, load balancing is used to distribute client requests between the
user interface and communication microservices. Building on the previous section, this part
discusses the essential components, services, and applications used to actualize Micro-FL.
These components are selected based on their performance, scalability with Kubernetes,
and open-source nature. Each microservice is briefly explained, as follows:

1. User Interface. The web application is developed using the Flask library for Python
and Nginx as the web server. A federated learning client can register and authenticate
using this web interface, and Google Cloud Load Balancing is used to balance the
workload of the web application. Both the web application and the server are deployed
with three replicas to improve their performance and reliability.

2. Database. The database governs the access and caching of the federated learning
system. Elasticsearch (ES), a NoSQL database, retains federated Learning models,

Future Internet 2024, 1, 0 9 of 20

accuracy metrics, and client information. The proposed Micro-FL platform employs
Elasticsearch due to its scalable and fault-tolerant design, which incorporates index
replication and sharding. ES uses REST APIs for data storage and search, with a
document-based structure in place of tables and schemas. Additionally, Kibana
visualizes the federated learning process.

3. Communication. This microservice enables data exchange across various applica-
tions, services, and systems, which is essential for effective communication between
microservices and clients. Apache Kafka is used as a message broker, renowned for
its scalability, fault tolerance, and capacity to handle trillions of daily messages with
minimal latency. Within Kafka, partitions serve as the foundational units for paral-
lelism and scalability. These partitions segment a Kafka topic into multiple smaller,
immutable, ordered sequences of records, each hosted on a distinct Kafka broker
within a Kafka cluster. Multiple partitions in a Kafka topic enable parallel processing
and enhance scalability. Producers can write to various partitions simultaneously, and
consumers can consume data from numerous partitions concurrently. This design pro-
motes high throughput and fault tolerance. Kafka employs replication to ensure fault
tolerance and high availability. Each partition is replicated across multiple brokers for
redundancy. The replication factor determines how many copies of each partition are
maintained in the cluster. Strimzi Kafka [57] is used for Kafka broker deployment on
Kubernetes and the Apache Camel Elasticsearch sink connector (Kafka Connect) for
message transfer to the Elasticsearch database.

4. Aggregator. Aggregator microservice is responsible for aggregating client updates. It
retrieves model updates from the database. After all selected users have reported their
local model updates, it creates a new global model for the next federated learning
iteration. Although numerous methods and structures can be used for aggregation,
the simple and commonly used FedAvg algorithm has been selected for testing. Since
the aggregation, a synchronous process, occurs at the end of the federated learning
cycle, this microservice is not replicated. In other words, if this microservice fails, the
Kubernetes controller manager will automatically restart it, ensuring no impact on
the training process.

 Load balancing

Flask App Elasticsearch
Data&Ingest Node

Elasticsearch
Master node

Nginx

Kafka Broker
 Zookeeper

Connect Aggregator

User Interface Microservice Database

Communication Microservice Aggregator MicroserviceLoad Balancing

 Load balancing

Figure 3. Scalable and Fault-Tolerant Microservice Architecture of the Micro-FL Framework.

5. Methodology

This section describes the methodology for evaluating the fault tolerance capabilities
of the proposed Micro-FL platform. The working environment will be provisioned using
Google Cloud Platform (GCP) and Google Kubernetes Engine. The various steps that
comprise the methodology are illustrated in Figure 4. Subsequent subsections will provide
an in-depth explanation of each of these steps.

Future Internet 2024, 1, 0 10 of 20

5.1. Deploying the Micro-FL Framework

Table 1 demonstrates the configuration of the Kubernetes cluster and the specifics of
the Micro-FL deployment are detailed in Table 2. The Google Cloud Kubernetes Engine is
used to deploy the Micro-FL frameworks, employing three Kubernetes nodes. This setup
will be used to evaluate the fault tolerance behaviour of the microservices, maintaining
system robustness in the face of potential faults in instances.

Deploy the Micro-FL
Framework Generating Clients

Monitor and Collect the
performance metrics

Injecting Faults

Evaluate the performance

Deploy services and load testing

Performance monitoring and analysis

Figure 4. Overview of the methodology to evaluate the fault tolerance of Micro-FL.

Table 1. Configuration of the Micro-FL Kubernetes instance.

Property Value

Machine Family E2-Standard-16
Number of Nodes 3
vCPUs 16
RAM 64GB
Image Type Ubuntu With Containerd
Boot Disk Type Balanced Persistent Disk
Boot Disk Size 100GB
Zone us-central-c
GKE Ver. 1.25.8-gke.500

For both Kafka brokers and Kafka Connect, a replication factor of three is implemented
across all Kafka topics (which is recommended for the production level [58]). Additionally,
the minimum in-sync replicas parameter was configured to two, providing resilience
against any single instance failure. Three replicas for the ZooKeeper microservice are also
established. In the case of Elasticsearch, indices were configured with a replication factor of
3. Kibana is used for data visualization tasks within the Micro-FL platform.

Table 2. Micro-FL deployment allocated resources.

Service Name vCPU RAM(GB) Replica Ver.

Kafka 2 8 3 3.4.0
Zookeeper 0.5 4 3 3.7.1
Connect 2 8 3 3.4.0
ES-Master Node 1 4 3 8.7.0
ES-Data/Ingest Node 4 16 3 8.7.0
Kibana 1 4 1 8.7.0
Aggregator 1 4 1 N/A

Future Internet 2024, 1, 0 11 of 20

5.2. Generating Clients

Clients are integral to the federated learning process. The performance of the proposed
Micro-FL system under varying user counts is evaluated using simulated clients. Given
the substantial resources required to run multiple clients concurrently, the simulations are
performed using Docker containers and Kubernetes. Google Cloud Kubernetes Engine
is used to orchestrate variable client counts. Clients contribute to the federated learning
process using two popular datasets, MNIST [59] and CIFAR-10 [60], in two distinct models,
as shown in Figure 5a and Figure 5b, respectively. Datasets are randomly selected and
evenly distributed to ensure no overlap among clients, as described in Table 3. Client-side
training employs five epochs with a batch size of 10. Optimization is performed using
Adam optimizer with a learning rate of 0.001 and training process of 100 iterations. For
brevity, these datasets and their corresponding models will be referred to as MNIST and
CIFAR-10 workloads. Additionally, the computational resources assigned to each workload
are outlined in Table 4. It is important to clarify that the primary focus is server-side
faults. Therefore, the simulations are run under the assumption that the clients function as
expected, without any faults.

Table 3. Distribution of MNIST and CIFAR-10 datasets for different number of users.

Dataset Clients Training Samples Testing Samples

MNIST

100 600 100
500 120 20
1000 60 10

CIFAR-10

100 500 100
500 100 20
1000 50 10

(a) (b)
Figure 5. Trained models for performance analysis of the Micro-FL framework. The model trained on
MNIST has 25,450 trainable parameters and for CIFAR-10, it has 89,834. (a) Model trained on MNIST.
(b) Model trained on CIFAR-10.

Future Internet 2024, 1, 0 12 of 20

Table 4. Resource allocation for each client for the MNIST and CIFAR-10 datasets.

Dataset Instance Type vCPU
Client

RAM
Client Zone

MNIST General Purpose 0.1 0.6 GB us-central1
(a,b,c,f)

CIFAR-10 General Purpose 0.25 1.4 GB us-central1
(a,b,c,f)

5.3. Injecting Faults

Chaos-Mesh [61], a robust chaos engineering platform specifically designed for Kuber-
netes, is used to evaluate the fault tolerance properties of the Micro-FL system. Chaos-Mesh
supports a comprehensive array of fault types, including pod and network faults, while also
being safe and manageable. For the experiments, Chaos-Mesh version 2.5.2 is employed.

Kafka broker is considered to be the most essential component of the Micro-FL system,
as all communications between services and clients pass through it. Message loss may
result from a malfunction in this module, severely impeding the federated learning process.
Thus, the fault analysis is restricted to Kafka brokers.

Federated learning is conducted using the MNIST and CIFAR-10 workloads under two
distinct conditions, specifically healthy and faulty scenarios. Under the healthy scenario,
the system operates without any injected faults. In the faulty scenario, a POD_FAIL fault is
injected every 20 iterations (in 100 iterations) during the federated learning training process
and lasts 5 min. This fault is randomly inserted into one of the Kafka brokers. The purpose
of this experiment is to assess whether the Micro-FL system can effectively manage these
faults and maintain a seamless operation throughout the process.

5.4. Monitoring and Evaluating the Performance

The performance of Micro-FL is assessed from two perspectives: (1) Federated learning
performance, which encompasses the efficiency of the global model and execution time
of the experiments, and (2) Software system performance, which includes CPU utilization
and metrics pertinent to the message broker.

5.4.1. Federated Learning Performance Metrics

Performance metrics associated with federated learning are gathered and assessed in
the Aggregator microservice and are defined as follows:

• Global Model Performance: is measured as the accuracy of training and testing. These
metrics indicate the efficacy of the global model in the federated learning process.
The aim is to obtain a high performance during training and testing. Given that the
datasets address a classification issue, the goal is to achieve high training and testing
accuracies. Notably, in this study, the aggregator evaluates these accuracies on the
entire training and testing datasets, to which it has complete access.

• Experiment Execution Time: denotes the time it takes to complete each experiment. In
assessing the fault tolerance of the proposed architecture, the objective is to maintain
consistent execution times for each experiment, regardless of whether the operation
conditions are healthy or faulty.

5.4.2. Software Performance Metrics

To collect and evaluate software performance metrics, Prometheus is used as the
monitoring system and Grafana for data visualization. The performance of the messaging
system (Kafka) is assessed using the Kafka exporter. It assists in gathering metrics like
CPU utilization and partition status of the brokers, as well as their throughput. Simulta-
neously, cAdvisor metrics are used for pods and containers along with their associated
performance metrics such as CPU utilization. The following software performance metrics
have been collected:

Future Internet 2024, 1, 0 13 of 20

• Online Partitions: are active Kafka partitions, also called leaders, that handle data
service. In the leader–follower model, the leader broker manages read/write requests,
while others replicate its data for high availability and fault tolerance. If a leader fails
or a broker goes offline, Kafka automatically assigns a new leader or marks replicas as
‘under replicated’, respectively.

• Under Replicated Partitions: In Kafka, they have fewer replicas than the set replication
factor. Kafka actively manages this by monitoring the replication status, electing new
leaders for under-replicated partitions, and initiating replication processes. Once
replication is caught up, the partitions become fully replicated again.

• Partitions at Minimum In-Sync Replicas (ISR): Kafka ensures data integrity by defining
a minimum number of replicas (ISR) that must sync with the leader for successful
writes. When a message is sent, it is written to the leader and copied to follower
replicas. If enough replicas acknowledge the message to meet the ISR, the write is
successful. The Kafka cluster has an ISR of 2, ensuring that messages are stored in at
least two brokers, providing tolerance against a single broker failure. The replication
factor and ISR can be customized to meet the SLA needs.

• Offline Partitions: In Kafka, partitions lacking a leader replica are called off-line par-
titions. They cannot perform read/write operations if all replicas are unavailable or
have failed. This can disrupt data availability, hindering data writing and consump-
tion. The goal is a federated learning platform without offline partitions, ensuring
continuous operation and data availability, even during Kafka cluster faults.

• Broker CPU Utilization: reflects the proportion of CPU cores used by each Kafka
broker during the federated learning process. The objective is to utilize the allocated
resources efficiently, avoiding overuse.

• Broker Throughput: signifies the data transmission rate to or from Kafka brokers. As
a critical performance indicator of a Kafka cluster, it demonstrates the speed with
which producers can relay messages to brokers. High throughput, a core aspect of
Kafka’s design, enables it to manage the real-time processing of substantial, rapid data
streams.

6. Results

This section discusses the results of the experiments. The federated learning per-
formance of the Micro-FL framework is evaluated first to show whether the platform
can carry out federated learning with a good model convergence for the MNIST and
CIFAR-10 workloads.

6.1. Federated Learning Performance

The global model of the federated learning system, even under faulty conditions,
performs robustly without any significant adverse effects. Figures 6 and 7 show the training
and testing accuracy of the global model for each iteration under healthy and faulty con-
ditions for the workloads discussed earlier. It is evident that faults in the communication
microservice do not adversely affect the global model’s performance, demonstrating its
robust machine learning operation. Table 5 details the accuracy achieved for different num-
bers of users under both healthy and faulty conditions, following 100 iterations of training.
These results corroborate the expected performance and uninterrupted convergence of the
simple Federated Averaging algorithm, even amidst faults. Minor variations in training
and testing accuracies (such as in the CIFAR-10 workload with 500 clients) are expected
due to random dataset sampling.

Future Internet 2024, 1, 0 14 of 20

0 20 40 60 80 100
Iteration Number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Acc. 100 Clients
Testing Acc. 100 Clients
Training Acc. 500 Clients
Testing Acc. 500 Clients
Training Acc. 1,000 Clients
Testing Acc. 1,000 Clients

(a)

0 20 40 60 80 100
Iteration Number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Acc. 100 Clients
Testing Acc. 100 Clients
Training Acc. 500 Clients
Testing Acc. 500 Clients
Training Acc. 1,000 Clients
Testing Acc. 1,000 Clients

(b)
Figure 6. Global model’s training and testing accuracies on the MNIST dataset across 100 iterations
of training. (a) MNIST in the healthy operation scenario. (b) MNIST in the faulty operation scenario.

0 20 40 60 80 100
Iteration Number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Acc. 100 Clients
Testing Acc. 100 Clients
Training Acc. 500 Clients
Testing Acc. 500 Clients
Training Acc. 1,000 Clients
Testing Acc. 1,000 Clients

(a)

0 20 40 60 80 100
Iteration Number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Acc. 100 Clients
Testing Acc. 100 Clients
Training Acc. 500 Clients
Testing Acc. 500 Clients
Training Acc. 1,000 Clients
Testing Acc. 1,000 Clients

(b)
Figure 7. Global model’s training and testing accuracies on the CIFAR-10 dataset across 100 iterations
of training. (a) CIFAR-10 in the healthy operation scenario. (b) CIFAR-10 in the faulty operation
scenario.

For an optimal machine learning performance, a robust and fault-tolerant federated
learning system is necessary, particularly when handling many clients and large models.

In the MNIST workload, an increase in the number of users from 100 to 1000 induces
a minor change in training accuracy (∼2%) and testing accuracy (∼4%). However, this
impact is amplified for CIFAR-10, resulting in a substantial ∼25% decrease in training
and testing accuracy, which is attributed to larger model parameters. Enhanced model
performance can be achieved by extending federated aggregation to more iterations and
prolonging training durations [18,19], albeit raising the risk of faults. This observation
underscores the need for a robust, persistent federated learning platform. Such a platform
should be reliable, fault-tolerant, and capable of integrating an increasing number of users,
allowing them to contribute to the model and improve its performance.

The proposed Micro-FL platform maintains consistent execution times, with minor
fluctuations even under faults, demonstrating its robustness and fault tolerance. Table 6
provides the execution times for the same workload and healthy and faulty scenarios. From
these data, it can be observed that for the MNIST dataset, there is a minimal variation of
less than 3.5% in the execution time of the experiment. This variation occurred during
the experiments with 100 and 500 users on the MNIST dataset, but these fluctuations
can be deemed negligible given the short experiment durations and fluctuations in the
cloud infrastructure. For more extensive federated training procedures, such variations
become even less pronounced. For example, with the CIFAR-10 dataset and 1000 users, the
discrepancy between execution times under healthy and faulty conditions is a mere 0.06%.
This observation highlights that the proposed Micro-FL platform and its fault-tolerant
design do not allow faults to influence the execution time. Therefore, the federated learning
process does not experience delays due to faults.

Future Internet 2024, 1, 0 15 of 20

Table 5. Training and testing accuracies of the aggregator after training the model for 100 iterations.

Dataset #Clients
Training Accuracy Testing Accuracy

Healthy Faulty Healthy Faulty

MNIST

100 96.86 96.89 96.02 96.35
500 94.24 93.26 94.07 93.14

1000 92.76 92.80 92.83 93.12

CIFAR-10

100 76.69 75.94 60.23 59.60
500 57.78 59.83 51.90 55.24

1000 50.84 50.69 48.45 48.58

Table 6. Experiment execution time for healthy and faulty scenarios. Positive change indicates
shortened execution time and negative change shows extended execution time.

Dataset #Clients
Experiment Duration (s)

ChangeHealthy Faulty

MNIST

100 5230 5070 −3.06
500 5888 6090 3.43

1000 10,231 10,144 −0.85

CIFAR-10

100 11,160 11,014 −1.30
500 18,819 18,757 −0.33

1000 31,256 31,236 −0.06

6.2. Software Performance Analysis

Micro-FL provides a persistent operation and communication platform for federated
learning, even during faults. This demonstrates the robust fault tolerance of the proposed
approach. Figure 8 illustrates the partition status during the MNIST experiment with 100
users in the presence of faults. Initially, all partitions are online and accessible. When a fault
occurs, the affected Kafka broker’s partitions become under-replicated but remain available
due to the minimum ISR policy, thus preventing any offline partitions. This confirms the
fault tolerance of Micro-FL, which provides a persistent operation and communication
platform for the federated learning system, despite the presence of faults. Once the fault
is resolved, the Kafka cluster quickly recovers, restoring the number of online partitions
and reducing the underreplicated and minimum ISR partitions to zero, thus reaffirming
the message availability. This resilient behaviour is consistent across all experiments.

Future Internet 2024, 1, 0 16 of 20

0 10 20 30 40 50 60 70 80
Time (min)

0

50

100

150

200

250

300

Nu
m

be
r o

f P
ar

tit
io

ns
Online Partitions
Under Replicated Partitions
Partitions at Minimum ISR

Figure 8. Number of online and under-replicated partitions and partitions at minimum ISR for Kafka
broker during the faulty scenario for MNIST with 100 users. The fault period is marked in gray.

The Micro-FL framework effectively maintains constant throughput and CPU uti-
lization under healthy conditions, and adapts to faults by redistributing the load among
operational Kafka brokers, thereby demonstrating its fault-tolerant nature. Figure 9 presents
the throughput and CPU utilization under the MNIST workload with 100 users across
the three Kafka brokers in the cluster in a faulty scenario. In normal operating conditions
of Micro-FL, the throughput and CPU utilization of the Kafka brokers remain relatively
constant, fluctuating around a specific value. However, according to Figure 9, a distinct
change is noticeable during the occurrence of a fault, with darker shades of grey marking
the period of time with the faulty Kafka broker. When a fault occurs, there is a decrease in
throughput and CPU utilization for the broker in question. Concurrently, a slight increase
is observed in the throughput and CPU utilization of the remaining two operational Kafka
brokers. This increase is an adaptive response to compensate for the faulty broker, enabling
the system to continue processing messages. Once the fault is resolved, the throughput of
the faulty broker remains at zero, while the CPU utilization spikes across all Kafka brokers.
This is indicative of the faulty Kafka broker retrieving underreplicated partitions from the
other brokers.

Future Internet 2024, 1, 0 17 of 20

0 10 20 30 40 50 60 70 80
0

1

2

3

M
B/

s

B1 Throughput

0 10 20 30 40 50 60 70 80
0

1

2

3

4
M

B/
s

B2 Throughput

0 10 20 30 40 50 60 70 80
Time (min)

0

1

2

3

4

M
B/

s

B3 Throughput

0.0

0.2

0.4

0.6

CP
U

Ut
iliz

at
io

nB1 CPU Util.

0.0

0.2

0.4

0.6

CP
U

Ut
iliz

at
io

nB2 CPU Util.

0.0

0.2

0.4

0.6

CP
U

Ut
iliz

at
io

nB3 CPU Util.

Figure 9. Throughput and CPU utilization for all three Kafka brokers in the cluster during the faulty
experiment with the MNIST dataset and 100 users. The darker grey denotes the period when the
broker is faulty.

Micro-FL efficiently manages federated learning with minimal resource utilization,
allowing a cost-efficient dynamic resource adjustment. As shown in Table 7, with the
increasing number of users, the average throughput of brokers increases linearly in both
healthy and faulty conditions. The most intensive experiments, involving 1000 users, show
a minimal change in the average throughput between healthy and faulty conditions for both
MNIST and CIFAR-10 workloads. Despite the increasing workload intensity, the increase
in CPU utilization is minimal. Even under the most demanding CIFAR-10 workload
with 1000 clients, the overall CPU utilization only reaches 38% and 43% in healthy and
faulty scenarios, respectively. These observations confirm that Micro-FL efficiently handles
federated learning even with minimal resource allocation, accommodating a dynamic
resource adjustment for cost-effective system design.

Table 7. Average throughput (MB/s) and CPU core utilization for different experiments.

Metrics Scenario
MNIST CIFAR-10

100 500 1000 100 500 1000

Throughput
Healthy 1.12 5.43 10.28 2.83 17.52 35.59
Faulty 1.45 6.26 11.06 3.18 17.60 35.76

CPU
Healthy 0.17 0.54 0.74 0.23 0.61 0.76
Faulty 0.24 0.57 0.85 0.29 0.55 0.87

7. Conclusions

This paper identifies the shortcomings of traditional centralized server designs for fed-
erated learning, highlighting the need for improved fault tolerance, scalability, and resource
management. It introduces Micro-FL, a microservices-based, fault-tolerant system design
uniquely created for centralized federated learning setups. The empirical performance
analysis of Micro-FL, conducted across varying user counts and two different workloads,
showcased its ability to seamlessly manage faults while ensuring an uninterrupted fed-
erated learning process. The proposed design facilitates dynamic resource allocation,

Future Internet 2024, 1, 0 18 of 20

promoting efficient computational resource management, and represents a significant
advancement towards more resilient and efficient system designs in federated learning.
Possible directions for future research include the optimization of the communications of
federated learning systems using message compression and aggregation techniques that
leverage message queuing systems like Kafka to decrease the aggregation execution time.

Author Contributions: Conceptualization, M.S., P.M. and C.-P.B.; methodology, M.S., P.M. and
C.-P.B.; software, M.S.; validation, M.S.; formal analysis, M.S.; investigation, M.S.; resources, P.M.;
data curation, M.S.; writing—original draft preparation, M.S.; writing—review and editing, P.M.
and C.-P.B.; visualization, M.S.; supervision, P.M. and C.-P.B.; project administration, P.M.; funding
acquisition, P.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Government of Alberta under the Major Innovation
Fund, project RCP-19-001-MIF and by the Natural Sciences and Engineering Research Council
(NSERC) of Canada, project RGPIN-2017-05866.

Data Availability Statement: The data presented in this study is available on our Github repository
(https://github.com/asgaardlab/Micro-FL).

Acknowledgments: The authors would like to thank Google for supporting this research by providing
research credits to access the Google Cloud Platform (GCP).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Li, Z.; Sharma, V.; Mohanty, S.P. Preserving data privacy via federated learning: Challenges and solutions. IEEE Consum. Electron.

Mag. 2020, 9, 8–16.
2. Regulation, P. Regulation (EU) 2016/679 of the European Parliament and of the Council. Regulation 2016, 679, 2016.
3. California Privacy Rights Act: Californians for consumer privacy, 2021. https://www.caprivacy.org/ (accessed on 21 February

2024).
4. Yang, Q.; Liu, Y.; Cheng, Y.; Kang, Y.; Chen, T.; Yu, H. Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 2019, 13, 1–207.
5. McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from

Decentralized Data. arXiv 2016, arXiv:1602.05629.
6. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,

R.; et al. Advances and open problems in federated learning. Found. Trends Mach. Learn. 2021, 14, 1–210.
7. Li, Q.; Wen, Z.; Wu, Z.; Hu, S.; Wang, N.; Li, Y.; Liu, X.; He, B. A survey on federated learning systems: vision, hype and reality

for data privacy and protection. IEEE Trans. Knowl. Data Eng. 2021, 35, 3347–3366.
8. Chang, Y.; Fang, C.; Sun, W. A blockchain-based federated learning method for smart healthcare. Comput. Intell. Neurosci. 2021,

2021, 4376418,.
9. Wang, R.; Tsai, W.T. Asynchronous federated learning system based on permissioned blockchains. Sensors 2022, 22, 1672.
10. Wang, Y.; Zhou, J.; Feng, G.; Niu, X.; Qin, S. Blockchain assisted federated learning for enabling network edge intelligence. IEEE

Netw. 2022, 37, 96–102.
11. Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Blockchained on-device federated learning. IEEE Commun. Lett. 2019, 24, 1279–1283.
12. Chen, Q.; Wang, Z.; Zhou, Y.; Chen, J.; Xiao, D.; Lin, X. CFL: Cluster Federated Learning in Large-Scale Peer-to-Peer Networks.

In Proceedings of the Information Security: 25th International Conference, ISC 2022, Bali, Indonesia, 18–22 December 2022;
pp. 464–472.

13. Korkmaz, C.; Kocas, H.E.; Uysal, A.; Masry, A.; Ozkasap, O.; Akgun, B. Chain fl: Decentralized federated machine learning via
blockchain. In Proceedings of the 2020 Second International Conference on Blockchain Computing and Applications (BCCA),
Antalya, Turkey, 2–5 November 2020; pp. 140–146.

14. Tian, Y.; Guo, Z.; Zhang, J.; Al-Ars, Z. DFL: High-Performance Blockchain-Based Federated Learning. arXiv 2021,
arXiv:2110.15457.

15. Lo, S.K.; Lu, Q.; Zhu, L.; Paik, H.Y.; Xu, X.; Wang, C. Architectural patterns for the design of federated learning systems. J. Syst.
Softw. 2022, 191, 111357.

16. Vanhaesebrouck, P.; Bellet, A.; Tommasi, M. Decentralized collaborative learning of personalized models over networks. Artif.
Intell. Stat. 2017, 54, 509–517.

17. Lian, X.; Zhang, C.; Zhang, H.; Hsieh, C.J.; Zhang, W.; Liu, J. Can decentralized algorithms outperform centralized algorithms? a
case study for decentralized parallel stochastic gradient descent. Adv. Neural Inf. Process. Syst. 2017, 30, 5336–5346.

18. Stich, S.U. Local SGD converges fast and communicates little. arXiv 2018, arXiv:1805.09767.
19. Gao, W.; Zhao, Z.; Min, G.; Ni, Q.; Jiang, Y. Resource allocation for latency-aware federated learning in industrial internet of

things. IEEE Trans. Ind. Inform. 2021, 17, 8505–8513.

https://github.com/asgaardlab/Micro-FL
https://www.caprivacy.org/

Future Internet 2024, 1, 0 19 of 20

20. Khan, L.U.; Saad, W.; Han, Z.; Hossain, E.; Hong, C.S. Federated learning for internet of things: Recent advances, taxonomy, and
open challenges. IEEE Commun. Surv. Tutor. 2021, 23, 1759–1799.

21. Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S. Analyzing federated learning through an adversarial lens. Int. Conf. Mach.
Learn. 2019, 97, 634–643.

22. Tolpegin, V.; Truex, S.; Gursoy, M.E.; Liu, L. Data poisoning attacks against federated learning systems. In Proceedings of the
Computer Security—ESORICS 2020: 25th European Symposium on Research in Computer Security, ESORICS 2020, Guildford,
UK, 14–18 September 2020; Proceedings, Part I 25; pp. 480–501.

23. Shejwalkar, V.; Houmansadr, A. Manipulating the byzantine: Optimizing model poisoning attacks and defenses for federated
learning. In Proceedings of the NDSS, virtual, 21–25 February 2021.

24. Yang, J.; Zheng, J.; Baker, T.; Tang, S.; Tan, Y.a.; Zhang, Q. Clean-label poisoning attacks on federated learning for IoT. Expert Syst.
2023, 40, e13161.

25. Oishi, K.; Sei, Y.; Tahara, Y.; Ohsuga, A. Federated Learning Algorithm Handling Missing Attributes. In Proceedings of the 2023
IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), Bali, Indonesia, 28–30 November 2023;
pp. 146–151.

26. Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.C.; Yang, Q.; Niyato, D.; Miao, C. Federated learning in mobile edge
networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 2031–2063.

27. Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; Poor, H.V. Tackling the objective inconsistency problem in heterogeneous federated
optimization. Adv. Neural Inf. Process. Syst. 2020, 33, 7611–7623.

28. Nishio, T.; Yonetani, R. Client selection for federated learning with heterogeneous resources in mobile edge. In Proceedings of
the ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7.

29. Cho, Y.J.; Wang, J.; Joshi, G. Client selection in federated learning: Convergence analysis and power-of-choice selection strategies.
arXiv 2020, arXiv:2010.01243.

30. Fowler, M. Microservice Premium. Available online: https://martinfowler.com/bliki/MicroservicePremium.html (accessed on
21 February 2024).

31. Bjørndal, N.; Bucchiarone, A.; Mazzara, M.; Dragoni, N.; Dustdar, S.; Kessler, F.B.; Wien, T. Migration from monolith to
microservices: Benchmarking a case study. Tech. Rep. 2020.DOI: 10.13140/RG.2.2.27715.14883.

32. Fowler, M. Microservices. Available online: https://martinfowler.com/articles/microservices.html (accessed on 21 February
2024).

33. Richardson, C. Microservices pattern: Monolithic Architecture Pattern. Available online: https://microservices.io/patterns/
monolithic.html (accessed on 21 February 2024).

34. Baboi, M.; Iftene, A.; Gîfu, D. Dynamic microservices to create scalable and fault tolerance architecture. Procedia Comput. Sci.
2019, 159, 1035–1044.

35. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices: yesterday, today, and
tomorrow. Present Ulterior Softw. Eng. 2017, pp. 195–216.

36. Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2.
37. Kubernetes. Production-Grade Container Orchestration. Available online: https://kubernetes.io (accessed on 21 February 2024).
38. Qi, Y.; Hossain, M.S.; Nie, J.; Li, X. Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future

Gener. Comput. Syst. 2021, 117, 328–337.
39. Wu, X.; Wang, Z.; Zhao, J.; Zhang, Y.; Wu, Y. FedBC: Blockchain-based decentralized federated learning. In Proceedings of the

2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 27–29 June
2020; pp. 217–221.

40. Google. Tensorflow Federated. Available online: https://www.tensorflow.org/federated (accessed on 21 February 2024).
41. Fate. An Industrial Grade Federated Learning Framework. Available online: https://fate.fedai.org (accessed on 21 February

2024).
42. Baidu. Baidu PaddlePaddle. Available online: http://research.baidu.com (accessed on 21 February 2024).
43. OpenMined. A World Where Every Good Question Is Answered. Available online: https://www.openmined.org (accessed on 21

February 2024).
44. Sherpa. Privacy-Preserving Artificial Intelligence to Accelerate Your Business. Available online: https://sherpa.ai (accessed on

21 February 2024).
45. Caldas, S.; Duddu, S.M.K.; Wu, P.; Li, T.; Konečnỳ, J.; McMahan, H.B.; Smith, V.; Talwalkar, A. Leaf: A benchmark for federated

settings. arXiv 2018, arXiv:1812.01097.
46. Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Parcollet, T.; de Gusmão, P.P.; Lane, N.D. Flower: A friendly federated learning research

framework. arXiv 2020, arXiv:2007.14390.
47. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure

aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1175–1191.

48. Bell, J.H.; Bonawitz, K.A.; Gascón, A.; Lepoint, T.; Raykova, M. Secure single-server aggregation with (poly) logarithmic overhead.
In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, 9–13
November 2020; pp. 1253–1269.

https://martinfowler.com/bliki/MicroservicePremium.html
http://dx.doi.org/10.13140/RG.2.2.27715.14883
https://martinfowler.com/articles/microservices.html
https://microservices.io/patterns/monolithic.html
https://microservices.io/patterns/monolithic.html
https://kubernetes.io
https://www.tensorflow.org/federated
https://fate.fedai.org
http://research.baidu.com
https://www.openmined.org
https://sherpa.ai

Future Internet 2024, 1, 0 20 of 20

49. Grafberger, A.; Chadha, M.; Jindal, A.; Gu, J.; Gerndt, M. FedLess: Secure and Scalable Federated Learning Using Serverless
Computing. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December
2021; pp. 164–173.

50. Jayaram, K.; Muthusamy, V.; Thomas, G.; Verma, A.; Purcell, M. Lambda FL: Serverless Aggregation For Federated Learning. In
Proceedings of the International Workshop on Trustable, Verifiable and Auditable Federated Learning, Vancouver, BC, Canada,
1 March 2022; p. 9.

51. He, C.; Li, S.; So, J.; Zeng, X.; Zhang, M.; Wang, H.; Wang, X.; Vepakomma, P.; Singh, A.; Qiu, H.; et al. Fedml: A research library
and benchmark for federated machine learning. arXiv 2020, arXiv:2007.13518.

52. Nandi, A.; Xhafa, F.; Kumar, R. A Docker-based federated learning framework design and deployment for multi-modal data
stream classification. Computing 2023, 105, 2195–2229.

53. Kim, J.; Kim, D.; Lee, J. Design and Implementation of Kubernetes enabled Federated Learning Platform. In Proceedings of the
2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of
Korea, 20–22 October 2021; pp. 410–412.

54. Zhuang, W.; Gan, X.; Wen, Y.; Zhang, S. Easyfl: A low-code federated learning platform for dummies. IEEE Internet Things J. 2022,
9, 13740–13754.

55. Quan, P.K.; Kundroo, M.; Kim, T. Experimental Evaluation and Analysis of Federated Learning in Edge Computing Environments.
IEEE Access 2023, 11, 33628–33639.

56. Weber, N.; Holzer, P.; Jacob, T.; Ramentol, E. Fed-DART and FACT: A solution for Federated Learning in a production environment.
arXiv 2022, arXiv:2205.11267.

57. Kafka on Kubernetes in a few minutes. Available online: https://strimzi.io (accessed on 21 February 2024).
58. Mellor, P. Optimizing Kafka Broker Configuration. Available online: https://strimzi.io/blog/2021/06/08/broker-tuning/

(accessed on 21 February 2024).
59. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324.
60. Krizhevsky, A.; Hinton, G. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.
61. A Powerful Chaos Engineering Platform for Kubernetes: Chaos Mesh. Available online: https://chaos-mesh.org (accessed on 21

February 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://strimzi.io
https://strimzi.io/blog/2021/06/08/broker-tuning/
https://chaos-mesh.org

	Introduction
	Background
	Federated Learning
	Microservices

	Related Work
	Micro-FL
	Micro-FL workflow
	Framework Design

	Methodology
	Deploying the Micro-FL Framework
	Generating Clients
	Injecting Faults
	Monitoring and Evaluating the Performance
	Federated Learning Performance Metrics
	Software Performance Metrics

	Results
	Federated Learning Performance
	Software Performance Analysis

	Conclusions
	References

