
Noname manuscript No.
(will be inserted by the editor)

Bridging the language gap: an empirical study of
bindings for open source machine learning libraries
across software package ecosystems

Hao Li · Cor-Paul Bezemer

Received: date / Accepted: date

Abstract Open source machine learning (ML) libraries enable developers to
integrate advanced ML functionality into their own applications. However,
popular ML libraries, such as TensorFlow, are not available natively in all
programming languages and software package ecosystems. Hence, developers
who wish to use an ML library which is not available in their programming lan-
guage or ecosystem of choice, may need to resort to using a so-called binding
library (or binding). Bindings provide support across programming languages
and package ecosystems for reusing a host library. For example, the Keras
.NET binding provides support for the Keras library in the NuGet (.NET)
ecosystem even though the Keras library was written in Python. In this pa-
per, we collect 2,436 cross-ecosystem bindings for 546 ML libraries across 13
software package ecosystems by using an approach called BindFind, which can
automatically identify bindings and link them to their host libraries. Further-
more, we conduct an in-depth study of 133 cross-ecosystem bindings and their
development for 40 popular open source ML libraries. Our findings reveal that
the majority of ML library bindings are maintained by the community, with
npm being the most popular ecosystem for these bindings. Our study also
indicates that most bindings cover only a limited range of the host library’s
releases, often experience considerable delays in supporting new releases, and
have widespread technical lag. Our findings highlight key factors to consider
for developers integrating bindings for ML libraries and open avenues for re-
searchers to further investigate bindings in software package ecosystems.

Keywords Software engineering for machine learning · Machine learning for
software engineering · Software package ecosystems · Cross-ecosystem library
usage

Hao Li and Cor-Paul Bezemer
Analytics of Software, GAmes And Repository Data (ASGAARD) Lab
University of Alberta, Edmonton, Alberta, Canada
E-mail: {li.hao, bezemer}@ualberta.ca

2 Hao Li, Cor-Paul Bezemer

1 Introduction

Machine learning (ML) has become extremely popular in the last decade.
Nowadays, there exist many ML applications in our daily lives, such as email
spam filters, recommendation systems, and voice assistants. To provide ML
features in an application, most developers rely on well-developed open source
ML libraries, such as TensorFlow (Abadi et al., 2016) or PyTorch (Paszke
et al., 2019). These open source ML libraries provide easy-to-use interfaces
for software developers to use ML techniques in their projects. However, these
libraries often target only one programming language and publish to one soft-
ware package ecosystem. For example, scikit-learn (Pedregosa et al., 2011),
a popular ML library which provides various ML algorithms, is written in
Python and publishes to PyPI. Thus, Python developers can directly use the
published scikit-learn package through PyPI but developers in other program-
ming languages cannot use this library as easily.

Reusing existing libraries is a common practice in open source communi-
ties (Heinemann et al., 2011; Zaimi et al., 2015), as it can provide economic
benefits by improving software quality and development productivity (Barros-
Justo et al., 2018; Mohagheghi and Conradi, 2007). However, reusing libraries
across programming languages is challenging due to programming language
barriers. There exist several workarounds that allow a developer to use a li-
brary that was not written in their preferred language. First, they could choose
an alternative but similar library that is written in their preferred language.
However, such a similar library may not exist, and even if it does, it may only
provide a subset of the required functionality. Another workaround is to de-
velop the library from scratch, but this approach is error-prone and requires
a large amount of work. Given the complexity of most ML libraries which
require extensive expertise for development and maintenance, developing ML
libraries from scratch in different programming languages is often impractical.

Bindings have emerged as a practical solution for reusing libraries across
different programming languages. These bindings can act as wrapper libraries
that convert interface calls, handle data type translations, and manage re-
source allocations. They typically rely on foreign function interfaces (FFIs) or
specialized tools to interact with the original library, referred to as the host
library. For example, the Rust programming language provides an FFI1 to
interact with C libraries, while tools like SWIG (Simplified Wrapper and In-
terface Generator)2 support calling C/C++ libraries from various languages
such as Python and JavaScript. Through bindings, developers can reuse the
functionality of the host libraries without having to develop them from scratch.

Given the unique challenges and importance of ML libraries, it is crucial
to investigate the prevalence and distribution of bindings specifically in this
context. The prevalence of bindings refers to the number of available bind-
ings for ML libraries in software package ecosystems, while the distribution of

1 https://doc.rust-lang.org/rust-by-example/std_misc/ffi.html
2 https://www.swig.org

https://doc.rust-lang.org/rust-by-example/std_misc/ffi.html
https://www.swig.org

Bindings for machine learning libraries across package ecosystems 3

bindings refers to how these bindings are spread across these ecosystems. To
enable large-scale analysis of bindings and their host libraries, we introduce an
approach called BindFind for automatically identifying bindings and extract-
ing the names of the host libraries, which we refer to as host names. Using
BindFind, we conduct a comprehensive investigation into open source ML li-
braries and their bindings across the ecosystems of 13 programming languages.
Specifically, we seek to answer the following research questions (RQs):

RQ1. What is the prevalence of bindings for ML libraries in software
package ecosystems, and how effective is BindFind in identify-
ing them?
Understanding the prevalence of bindings informs developers about
the option of reusing ML libraries in their preferred programming lan-
guages, while also providing researchers with valuable data for further
study. We found that bindings and their host names can be very ac-
curately identified in software package ecosystems using BindFind. We
identified 2,436 bindings for 546 ML libraries across 13 software package
ecosystems.

RQ2. How are ML libraries and their bindings distributed across
ecosystems?
Analyzing the distribution of bindings reveals popular ecosystems and
common pairs of ecosystems that provide bindings for the same host
library. This information helps developers make informed choices about
ecosystem support and encourages cross-ecosystem integration. The
most frequent pair of ecosystems that provide bindings for the same
ML library is npm with PyPI. While PyPI is the most popular ecosys-
tem for ML libraries, npm is the most popular ecosystem for the bindings
of ML libraries.

RQ3. How are cross-ecosystem bindings for popular ML libraries
maintained?
Evaluating the maintenance quality of bindings highlights the risks and
challenges, guiding better maintenance practices and decisions. Cross-
ecosystem bindings often support a limited number of the host library’s
releases and suffer from high delays in supporting new releases, along
with considerable technical lag. The situation is worse for bindings that
are not maintained by the official library organizations.

The main contributions of this paper are as follows:

1. The first paper to study bindings for ML libraries within software package
ecosystems.

2. A replication package3 containing our dataset of 250,668 bindings (together
with their host names) identified by BindFind. In addition, the replication
package includes details on 546 ML libraries and their 2,436 bindings, as
well as the results of our analysis in which we matched 3,277 versions of
133 bindings for 40 popular ML libraries (including 3,785 tags).

3 https://doi.org/10.5281/zenodo.12746638

https://doi.org/10.5281/zenodo.12746638

4 Hao Li, Cor-Paul Bezemer

3. A framework for understanding how well the bindings of ML libraries are
maintained. Our findings offer a foundation for developers to make informed
decisions when selecting bindings.

Paper Organization. The rest of this paper is organized as follows. Section 2
gives background information about our study. Section 3 discusses related
work. Section 4 presents our methodology. Section 5 presents the findings of
our three RQs. Section 6 discusses the implications of our findings. Section 7
outlines threats to the validity of our study. Section 8 concludes the paper.

2 Background

In this section, we give background information about software package ecosys-
tems and cross-ecosystem bindings for ML libraries.

2.1 Software Package Ecosystems

Traditionally, developers of open source libraries published their source code in
a source code repository like Git (Chacon and Straub, 2014). Developers who
wish to use those libraries could then download them directly from the source
code repositories. However, developers had to resolve the library’s dependen-
cies and build the library manually. To help developers integrate a library more
easily, the releases of software libraries can be published to a software package
ecosystem. Open source libraries generally select a software package ecosystem
to publish their main package, making it the official distribution channel for
releases. Alternatively, open source libraries might continue to release versions
directly through their Git repositories.

Most modern programming languages come with an official package man-
ager and a package registry. This package manager, the package registry and
all the packages are the key components of a software package ecosystem.
Usually, a package manager helps developers to manage the dependencies of
their applications, for example, by downloading a specific version of a depen-
dency when the application is installed. In addition, package managers help
developers publish their applications to the software package ecosystem. Most
software package ecosystems of programming languages will provide a website
for developers to search and browse the information of stored packages. Some
examples of software package ecosystems are Maven for Java, PyPI for Python,
and npm for JavaScript.

2.2 Cross-Ecosystem Bindings for ML Libraries

According to ISO/IEC TR 10182 (International Organization for Standard-
ization, 2016), a language binding is defined as a specification that maps the

Bindings for machine learning libraries across package ecosystems 5

functional interface of a system facility (e.g., a software library) to a program-
ming language. In practice, bindings serve as bridges between different pro-
gramming languages, enabling software written in one language to use libraries
developed in another. For example, Tkinter4 provides a Python interface to the
well-known Tk GUI toolkit, which is implemented in C. In the context of ML,
libraries are often tailored to specific languages and ecosystems (Ben Braiek
et al., 2018), such as TensorFlow and PyTorch mainly target Python and
are distributed via PyPI. Through bindings, developers can use these state-of-
the-art ML libraries across languages and ecosystems. This can be achieved
through various mechanisms, including wrapper libraries that act as inter-
mediaries, software development kits (SDKs) that bundle libraries with tools
for development, or application programming interfaces (APIs) that facilitate
interaction between different software components.

In our study, we use the term cross-ecosystem bindings to refer to packages
that allow the host library to be utilized in other software package ecosystems.
For example, tensorflow in PyPI and tfjs in npm (Smilkov et al., 2019) are
cross-ecosystem bindings for the same ML library (TensorFlow), even though
they have different names and reside in different software package ecosys-
tems. Since tensorflow in PyPI and tfjs in npm are both maintained by the
official organization of the TensorFlow host library, we consider these two
bindings as officially-maintained bindings. Officially-maintained bindings are
those managed by the same organization that develops the host library, based
on the management and ownership of the binding’s source code repository
rather than the funding source. In contrast, community-maintained bindings
are managed by individuals or organizations that are not directly associated
with the host library’s official organization. For example, TensorFlow.NET in
NuGet is a community-maintained binding since its owner is different from that
of TensorFlow.

Host libraries and their cross-ecosystem bindings do not necessarily follow
the same release schedules and/or strategies. For instance, a cross-ecosystem
binding may choose to only support a portion of the releases of its host library.
Also, after the host library publishes a release, there may be a delay before
a cross-ecosystem binding supports that release (if at all). In addition, cross-
ecosystem bindings might lag in version compared to the latest release of the
host library.

3 Related work

In this section, we discuss prior empirical studies of ML libraries, and related
work on software ecosystems and foreign function interfaces.

4 https://docs.python.org/3/library/tkinter

https://docs.python.org/3/library/tkinter

6 Hao Li, Cor-Paul Bezemer

3.1 Empirical Studies of ML Libraries

The increasing popularity of ML has led to significant research interest in
understanding the development, usage patterns, and challenges of ML libraries.
However, there is a lack of research on the usage of ML bindings across different
programming languages. This is the first paper to focus on bindings for ML
libraries, which play a crucial role in bridging different programming languages
and enabling the wider adoption of ML libraries.

Dilhara et al. (2021) conducted a large-scale empirical study, revealing a
significant rise in ML library adoption and identifying common usage patterns
and challenges. Further analysis by Gao et al. (2024) focused on the supply
chain structure and evolution of the TensorFlow and PyTorch packages within
PyPI, uncovering domain specialization, community clusters, and the reasons
for packages leaving the supply chains.

Several studies focused on the problems that developers could face when
using ML libraries. Islam et al. (2019) mined Q&A of ten ML libraries on
StackOverflow, and reported that three types of problems occurred frequently
(i.e., type mismatch, data cleaning, and parameter selection). Wei et al. (2022)
introduced FIMAX to improve API recommendations for Python-based ML
libraries based on extracted questions from Stack Overflow related to six pop-
ular ML libraries. Lei et al. (2023) identified seven primary reasons why ML
projects built on TensorFlow and PyTorch often encounter compatibility is-
sues due to library version changes, causing code to fail in some projects even
when using the same library API.

Several researchers have conducted comparison studies of multiple ML li-
braries. Grichi et al. (2020) compared ten multi-language ML frameworks with
ten multi-language traditional systems and reported that maintainers of these
ML frameworks need more time to accept or reject a pull request than tradi-
tional systems. Guo et al. (2019) compared the development and deployment
processes of four ML libraries under the same configuration for training of the
same models. They found that using different ML libraries can lead to different
levels of accuracy. Han et al. (2020) collected projects that depend on PyTorch,
TensorFlow, and Theano on GitHub, and observed four frequent applications
(i.e., image and video, NLP, model theory, and acceleration). In addition, most
projects depend on these three libraries directly instead of transitively.

3.2 Software Ecosystems

“Software ecosystems” are studied from several angles and even using different
definitions (Franco-Bedoya et al., 2017; Manikas, 2016; Mens et al., 2014). The
“software package ecosystems” term covers a subset of the software ecosystems
term. In this paper, we study ML libraries that can be found across multiple
software package ecosystems. These package ecosystems have formal processes
for maintenance and official distribution channels for releases, aligning with the
focus of our study. Our paper is the first to focus on cross-ecosystem bindings.

Bindings for machine learning libraries across package ecosystems 7

Prior research has identified cross-ecosystem packages by finding those sharing
a common source code repository (Constantinou et al., 2018; Kannee et al.,
2023). These studies examined packages that are maintained within a sin-
gle repository but are distributed across multiple ecosystems. However, they
did not directly address the concept of bindings. While these studies might
have unintentionally included some officially-maintained bindings within the
same repository, they overlooked both community-maintained bindings and
officially-maintained bindings hosted in different repositories. Our findings in
Section 5.1 demonstrate that 94% of the ML libraries bindings are community-
maintained, underscoring a key difference in our work.

Many studies have focused on software package ecosystems. In our prior
work (Li et al., 2023), we studied the release-level deprecation mechanism in
Cargo (Rust) ecosystem and found that the deprecated releases propagate
through the dependency network and lead to broken releases. German et al.
(2013) mined packages in CRAN and reported that most dependencies point to
a core set of packages in the ecosystem. This phenomenon was also observed in
another active software package ecosystem – npm (Wittern et al., 2016). Cogo
et al. (2021) studied dependency downgrades in npm and found three reasons
behind the downgrades: defects, unexpected changes, and incompatibilities.
Constantinou and Mens (2017a,b) studied social aspects in ecosystems and
found that the developers are more likely to abandon an ecosystem if they
do not participate in the community, and the Ruby ecosystem is being aban-
doned. Kula et al. (2018) proposed a model for visualizing dependencies in
ecosystems, and show that CRAN packages tend to use the latest releases, but
Maven packages stay with the older versions. Decan and Mens (2020) investi-
gated package releases in three software package ecosystems and observed that
most pre-releases do not become ≥ 1.0.0 releases. Moreover, software package
ecosystems have different practices, policies, and tools for handling breaking
changes (Bogart et al., 2016, 2021).

In addition, researchers studied other types of software ecosystems. Blincoe
et al. (2015, 2019) proposed a reference coupling method to identify software
ecosystems in GitHub as well as the dependencies in the ecosystems. Osman
and Baysal (2021) identified the Bitcoin software ecosystem in GitHub and
assessed it as a healthy ecosystem. Furthermore, many researchers studied the
health of software ecosystems (Jansen, 2014; da Silva Amorim et al., 2016).
Kula and Robles (2019) investigated four abandoned software ecosystems and
observed that all these ecosystems had a successor or their components were
adopted by other systems. Bavota et al. (2013) found that projects in the
Apache ecosystem get updates when the dependencies published releases for
breaking changes or bug fixes. de Souza et al. (2016) studied social aspects
in proprietary mobile software ecosystems and observed that most developers
chose a specific ecosystem based on others’ recommendation. Researchers also
studied information security and business factors in mobile software ecosys-
tems (Steglich et al., 2020a,b).

8 Hao Li, Cor-Paul Bezemer

3,277 versions
& 3,785 tags

Extract versions of
bindings for popular ML

libraries
Libraries.io:

22,457,711 versions
& 71,549,079 tags

Select non-toy
ML repositories

4.2 Collecting Bindings for Open Source ML Libraries

Libraries.io:
37,702,060
repositories

Binding classification and
host name extraction

4.1 Collecting Open Source ML Repositories

Libraries.io:
2,575,965 packages

Select popular ML
libraries and their

bindings

40 popular ML
libraries & 133

bindings

Identify bindings for ML
libraries

546 ML libraries
& 2,436 bindings

RQ1. How effective is BindFind for
identifying bindings, and what are
the identified bindings for ML
libraries?

RQ2. How are ML libraries and
their bindings distributed across
ecosystems

RQ3. How are cross-ecosystem
bindings for popular ML libraries
maintained?

4.3 Collecting Releases of Popular ML Libraries and Their Bindings

11,763 ML
repositories

250,668 bindings and
their host names

Fig. 1: Overview of our methodology.

3.3 Foreign Function Interfaces

Foreign function interfaces (FFI) bridge the gap between different program-
ming languages and allow developers to reuse libraries written in other lan-
guages. To verify the correctness of existing bindings, Furr and Foster (2008)
presented a static checking system that analyzes both bindings and their host
library. In addition, Lee et al. (2010) built bug detection tools for the FFI in
Jave and Python by performing dynamic analysis. Nakata et al. (2011) catego-
rized link models and fault models of FFI and proposed a logging framework
to track the information flow for each model.

Moreover, wrapping up a function to call a library from another program-
ming language is not always applicable, Chiba (2019) proposed a framework
based on code migration to solve this problem. Besides writing the codes of
FFI manually, Finne et al. (1998) used an interface definition language to allow
Haskell to communicate with both C and COM. In addition, Reppy and Song
(2006) developed a tool to generate foreign interfaces for high-level languages
to use the libraries written in C.

Bindings for machine learning libraries across package ecosystems 9

Table 1: Overview of the Libraries.io dataset

(a) Repositories and tags in Git hosts

Platform # Repos # Tags

GitHub 36,567,566 58,296,891
GitLab 864,563 12,248,518
Bitbucket 269,931 1,003,670

Total 37,702,060 71,549,079

(b) Packages and versions in software package ecosystems

Ecosystem Language # Packs # Versions

npm JavaScript 1,277,221 11,400,714
Packagist PHP 313,575 1,766,576
PyPI Python 232,050 1,752,770
NuGet C# 199,671 2,445,003
Maven Java 184,890 2,799,513
RubyGems Ruby 161,650 1,055,874
CocoaPods Objective-C 68,085 365,782
CPAN Perl 37,496 290,847
Cargo Rust 35,695 195,011
Clojars Clojure 24,295 116,945
CRAN R 16,710 94,716
Hackage Haskell 14,484 98,572
Pub Dart 10,143 75,388

Total 2,575,965 22,457,711

4 Methodology

In this section, we introduce the methodology of our study on popular ML
libraries and their cross-ecosystem bindings. Figure 1 gives an overview of our
methodology.

4.1 Collecting Open Source ML Repositories

We used the Libraries.io dataset (Katz, 2020) which was updated on Jan-
uary 12, 2020 as our primary data source. This dataset contains informa-
tion (e.g., tags, owners, keywords) on 37,702,060 repositories from three promi-
nent Git hosting services. These services host the actual code of open source
ML libraries and facilitate version control, developer collaboration, and other
functions. Since these hosts are widely used, they may also contain personal
projects, documentation, and experimental code. Table 1 outlines the distri-
bution of repositories and tags among these Git hosts.

Following the keyword-matching approach proposed by Ben Braiek et al.
(2018) to extract ML projects from GitHub, we employed a similar approach to
identify ML repositories. This approach involved scanning the “Description”
and “Keywords” fields of repositories in the dataset for relevant keywords. The
keywords included:

10 Hao Li, Cor-Paul Bezemer

“machine learning”, “deep learning”, “statistical learning”, “neural net-
work”, “supervised learning”, “unsupervised learning”, “reinforcement
learning”, and “artificial intelligence.”

We crafted regular expressions to accommodate variations in keyword for-
matting, including the presence of underscores, hyphens, and commas (e.g.,
“machine learning”). To ensure we selected representative repositories, we fil-
tered out those with fewer than 5 stars, marked as inactive in the “Status”
field, or indicated as forks. We chose the same cut-off of 5 stars as previous
studies (Bernardo et al., 2024; Kochanthara et al., 2022; OBrien et al., 2022;
Song et al., 2024) which have shown this threshold to be effective. Ultimately,
we extracted 11,763 ML repositories from the dataset.

4.2 Collecting Bindings for Open Source ML Libraries

The Libraries.io dataset includes information (e.g., released versions, cre-
ation dates, dependencies) on 4,612,919 packages from 38 software package
ecosystems. As described in Section 2, ML libraries typically have their source
code managed on Git hosts and publish packages to these ecosystems. Our
analysis focused on 13 selected ecosystems, excluding ecosystems that: (1) fo-
cus on a specific domain, such as Sublime and WordPress, (2) those with a very
small number of packages, such as Shards (33 packages) and PureScript (384
packages), and (3) those that do not store information about releases, such as
Go. Also, we excluded ecosystems that contain duplicated packages of other
ecosystems, for example, most packages in Bower can be found in npm. Table 1
shows the supported programming language, the number of packages, and the
number of releases in these 13 ecosystems.

4.2.1 Binding classification and host name extraction

To automatically identify bindings in package ecosystems and extract their
corresponding host names, we propose BindFind. BindFind employs natural
language processing (NLP) techniques, specifically leveraging BERT (Bidi-
rectional Encoder Representations from Transformers) models (Devlin et al.,
2019). As shown in Figure 2, we conceptualize the problem as an extractive
question-answering (QA) task, akin to the methodology used in the Stanford
Question Answering Dataset (SQuAD) v2.0 (Rajpurkar et al., 2018). In this
framework, the description of a package serves as the context for querying the
model about the package’s host name. This description specifically refers to
the textual summary or overview provided by the package ecosystem in the
Libraries.io dataset (Katz, 2020). For instance, it can be the “description”

Bindings for machine learning libraries across package ecosystems 11

fields in Maven and RubyGems.5 In other ecosystems, this information might be
found in the “readme” section of NuGet6 or the short description of PyPI.7

The BERT-like model determines the precise locations (i.e., the start and
end positions) of the host name within the given context. Notably, all the
inputs are tokenized before being fed into the model, and the start and end
positions refer to the tokens instead of the original input. If the start and
end positions point to the [CLS] token, or if the positions are invalid (e.g.,
the start position is after the end position), we conclude that the model did
not identify the repository as a binding. This approach adeptly handles both
scenarios where questions are answerable and unanswerable, reflecting real-
world scenarios where some packages might not be bindings and thus not have
a host name to extract.

Studied models. We selected several variations of BERT models, including the
original BERT (Devlin et al., 2019), DistilBERT (Sanh et al., 2019), AL-
BERT (Lan et al., 2020), and RoBERTa (Liu et al., 2019). These models were
chosen for their proven efficacy in QA benchmarks (Rajpurkar et al., 2016,
2018).

Data preparation. We manually labeled 2,546 packages to determine whether
they are bindings and, if so, to identify their host names. The dataset con-
tained 2,054 non-bindings (80.7%) and 492 bindings (19.3%). To ensure a fair
evaluation, we balanced the validation and test sets by randomly selecting an
equal number of bindings and non-bindings (50% each). This approach en-
sures that performance metrics are not skewed by the imbalanced nature of
the dataset. Both the validation and test sets were balanced, each containing
100 samples with an equal distribution of 50 bindings and 50 non-bindings.
The remaining 2,346 samples (392 bindings and 1,954 non-bindings) formed
the training set. During the training process, we trained the studied models
on the training set and used the validation set for hyperparameter tuning and
model selection. The test set was reserved for the final evaluation of model
performance.

Evaluation metrics. To assess the effectiveness of BindFind, we used the F1
score, precision, and recall (Godbole and Sarawagi, 2004) to evaluate the
performance of classifying whether a package is a binding. For the extraction
of host names within identified bindings, we applied exact match (EM) ac-
curacy and (macro-average) F1 score specific to QA tasks (Rajpurkar et al.,
2018). EM is a strict metric where any deviation from the exact answer results
in a score of 0 for that sample. The F1 score evaluates performance by con-
sidering predictions and ground truths as collections of tokens. The reported
results are averaged over all of the samples.

5 Examples: https://search.maven.org/artifact/de.vorb/jtesseract/0.0.4/jar and
https://rubygems.org/gems/ruby-opencv/versions/0.0.18

6 https://www.nuget.org/packages/Keras.NET
7 https://pypi.org/project/opencv-python

https://search.maven.org/artifact/de.vorb/jtesseract/0.0.4/jar
https://rubygems.org/gems/ruby-opencv/versions/0.0.18
https://www.nuget.org/packages/Keras.NET
https://pypi.org/project/opencv-python

12 Hao Li, Cor-Paul Bezemer

BERT-Like Model

Project Description:
Rust language bindings for TensorFlow

Feed Forward Neural Network

Start

End

[CLS] Token 1 Token K Rust bindings for T ensor Flow[SEP]...

Fixed Question:
What is the host name?

Rust bindings for T ensor Flow

Rust bindings for T ensor Flow

[CLS] Token 1 Token K [SEP]

[CLS] Token 1 Token K [SEP]

...

...

Fig. 2: The model structure of BindFind for binding classification and host
name extraction, illustrated using an example.

EM =
Number of exact matches

Number of examples that are bindings
(1)

F1 =
2× Precision×Recall

Precision+Recall
(2)

where

Precision =
Number of accurately identified tokens

Number of tokens in the prediction
(3)

Recall =
Number of accurately identified tokens

Number of tokens in the ground truth
(4)

4.2.2 Identify bindings for ML libraries

We processed 2,575,965 packages from the 13 studied software package ecosys-
tems and identified a total of 250,668 bindings with their corresponding host
names. To identify bindings for the 11,763 ML repositories, we deployed a
string-matching algorithm that compared the names of ML repositories with
the extracted host names, resulting in 3,360 matches between bindings and

Bindings for machine learning libraries across package ecosystems 13

983 ML repositories. We manually reviewed these matches, removing reposito-
ries containing only tutorials or experimental code, and filtering out duplicate
repositories of the same ML library. After refinement, we identified a total of
2,436 bindings for 546 ML libraries.

It is important to note that some of the 546 ML libraries might publish of-
ficial packages into ecosystems. These published packages can be either normal
packages or bindings (already identified by BindFind). For example, PyTorch
publishes its main package torch in PyPI,8 which is not considered a binding
as stated in their documentation (PyTorch, 2022). To study the distribution
of ML libraries and their bindings across ecosystems in RQ2, we included of-
ficially published packages alongside identified bindings. We used two criteria:
(1) they specified the ML library’s Git repository as their source code repos-
itory, and (2) they shared the same homepage URL as the ML library. Using
these criteria, we identified 775 packages officially published packages by 202
out of the 546 ML libraries.

4.3 Collecting Releases of Popular ML Libraries and Their Bindings

To focus our analysis in RQ3 on widely adopted libraries, we filtered the 546
ML libraries with 2,436 bindings based on the number of stars and selected 127
ML libraries with more than 1,000 stars. Though we acknowledge that stars
do not provide a complete picture of real-world usage, they are commonly
seen as a proxy for the popularity of a project within the software engineering
domain (Borges et al., 2016; Fang et al., 2022; Han et al., 2019; Wolter et al.,
2023; Xia et al., 2023). For instance, TensorFlow ’s binding tfjs has gained over
17,000 stars on GitHub,9 suggesting significant attention from developers. For
further analysis, we manually reviewed these libraries and their bindings to
perform several refinements. We excluded supporting packages for the actual
bindings within the same ecosystem, along with bindings that are either work-
in-progress or have only placeholder/invalid releases, e.g., OpenCV ’s binding
in Pub.10 Following these steps, we obtained a final set of 40 popular ML
libraries (as shown in Table 2) with 133 bindings.

5 Results

This section presents the results of our three RQs. For each RQ, we present
the motivation, approach, and findings.

8 https://pypi.org/project/torch
9 https://github.com/tensorflow/tfjs

10 https://pub.dev/packages/flutter_opencv_plugin

https://pypi.org/project/torch
https://github.com/tensorflow/tfjs
https://pub.dev/packages/flutter_opencv_plugin

14 Hao Li, Cor-Paul Bezemer

Table 2: Basic information about the popular ML libraries that have cross-
ecosystem bindings.

ML library # Eco # Stars Description

Alluxio 2 4,449 Data orchestration for ML in the cloud
BerryNet 1 1,150 Deep learning gateway on Raspberry Pi
bert-as-service 2 6,379 Sentence vector mapping with BERT
BigDL 2 3,177 Distributed deep learning library for Apache Spark
Bullet 2 5,798 Physics simulation for RL
Caffe 3 29,655 Deep learning library
CatBoost 2 3,760 Gradient Boosting on Decision Trees
Deeplearning4j 2 11,328 Deep learning library for Java
DeepSpeech 4 12,710 A speech-to-text engine based on TensorFlow
dlib 5 8,412 A toolkit for real-world ML applications
DyNet 2 2,867 Dynamic Neural Network Toolkit
H2O 3 4,513 A platform for distributed ML
ImageAI 2 4,252 A library for deep learning and computer vision
Keras 3 45,995 A framework to provide human-friendly APIs

based on TensorFlow
libpostal 6 2,171 An NLP library for address parsing and normaliz-

ing
LightGBM 3 10,242 A gradient boosting framework
MITIE 2 1,820 An NLP library for information extraction
MLflow 3 5,459 A ML lifecycle platform
mlpack 2 3,016 A library to provide ML algorithms
ncnn 1 7,930 Neural network inference
NLTK 3 8,498 An NLP library
NNPACK 1 1,085 Neural network acceleration
NNVM 1 1,586 Compiler for neural nets
ONNX Runtime 4 1,561 A runtime engine for ONNX models
OpenAI Gym 7 19,351 A toolkit for developing and comparing RL algo-

rithms
OpenCV 10 41,126 A computer vision library
OpenFace 1 12,847 Face recognition with deep learning
OpenPose 1 15,532 Multi-person keypoint detection
Porcupine 3 1,853 A library for lightweight wake word detection
PredictionIO 8 12,226 A ML server for infrastructure management
PyTorch 5 35,004 A ML framework
Rasa 2 7,436 A ML framework for automating conversations

based on text and voice
scikit-learn 3 38,756 A framework to provide ML algorithms
Seldon Core 2 1,296 An MLOps framework based on Kubernetes
spaCy 2 15,161 An NLP library
TensorFlow 11 139,939 A ML framework
Tesseract OCR 8 32,078 An OCR engine that uses deep learning
Vowpal Wabbit 8 6,767 Techniques to solve interactive ML problems
Weld 2 1,261 A library for data analy
XGBoost 6 17,996 A gradient boosting framework

5.1 RQ1: What is the prevalence of bindings for ML libraries in software
package ecosystems, and how effective is BindFind in identifying them?

Motivation. Researchers have studied different aspects of open source ML li-
braries (Ben Braiek et al., 2018; Dilhara et al., 2021), but there is a gap in un-
derstanding the prevalence of bindings for these libraries. Bindings enable ML
library reuse across programming languages, facilitating broader ML integra-

Bindings for machine learning libraries across package ecosystems 15

Table 3: Performance comparison of BindFind with different BERT models in
bindings classification and host name extraction on the test set. (U: Uncased;
C: Cased; Prec: Precision; Rec: Recall)

Family Variant
Binding Classification Host Name Extraction

F1 Prec Rec F1 Exact Match

DistilBERT
Base (U) 0.903 0.977 0.840 0.806 0.780
Base (C) 0.936 1.000 0.880 0.802 0.740

BERT

Base (U) 0.925 1.000 0.860 0.770 0.760
Large (U) 0.925 1.000 0.860 0.799 0.760
Base (C) 0.947 1.000 0.900 0.803 0.760
Large (C) 0.936 1.000 0.880 0.767 0.720

ALBERT

Base 0.918 0.938 0.900 0.824 0.760
Large 0.925 1.000 0.860 0.818 0.800
XLarge 0.876 1.000 0.780 0.696 0.640
XXLarge 0.959 0.979 0.940 0.887 0.840

RoBERTa
Base 0.970 0.980 0.960 0.889 0.860
Large 0.969 1.000 0.940 0.869 0.840

tion in diverse projects. However, the absence of comprehensive tools for iden-
tifying bindings has been a major obstacle in this area of research. BindFind
fills this gap by offering a method for classifying bindings and extracting host
names, thereby enabling future research and practical applications. The find-
ings from this RQ will (1) inform developers about the availability of bindings
for ML libraries, (2) open new research opportunities for researchers to study
bindings in software ecosystems, and (3) provide a tool for repository hosting
platforms (e.g., GitHub) to discover bindings for assisting developers.

Approach. We conducted a comparative analysis of various BERT models as
described in Section 4.2. Subsequently, the most effective model was selected
and utilized by BindFind to perform inference across all the packages in the
13 studied software package ecosystems. The distinction between officially-
maintained and community-maintained bindings was established through an
automatic examination of their association with the host ML libraries. Bind-
ings sharing the same source code repository, organization name, or home-
page URL as the host ML library were categorized as officially-maintained.
Conversely, those lacking such affiliations were categorized as community-
maintained.

Findings. 5% of the ML repositories have bindings in software pack-
age ecosystems and a vast majority (94%) of them are community-
maintained bindings. We found that 5% (546 out of 11,763) of the ML
repositories are ML libraries with bindings in software package ecosystems.
Among the 2,436 identified bindings for these ML libraries, a staggering 94%
(2,292 out of 2,436) of the bindings are maintained by the community. Con-
versely, only 6% (144 out of 2,436) of the bindings are maintained by the official
organization. Notably, 58% (84 out of 144) of these officially-maintained bind-

16 Hao Li, Cor-Paul Bezemer

ings share the same source repository as their host ML libraries, while 42% (60
out of 144) are hosted under the same organizational umbrella but in separate
repositories. For instance, PyTorch has officially published a binding (PyTorch,
2021) in Cocoapods for iOS, and tfjs-node serves as an official binding for Ten-
sorFlow within the NPM ecosystem (Smilkov et al., 2019), with its source repos-
itory is maintained by the tensorflow organization on GitHub. Additionally,
we observed the transition of some community-maintained bindings to official
organizations, such as the Python binding for OpenCV (OpenCV, 2021).

BindFind, powered by the RoBERTa base model, demonstrates
exceptional performance in the tasks of binding classification and
host name extraction, achieving F1 scores of 0.970 and 0.889 re-
spectively. As illustrated in Table 3, the RoBERTa base model exhibits su-
perior performance in both the binding classification and host name extraction
tasks. Notably, all evaluated models achieved an F1 score above 0.870 in bind-
ing classification, indicating a generally high level of accuracy across different
architectures. Furthermore, the results demonstrate that larger models do not
always guarantee better performance. For instance, the BERT base (cased)
model outperforms its larger variant, and the RoBERTa base model surpasses
the RoBERTa large model in both tasks.

Takeaway of RQ1

Using BindFind, we found that 5% of the ML repositories have bindings
in software package ecosystems. BindFind demonstrated high effective-
ness in identifying bindings (with a 0.970 F1 score) and extracting their
host names (with a 0.889 F1 score).

5.2 RQ2: How are ML libraries and their bindings distributed across
ecosystems?

Motivation. Existing research shows that Python is the most popular language
for ML libraries (Ben Braiek et al., 2018), but it remains unclear which other
ecosystems provide good support for ML libraries through bindings. Also, we
aim to explore whether certain ecosystems or combinations of ecosystems are
favoured by these bindings in this RQ. By investigating the distribution of
bindings across ecosystems, we can identify patterns of ecosystem support
and cross-ecosystem interaction. The findings from this RQ will (1) provide
developers with insights into ecosystems that provide good support for ML
other than Python and (2) motivate researchers to further explore the adoption
of bindings for ML libraries across ecosystems.

Approach. We analyzed 2,436 bindings for 546 ML libraries, with a subset of
202 out of these 546 libraries having officially published packages (not bind-
ings) across ecosystems (as detailed in Section 4.2). Our analysis focused on
their distribution across 13 software package ecosystems. To better understand

Bindings for machine learning libraries across package ecosystems 17

1 2 3 4 5 6 7 8 9 10 11 12
Number of ecosystems

Fig. 3: The distribution of the number of software package ecosystems sup-
ported by ML libraries with bindings.

in which combinations of software package ecosystems these libraries reside,
we counted the ecosystem-pairs for each library. An ecosystem-pair is counted
for each pair of ecosystems supporting the same library. For example, if a li-
brary is supported in PyPI, npm, and NuGet, we count three ecosystem-pairs:
PyPI-npm, PyPI-NuGet, and npm-NuGet. If an ecosystem-pair appears more fre-
quently than others, it implies that those two ecosystems are more likely to be
supported together by ML libraries. The frequency of these ecosystem-pairs
reveals the prevalence of cross-ecosystem interactions, which is not appar-
ent when considering individual ecosystems alone. Prevalence ecosystem-pairs
demonstrate the flexibility developers have when switching between languages
to use ML libraries in their projects.

Findings. ML libraries with bindings typically span across a median
of two software package ecosystems. Our analysis revealed that ML li-
braries with bindings are typically supported across a median of two software
package ecosystems. As illustrated in Figure 3, 55% (302 out of 546) of the
studied ML libraries extend their reach by residing in multiple ecosystems.
For example, the NLP library spaCy has bindings available in both PyPI and
npm. Notably, the library with the broadest ecosystem presence is OpenCV
which is available in 12 different ecosystems, followed by TensorFlow which
is available in 11 ecosystems. Among the ML libraries with bindings that are
found in a single ecosystem (244 out of 546 libraries), 71% (174 out of 244)
consists of libraries with only community-maintained bindings, lacking official
packages or officially-maintained bindings. The remaining cases (70 out of 244)
comprise libraries that have officially-maintained bindings.

npm is the leading ecosystem for hosting bindings for ML li-
braries and the most common combination of bindings is npm with
PyPI. Regarding bindings for ML libraries, we found that 53% (292 out of
546) of the libraries have bindings in npm. This is closely followed by PyPI

in which bindings for 41% (225 out of 546) of the libraries are hosted. Fig-
ure 4 gives an overview of the ecosystem-pairs of ML libraries with bindings
across multiple ecosystems (302 out of 546). The PyPI-npm pair is identified
as the most prevalent combination, as it is supported by 139 out of 302 ML

18 Hao Li, Cor-Paul Bezemer

Pu
b

Cloja
rs

Coco
aPo

ds
CPA

N
CRA

N

Hack
ag

e
Mav

en np
m

Carg
o

Pac
kag

ist
NuG

et PyP
I

Clojars

CocoaPods

CPAN

CRAN

Hackage

Maven

npm

Cargo

Packagist

NuGet

PyPI

Rubygems

3

2 6

0 1 0

2 7 6 2

2 4 3 2 3

3 14 8 1 12 5

6 23 30 6 23 10 54

4 6 5 3 7 6 12 29

3 9 17 1 7 2 27 60 7

5 13 13 2 12 7 26 66 18 23

4 21 22 12 27 8 47 139 30 49 48

2 16 17 5 13 6 24 59 19 28 29 51
0

20

40

60

80

100

120

Nu
m

be
r o

f M
L

lib
ra

rie
s w

ith
 b

in
di

ng
s

Fig. 4: Combinations of software package ecosystems in which ML libraries
with bindings are available. The elements represent the number of libraries
that can be found in both ecosystems (i.e., ecosystems in the row and column).

libraries with bindings. One reason could be that Python is the most popular
language for ML development (Ben Braiek et al., 2018) and JavaScript has
been the most commonly used programming language (StackOverflow, 2023).
Hence, there could be a need for ML in npm, resulting in more support for such
bindings. Other notable ecosystem pairs include npm-Packagist, Cargo-PyPI,
and npm-Maven, reflecting a diverse landscape of ML library availability and
collaboration.

Official organizations behind ML libraries with bindings prefer
to focus on a single ecosystem, with PyPI being the most popular
choice. Among ML libraries with bindings, 43% (236 out of 546) of them
have official packages or officially-maintained bindings. When examining the
publication behavior of official organizations behind these 236 ML libraries, we
observed that 87% (205 out of 236) of the libraries prefer to focus on a single
ecosystem, with PyPI being the predominant choice (69%). This preference
aligns with prior research by Ben Braiek et al. (2018), which reports Python’s
dominance in ML development.

Takeaway of RQ2

55% of ML libraries with bindings are distributed across at least two
software package ecosystems, with npm being the most popular choice
for publishing these bindings. Moreover, the most popular combination
of ecosystems to support is PyPI and npm.

Bindings for machine learning libraries across package ecosystems 19

5.3 RQ3: How are cross-ecosystem bindings for popular ML libraries
maintained?

Motivation. The popularity of certain ML libraries has led to increased de-
velopment of bindings across software package ecosystems. However, the de-
velopment and maintenance practices for these bindings can be different from
their host libraries. If a binding only supports a small number of the releases
of its host library and has a high delay in getting an update, developers relying
on this binding may be forced to use outdated versions for extended periods.
This situation poses risks such as exposure to bugs and vulnerabilities present
in older versions. Without understanding the maintenance quality of these
bindings, developers face challenges regarding the integration of bindings. The
findings from this RQ will (1) help developers evaluate the maintenance qual-
ity of bindings for ML libraries when selecting bindings, (2) open new research
opportunities to explore factors affecting the maintenance of these bindings,
(3) guide ML package owners in improving support and communication strate-
gies for bindings, and (4) motive tool builders to create tools to support the
maintenance of these bindings.

Approach. For libraries that primarily distribute their packages within a sin-
gle software package ecosystem or designate a specific package as their main
release channel, we considered the versions of these packages as the library’s
releases. For instance, PyTorch adopts a “Python First” approach (PyTorch,
2022), positioning its torch package in PyPI not merely as a binding but as
the main package. On the other hand, for libraries like OpenPose, which do
not distribute packages through any specific package ecosystem,11 we relied
on source code repository tags as their releases. This method also applies to
bindings that span multiple ecosystems, particularly when no main package
is declared. In these cases, the source code repository tags often represent the
most reliable source of library releases, such as the tags for XGBoost.12

We assume a one-to-one mapping between the binding and the host library
versions. Bindings typically follow one of the following approaches: (1) in-
clude the source code of the corresponding host library version, (2) include
the pre-built binary of the corresponding host library version, or (3) down-
load and compile the corresponding host library version during installation.
For instance, the XGBoost binding package in CRAN13 follows the first ap-
proach by including the source code of a corresponding version of XGBoost.
OpenCV’s Python binding14 follows the second approach by including the
built OpenCV binaries for the corresponding version. Finally, TensorFlow’s
Rust binding15 follows the third approach by automatically downloading or
compiling a corresponding version of TensorFlow. Furthermore, some bindings

11 https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/1250
12 https://github.com/dmlc/xgboost
13 https://cran.r-project.org/web/packages/xgboost/index.html
14 https://github.com/opencv/opencv-python
15 https://github.com/tensorflow/rust

https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/1250
https://github.com/dmlc/xgboost
https://cran.r-project.org/web/packages/xgboost/index.html
https://github.com/opencv/opencv-python
https://github.com/tensorflow/rust

20 Hao Li, Cor-Paul Bezemer

No

Yes Find evidence
in README?

Find the binding
release in the

ecosystem

Download files of
this release from
the ecosystem

No

Yes Find evidence
in build files or test cas-

es (if available)?

Yes

No

Is there a link
to the repository of this

binding?

Find this specific
release in the

repository

Find evidence
in README?

No

Find evidence
in submodules or

CI/CD config?

YesFind evidence
in build files or test cas-

es (if available)?

Record the result

Not found

No

Record the result

Yes

Yes

No

Start

Fig. 5: The process of identifying which version of the host library is supported
by a specific binding version.

support developers in installing a specific version of the host library locally and
specifying this version when building or installing the binding. Subsequently,
we matched all releases of each binding with the corresponding host library
releases by searching for evidence of this matching in the following places of
the binding releases:

1. README: When the supported version of the host library is mentioned
explicitly.

2. Git Submodules (Chacon and Straub, 2014): When the source code
of the supported version of the host library is included as a submodule.

Bindings for machine learning libraries across package ecosystems 21

3. Build Files: When the supported version of the host library that is going
to be built for developers is mentioned explicitly, e.g., a binding might
indicate the supported version in CMakeLists.txt or Rakefile.

4. Test Cases: When the supported version of the host library is verified
explicitly by the tests.

5. Configurations of continuous integration or delivery (CI/CD):
When the supported version of the host library is indicated explicitly in
the configuration files, such as .travis.yml, to set up the CI/CD environ-
ment.

Figure 5 shows an overview of the identification process. For each release
of a cross-ecosystem binding, we inspected the README and downloaded
the files of this release from the software package ecosystem. If no evidence
could be found, we checked out the source code repository of this binding. To
locate the corresponding checkpoint (i.e., a Git commit) of a specific release
in the repository, we investigated all tags of the repository and extracted the
one that had the same version as the release of the binding. However, some
repositories do not have tags for published releases. In this case, we tracked the
modification history of the meta-data file (which stores the version number)
to locate the checkpoint. Some examples of meta-data files are package.json in
npm, setup.py in PyPI, and pom.xml in Maven. After locating the checkpoint
of the specific release, we inspected the files to find out which release of the
host library is supported. We performed this process for all releases of cross-
ecosystem bindings and matched them with the releases of the host library.
The matching results can be found in our replication package (Li and Bezemer,
2024).

To quantitatively assess the alignment between binding and host library
releases, we extracted the delay between the matched releases and the host
releases in days and calculated the coverage for each binding b in software
package ecosystem e as follows:

coveragee,b =
#matched host releasese,b

#releasehost,b
(5)

where the numerator is the number of host releases that are supported by
b and the denominator is the number of releases of the host library. We only
consider the releases of the host library that were published since the binding
started to provide support. The coverage of a binding b will be 100% if we can
find a matched binding release for every host release. If we cannot find any
matched release in b, the coverage will be 0%. The coverage metric captures
the overall support that a binding offers for an ML library. Figure 6 presents
three matching results, the denominators are 3 for all three examples and the
numerators are 3, 2, and 0 respectively. Hence, the coverage values for these
examples are 100%, 67%, and 0%. In addition, we investigated the technical
lag (Stringer et al., 2020; Zerouali et al., 2019) of the latest release of each
binding. Technical lag occurs when a binding does not support the most recent
version of its host library. For example, a major version lag exists when the

22 Hao Li, Cor-Paul Bezemer

1.0.0

1.1.0

1.2.0

0.1.0

0.2.0

0.3.0

0.4.0

0.5.0

1.0.0

1.1.0

1.2.0

0.1.0

0.2.0

0.3.0

0.4.0

0.5.0

1.0.0

1.1.0

1.2.0

0.1.0

0.2.0

0.3.0

0.4.0

0.5.0

host host hostbinding binding binding

(a) (b) (c)

Fig. 6: Three examples of matching binding releases and host releases: (a) all
host releases are supported by the binding; (b) 2 out of 3 host releases are
supported; (c) no host releases are supported.

latest version of a binding supports version 1.1.0 of its host library, but the
latest available version of the host library is 2.1.0. Similarly, minor and micro
version lags exist when there are discrepancies in the minor or micro version
numbers respectively.

Next, we compared our findings between officially-maintained bindings
and community-maintained bindings by performing the Mann-Whitney U test
(Mann and Whitney, 1947) at a significance level of α = 0.05 to determine
whether the differences are significant. Also, we computed Cliff’s delta d (Long
et al., 2003) effect size to quantify the difference. To explain the value of d, we
use the thresholds which are provided by Romano et al. (2006):

Effect size =

negligible, if |d| ≤ 0.147
small, if 0.147 < |d| ≤ 0.33
medium, if 0.33 < |d| ≤ 0.474
large, if 0.474 < |d| ≤ 1

(6)

Findings. While npm is the most popular ecosystem for cross-ecosystem
bindings of popular ML libraries, developers in PyPI are more likely
to find a matched release of a cross-ecosystem binding for popular
ML host libraries. We found that 48% of the popular ML libraries have
bindings in npm compared to 33% in PyPI. However, Figure 7 shows that PyPI
has the highest coverage among the 13 studied ecosystems, with a median
value of 46%. In contrast, other ecosystems have relatively small coverage val-
ues. We observed that the main reason for the low coverage of these bindings
is that they only provide support for a specific subset of the releases from

Bindings for machine learning libraries across package ecosystems 23

Cargo
Clojars

CocoaPods
CPAN

CRAN
Hackage

Maven npm
NuGet

Packagist Pub PyPI

Rubygems
Overall

Ecosystem

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
of

 c
ov

er
ag

e

Fig. 7: The distributions of the coverage of cross-ecosystem bindings for pop-
ular ML libraries across ecosystems.

their host libraries. For example, a binding of dlib in RubyGems has 13 releases
but only supports 2 out of 50 versions of the host library. Specifically, releases
1.0.0 to 1.0.3 of this binding support version v18.13 of the host library, then
it skipped nine versions (i.e., v18.14 to v19.3) of the host library and pub-
lished 9 releases to support v19.4. This phenomenon can also be found in other
bindings with low coverage. In addition, we noticed that the median coverage
values of CRAN, Hackage, npm, and Pub are below 5%. This phenomenon may be
attributed to a large portion of community-maintained bindings within these
ecosystems (e.g., 84% in npm), where many bindings stick with a single host
library version.

After a release of the ML library was published, their bindings
in PyPI and Maven received a corresponding update more quickly
than the ones in other software package ecosystems. Figure 8 shows
that bindings within the PyPI and Maven ecosystems tend to be updated to
match new releases of ML libraries more swiftly than those in other ecosystems,
with median delays of less than 7 days. In contrast, bindings in ecosystems like
Packagist and Hackage may experience median delays exceeding 365 days,
indicating a slower pace of alignment with host library updates.

Compared to community-maintained bindings for popular ML
libraries, the officially-maintained bindings have higher coverage,
shorter delays, and smaller technical lags. Among the 133 bindings for
the 40 popular ML libraries, 36 are officially-maintained bindings while 97 are
community-maintained bindings (27% versus 73%). Figure 9 shows that the
coverage of community-maintained bindings is mostly below 0.2 and the delays
with the host libraries are mostly between 29 and 275 days. In contrast, the
officially-maintained bindings have much more coverage (median of 11%) and
less delay (median of 34 days). The Mann-Whitney U test demonstrates sig-

24 Hao Li, Cor-Paul Bezemer

Cargo
Clojars

CocoaPods
CPAN

CRAN
Hackage

Maven npm
NuGet

Packagist Pub PyPI

Rubygems
Overall

Ecosystem

0.0

1.0

10.0

100.0

1000.0

Da
ys

 o
f d

el
ay

Fig. 8: The distributions of the delay between releases of popular ML host
libraries and their bindings.

Official Community
(a)

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
of

 c
ov

er
ag

e

Official Community
(b)

0.0
1.0

10.0

100.0

1000.0

Da
ys

 o
f d

el
ay

Fig. 9: Comparisons of the cross-ecosystem bindings for ML libraries which
are maintained by the official organization and the community: (a) the distri-
butions of the coverage; (b) the distributions of the delay between a release of
the host library and the corresponding release of the binding.

nificant differences in both coverage and delay distributions between officially-
maintained bindings and community-maintained bindings. In addition, the
values of Cliff’s Delta d are 0.475 and −0.819 respectively, indicating large
effect sizes. Furthermore, 45% of the officially-maintained bindings experience
zero technical lag, compared to 24% of community-maintained bindings. Al-
though officially-maintained bindings show lower proportions of major (21%
vs. 32%) and minor (27% vs. 40%) technical lags compared to community-
maintained bindings, they have a slightly higher proportion of micro lags (7%
vs. 4%).

Bindings for machine learning libraries across package ecosystems 25

69% of the cross-ecosystem bindings do not follow the version
numbers of their host library and 29% of cross-ecosystem bindings
do not specify the matching information anywhere. During the process
of matching binding releases with their host releases, we noticed that the ma-
jority (92 out of 133) of bindings do not reuse any version number from their
host libraries. This misalignment in version numbers could lead to confusion
for developers. Furthermore, our manual review process revealed that 29% (38
out of 133) of the bindings do not provide explicit matching information. Par-
ticularly, the absence of matching information in community-maintained bind-
ings (89% of those are without matching information) creates an additional
challenge, potentially forcing developers to resort to trial-and-error methods
to identify compatible versions.

Takeaway of RQ3

Generally, the release coverage of cross-ecosystem bindings for their
host library is low and the delay is large, with PyPI and Maven per-
forming better than other ecosystems. Officially-maintained bindings
for popular ML libraries offer significantly better coverage, faster up-
dates, and less technical lag than community-maintained alternatives.
However, 69% of bindings do not follow the version numbers of their
host libraries and 29% of bindings lack explicit version matching infor-
mation, posing challenges for developers.

6 Implications

In this section, we discuss the implications of our findings for developers,
owners of ML host libraries and their cross-ecosystem bindings, researchers,
tool builders, and repository hosting platforms.

6.1 Implications for Developers

Developers are not always limited to using the same source pro-
gramming language as a popular ML library when they wish to use
this library. PyPI is the most popular choice for ML libraries (Ben Braiek
et al., 2018) and developers in PyPI are more likely to find an ML library for
their own projects. However, developers might prefer to start a project in their
most familiar ecosystem. Our findings show that 5% of the ML repositories
are libraries that can be found in multiple ecosystems (Secion 5.1) and their
bindings spread across different ecosystems, with npm being the most popular
choice for bindings (Secion 5.2). Therefore, developers may find a binding of
their desired ML library in the chosen software package ecosystem. We suggest
that developers should put the choice of ecosystems into consideration before
starting a project.

26 Hao Li, Cor-Paul Bezemer

Developers should consider the number of supported releases and
the delay of getting a corresponding update when choosing the bind-
ing for an ML library. Usually, cross-ecosystem bindings for popular ML
libraries do not support all releases of their host library (Section 5.3). Our
findings show that it is not sufficient to look at the number of binding releases
only. Bindings with low coverage could publish many releases but only support
one or two versions of their host library. If developers are going to adopt such
a binding, they should consider that it might not support a needed version in
the future. For a binding with high coverage, developers should also consider
how long it takes to update for a version of their host library and whether
such delays are acceptable to them. By checking the maintenance history of
the chosen binding, developers can have an expectation about the binding and
consider whether they wish to adopt it or not.

6.2 Implications for ML Package Owners

Owners of cross-ecosystem bindings for popular ML libraries should
explicitly indicate the matching between releases of the binding and
releases of the host library. In Section 5.3, we found that some software
package ecosystems have median coverage rates below 5% for bindings of popu-
lar ML host libraries. Such a low coverage indicates that either a small portion
of the host releases are supported, or it is not possible to find out which ver-
sions are supported (even after our thorough investigation). In addition, we
noticed that only 31% of cross-ecosystem bindings follow the version numbers
of their host library. We recommend that owners of cross-ecosystem bind-
ings use the same version number as their host libraries and indicate that in
their README. For example, the binding of mlpack in CRAN mentions that
“the version number of MLPACK is used as the version number of this pack-
age” (Eddelbuettel and Balamuta, 2020). Also, we recommend adding an extra
number after the original version number, for example, changing the version
number from “1.2.3” to “1.2.3.0”. This way, the owner can increase the ex-
tra number when fixing bugs in the binding without causing confusion for
developers.

Owners of popular ML host libraries should take notice of the c
ommunity-maintained bindings for their libraries. 73% of the cross-
ecosystem bindings for popular ML libraries are maintained by the commu-
nity (Section 5.3). These community-maintained bindings help developers to
use the functionalities from their host library in an ecosystem which the offi-
cial organization does not support. We recommend that official organizations
keep an eye on the community-maintained bindings. For example, the official
organization could inform popular community-maintained bindings about im-
portant updates, e.g., those that fix security vulnerabilities. We noticed that
some libraries list the community-maintained bindings in their README or
the official website. Furthermore, we observed that OpenCV even adopted a
popular community-maintained binding (OpenCV, 2021).

Bindings for machine learning libraries across package ecosystems 27

6.3 Implications for Researchers

Researchers should expand research into bindings across software
domains. The efficacy of BindFind in identifying and analyzing bindings (Sec-
tion 5.1) underscores a rich avenue for further exploration. We suggest re-
searchers apply BindFind in broader contexts, extending its use to examine
areas such as web development frameworks. This extension could provide valu-
able insights into how bindings enhance software library interoperability across
various domains. Researchers can reuse our replication package (Li and Beze-
mer, 2024) which contains a dataset of 250,668 bindings and their host names
identified by BindFind.

Researchers should further investigate the differences between offic
ially-maintained bindings and community-maintained bindings. Our
results show that community-maintained bindings and officially-maintained
bindings have different coverages, delays, and technical lags (Section 5.3). Fu-
ture studies should investigate what causes these differences. One factor could
be simply financial incentives (e.g., because contributors to officially main-
tained bindings work for the company driving the binding), but there could
also be socio-technical factors. For example, developers may be more motivated
to contribute to officially-maintained bindings as such contributions are con-
sidered more valuable or prestigious. In addition, future studies should inves-
tigate how the communication between developers of community-maintained
bindings and the host library can be improved.

Researchers should study automatic matching tools for releases of
ecosystem bindings to match with releases of their host library. It is
a complex and tedious task to identify which host library release is supported
by an ecosystem binding. Automatic version matching tools for ecosystem
bindings can help developers to find a suitable release without going through
all the related files of a binding (like we did in Section 5.3) or trying the
releases one by one in their project.

Researchers should study the impact of using bindings on ML devel-
opment.Our replication package (Li and Bezemer, 2024) provides information
on 546 ML libraries and their bindings. Researchers can utilize this dataset to
investigate various aspects of ML development. For instance, prior work (Li
et al., 2024) studied the impact of bindings for TensorFlow and PyTorch on
software quality in terms of correctness and time cost. Future research can
explore how bindings for other ML libraries affect different aspects of software
development, such as reliability, maintainability, and efficiency.

Researchers should explore the adoption of bindings for ML libraries
across software ecosystems. The analysis of the ecosystem distribution of
bindings for ML libraries reveals popular ecosystems and ecosystem-pairs (Sec-
tion 5.2). These findings suggest a need for further research into the adoption of
these bindings across different programming languages and ecosystems. For ex-
ample, LinkedIn’s adoption of TensorFlow’s JavaScript bindings over Python

28 Hao Li, Cor-Paul Bezemer

and Java highlights how ecosystem choices can influence the deployment and
integration of ML models within existing infrastructure.16 By studying such
cases, researchers can gain deeper insights into the factors that drive ecosystem
preferences and how these decisions affect the success of software projects. Re-
searchers can leverage the dataset provided in our replication package (Li and
Bezemer, 2024), which includes detailed information about the distribution of
bindings across ecosystems, to conduct their analyses.

6.4 Implications for Tool Builders

Tool builders should create tools to automate and simplify the main-
tenance of bindings for ML libraries. Maintaining cross-ecosystem bind-
ings is a challenging task, particularly for community-maintained bindings, in-
dicated by their often lower coverage and higher delays compared to officially-
maintained bindings (Section 5.3). Tool builders should develop tools to mon-
itor new releases of a host library, automatically suggest updates for the bind-
ings to reduce the delay in supporting the latest versions, and check the syn-
chronization of version numbers between bindings and their host libraries.
Integrating these tools with CI/CD pipelines can help identify compatibility
issues early, improve coverage, and reduce delays for both community and
officially maintained bindings.

6.5 Implications for Repository Hosting Platforms

Repository hosting platforms should integrate BindFind to discover
bindings. As demonstrated in Section 5.1, BindFind can accurately identify
bindings and extract their host names, making it a valuable tool for reposi-
tory hosting platforms. For instance, the Tesseract OCR project maintains a
manual list of its bindings in the documentation.17 By integrating BindFind,
repository hosting platforms such as GitHub can automate the discovery of
bindings for various host libraries, providing a list of available bindings for
developers.

7 Threats to Validity

In this section, we discuss the threats to validity of our study about popular
ML libraries and their cross-ecosystem bindings.

16 https://blog.tensorflow.org/2022/03/how-linkedin-personalized-performance.

html
17 https://tesseract-ocr.github.io/tessdoc/AddOns.html#tesseract-wrappers

https://blog.tensorflow.org/2022/03/how-linkedin-personalized-performance.html
https://blog.tensorflow.org/2022/03/how-linkedin-personalized-performance.html
https://tesseract-ocr.github.io/tessdoc/AddOns.html#tesseract-wrappers

Bindings for machine learning libraries across package ecosystems 29

7.1 Internal Validity

We use release coverage as a metric to reason about the maintenance of a
binding. A low coverage value does not always mean that a binding has a bad
support. For example, a binding can be forward-compatible, thereby making
it easier to support newer versions without changing the binding. However,
developers have to manually verify whether this binding will work for a spe-
cific version of the ML library that they are going to use, as it is not indicated
anywhere. A binding can also be backward-compatible, thereby making it sup-
port older versions of the host library. However, it is not guaranteed in many
cases, as bindings do not typically undergo testing on older versions of the
host library, and developers have to verify this themselves.

We assume a one-to-one mapping when matching the release versions in
bindings to the ML host libraries. This assumption is based on common prac-
tices where bindings either include the exact source code, include pre-built
binaries, or download and compile the matching version. However, this as-
sumption does not account for scenarios where a binding supports multiple
versions of the host library within a single version.

We classified cross-ecosystem bindings of popular ML libraries into officia
lly-maintained bindings and community-maintained bindings. However, some
community-maintained bindings could be adopted by the official organization
and become an officially-maintained binding. In our study, we only consider
the latest information and do not take into account the history of ownership.
In addition, the owner of a community-maintained binding could be a member
of the official organization of the host library. If the binding is not owned by
the official organization and there is no evidence in its README, we consider
such bindings as community-maintained bindings.

Some software package ecosystems like PyPI allow the owner of a package
to delete a published release. Libraries.io does not record the history of
releases of a package, hence, we only consider the information of releases when
the dataset was collected. In addition, some ecosystems also support the owner
of a package to deprecate a release instead of deleting a release, e.g., npm and
Cargo. In our study, we consider all releases which also include the deprecated
ones.

7.2 External Validity

In our empirical study, we studied cross-ecosystem bindings for ML libraries.
The results of our study might not apply directly to all cross-ecosystem bind-
ings. Still, our methodology can be applied to analyze other cross-ecosystem
bindings for libraries in other domains. In addition, we focused on open source
ML libraries as many popular ML libraries are open source. Future studies
should investigate if our findings hold for proprietary ML libraries.

30 Hao Li, Cor-Paul Bezemer

8 Conclusion

In this study, we introduced BindFind, a novel approach for identifying bind-
ings and extracting host names within software package ecosystems. Applying
BindFind to the libraries.io dataset allowed us to gather 2,436 bindings
for 546 ML libraries across 13 software package ecosystems. We analyzed the
population of bindings for ML libraries and the distribution of these libraries
and their bindings across various ecosystems. In addition, we identified 40
popular ML libraries along with their 133 cross-ecosystem bindings, further
examining their releases. Based on the data from these popular ML libraries,
we conducted an in-depth analysis to investigate the development and main-
tenance of these cross-ecosystem bindings. We shared the collected data in our
replication package (Li and Bezemer, 2024). The most important findings of
our study are:

1. BindFind demonstrates high F1 scores in identifying bindings and extract-
ing host names, indicating its robust capability to assist in the discovery of
bindings within software package ecosystems.

2. npm is the most popular software package ecosystem for bindings of ML
libraries, with npm and PyPI emerging as the predominant combination for
publishing these bindings.

3. The study highlights significant challenges in the maintenance of cross-
ecosystem bindings, including limited release coverage, delays in updat-
ing bindings to match new releases, and prevalent technical lag, especially
among community-maintained bindings.

4. Most bindings do not follow their host library’s version numbers, and many
lack clear information on which host library versions they support.

Our findings show that developers who wish to use a popular ML library
are not limited to using the programming language the library was written in,
as there exist many cross-ecosystem bindings. However, they should carefully
check the coverage, delay, and technical lag of these bindings before they com-
mit to using one. In addition, we suggest that maintainers of cross-ecosystem
bindings should follow the version number of their host library and add an ex-
tra number after it, to account for bug fixes, and make it easier for developers
to identify which version of the host library is supported by the binding.

Acknowledgements The work described in this paper has been supported by the ECE-
Huawei Research Initiative (HERI) at the University of Alberta.

Data Availability Statement

The data generated and analyzed during this study is available in our replica-
tion package at https://doi.org/10.5281/zenodo.12746638.

https://doi.org/10.5281/zenodo.12746638

Bindings for machine learning libraries across package ecosystems 31

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat
S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray
DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng
X (2016) TensorFlow: A system for large-scale machine learning. In: Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, USENIX Association, USA, OSDI’16, pp 265–283, DOI
10.5555/3026877.3026899

Barros-Justo JL, Pinciroli F, Matalonga S, Mart́ınez-Araujo N (2018) What
software reuse benefits have been transferred to the industry? a systematic
mapping study. Information and Software Technology 103:1–21

Bavota G, Canfora G, Penta MD, Oliveto R, Panichella S (2013) The evolution
of project inter-dependencies in a software ecosystem: The case of Apache.
In: 2013 IEEE International Conference on Software Maintenance, IEEE
Computer Society, USA, ICSM ’13, pp 280–289, DOI 10.1109/ICSM.2013.39

Ben Braiek H, Khomh F, Adams B (2018) The Open-Closed Principle of
Modern Machine Learning Frameworks. In: Proceedings of the 15th In-
ternational Conference on Mining Software Repositories, Association for
Computing Machinery, New York, NY, USA, MSR ’18, pp 353–363, DOI
10.1145/3196398.3196445

Bernardo JH, Da Costa DA, Medeiros SQd, Kulesza U (2024) How do machine
learning projects use continuous integration practices? an empirical study
on GitHub actions. In: Proceedings of the 21st International Conference on
Mining Software Repositories, Association for Computing Machinery, New
York, NY, USA, MSR ’24, pp 665–676, DOI 10.1145/3643991.3644915

Blincoe K, Harrison F, Damian D (2015) Ecosystems in GitHub and a method
for ecosystem identification using reference coupling. In: Proceedings of the
12th Working Conference on Mining Software Repositories, IEEE Press,
MSR ’15, pp 202–207, DOI 10.5555/2820518.2820544

Blincoe K, Harrison F, Kaur N, Damian D (2019) Reference coupling: An
exploration of inter-project technical dependencies and their characteris-
tics within large software ecosystems. Information and Software Technology
110:174–189, DOI 10.1016/j.infsof.2019.03.005

Bogart C, Kästner C, Herbsleb J, Thung F (2016) How to Break an API:
Cost Negotiation and Community Values in Three Software Ecosystems.
In: Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, Association for Com-
puting Machinery, New York, NY, USA, FSE 2016, pp 109–120, DOI
10.1145/2950290.2950325

Bogart C, Kästner C, Herbsleb J, Thung F (2021) When and how to
make breaking changes: Policies and practices in 18 open source software
ecosystems. ACM Transactions on Software Engineering and Methodology
(TOSEM) 30(4):1–56, DOI 10.1145/3447245

Borges H, Hora A, Valente MT (2016) Understanding the factors that im-
pact the popularity of GitHub repositories. In: 2016 IEEE International

32 Hao Li, Cor-Paul Bezemer

Conference on Software Maintenance and Evolution (ICSME), pp 334–344,
DOI 10.1109/ICSME.2016.31

Chacon S, Straub B (2014) Pro Git, 2nd edn. Apress, New York, NY, DOI
10.1007/978-1-4842-0076-6

Chiba S (2019) Foreign language interfaces by code migration. In: Pro-
ceedings of the 18th ACM SIGPLAN International Conference on Gen-
erative Programming: Concepts and Experiences, Association for Com-
puting Machinery, New York, NY, USA, GPCE 2019, pp 1–13, DOI
10.1145/3357765.3359521

Cogo FR, Oliva GA, Hassan AE (2021) An empirical study of dependency
downgrades in the npm ecosystem. IEEE Transactions on Software Engi-
neering 47(11):2457–2470, DOI 10.1109/TSE.2019.2952130

Constantinou E, Mens T (2017a) An empirical comparison of developer reten-
tion in the RubyGems and npm software ecosystems. Innovations in Systems
and Software Engineering 13(2):101–115, DOI 10.1007/s11334-017-0303-4

Constantinou E, Mens T (2017b) Socio-technical evolution of the Ruby ecosys-
tem in GitHub. In: 2017 IEEE 24th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), pp 34–44, DOI
10.1109/SANER.2017.7884607

Constantinou E, Decan A, Mens T (2018) Breaking the borders: An investiga-
tion of cross-ecosystem software packages. In: Gousios G, Hejderup J (eds)
Proceedings of the 17th Belgium-Netherlands Software Evolution Workshop,
Delft, the Netherlands, December 10th - to - 11th, 2018, CEUR-WS.org,
CEUR Workshop Proceedings, vol 2361, pp 1–5

Decan A, Mens T (2020) How Magic Is Zero? An Empirical Analysis of Initial
Development Releases in Three Software Package Distributions. In: Pro-
ceedings of the IEEE/ACM 42nd International Conference on Software En-
gineering Workshops, Association for Computing Machinery, New York, NY,
USA, ICSEW’20, pp 695–702, DOI 10.1145/3387940.3392205

Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of
deep bidirectional transformers for language understanding. In: Burstein J,
Doran C, Solorio T (eds) Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Association for
Computational Linguistics, Minneapolis, Minnesota, pp 4171–4186, DOI
10.18653/v1/N19-1423

Dilhara M, Ketkar A, Dig D (2021) Understanding software-2.0: A study of ma-
chine learning library usage and evolution. ACM Trans Softw Eng Methodol
30(4):1–42, DOI 10.1145/3453478

Eddelbuettel D, Balamuta JJ (2020) Rcppmlpack. URL https://github.

com/rcppmlpack/RcppMLPACK1, Accessed: 13 March 2024
Fang H, Lamba H, Herbsleb J, Vasilescu B (2022) ”this is damn slick!”: es-
timating the impact of tweets on open source project popularity and new
contributors. In: Proceedings of the 44th International Conference on Soft-
ware Engineering, Association for Computing Machinery, New York, NY,
USA, ICSE ’22, pp 2116–2129, DOI 10.1145/3510003.3510121

https://github.com/rcppmlpack/RcppMLPACK1
https://github.com/rcppmlpack/RcppMLPACK1

Bindings for machine learning libraries across package ecosystems 33

Finne S, Leijen D, Meijer E, Peyton Jones S (1998) H/Direct: A binary for-
eign language interface for Haskell. In: Proceedings of the Third ACM SIG-
PLAN International Conference on Functional Programming, Association
for Computing Machinery, New York, NY, USA, ICFP ’98, pp 153–162,
DOI 10.1145/289423.289437

Franco-Bedoya O, Ameller D, Costal D, Franch X (2017) Open source software
ecosystems: A systematic mapping. Information and Software Technology
91:160–185, DOI https://doi.org/10.1016/j.infsof.2017.07.007

Furr M, Foster JS (2008) Checking type safety of foreign function calls. ACM
Trans Program Lang Syst 30(4):18:1–18:63, DOI 10.1145/1377492.1377493

Gao K, He R, Xie B, Zhou M (2024) Characterizing deep learning pack-
age supply chains in pypi: Domains, clusters, and disengagement. ACM
Transactions on Software Engineering and Methodology 33(4):1–27, DOI
10.1145/3640336, URL http://dx.doi.org/10.1145/3640336

German DM, Adams B, Hassan AE (2013) The Evolution of the R Software
Ecosystem. In: 17th European Conference on Software Maintenance and
Reengineering, IEEE Press, CSMR, pp 243–252, DOI 10.1109/CSMR.2013.
33

Godbole S, Sarawagi S (2004) Discriminative methods for multi-labeled classi-
fication. In: Pacific-Asia conference on knowledge discovery and data mining,
Springer, pp 22–30

Grichi M, Eghan EE, Adams B (2020) On the impact of multi-language de-
velopment in machine learning frameworks. In: 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, pp
546–556

Guo Q, Chen S, Xie X, Ma L, Hu Q, Liu H, Liu Y, Zhao J, Li X (2019)
An Empirical Study Towards Characterizing Deep Learning Development
and Deployment Across Different Frameworks and Platforms. In: 2019 34th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp 810–822, DOI 10.1109/ASE.2019.00080

Han J, Deng S, Xia X, Wang D, Yin J (2019) Characterization and predic-
tion of popular projects on GitHub. In: 2019 IEEE 43rd Annual Computer
Software and Applications Conference (COMPSAC), vol 1, pp 21–26, DOI
10.1109/COMPSAC.2019.00013

Han J, Deng S, Lo D, Zhi C, Yin J, Xia X (2020) An Empirical Study of the
Dependency Networks of Deep Learning Libraries. In: 2020 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), IEEE
Press, pp 868–878, DOI 10.1109/ICSME46990.2020.00116, iSSN: 2576-3148

Heinemann L, Deissenboeck F, Gleirscher M, Hummel B, Irlbeck M (2011)
On the extent and nature of software reuse in open source java projects.
In: Proceedings of the 12th International Conference on Top Productivity
through Software Reuse, Springer-Verlag, Berlin, Heidelberg, ICSR’11, p
207–222

International Organization for Standardization (2016) ISO/IEC TR
10182:2016, Information technology - Programming languages, their en-
vironments and system software interfaces - Guidelines for language

http://dx.doi.org/10.1145/3640336

34 Hao Li, Cor-Paul Bezemer

bindings. International Standard, URL https://www.iso.org/standard/

67465.html

Islam MJ, Nguyen HA, Pan R, Rajan H (2019) What Do Developers Ask
About ML Libraries? A Large-scale Study Using Stack Overflow. 1906.
11940

Jansen S (2014) Measuring the health of open source software ecosystems:
Beyond the scope of project health. Information and Software Technology
56(11):1508–1519, DOI https://doi.org/10.1016/j.infsof.2014.04.006, special
issue on Software Ecosystems

Kannee K, Kula R, Wattanakriengkrai S, Matsumoto K (2023) Intertwining
communities: Exploring libraries that cross software ecosystems. In: 2023
IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR), IEEE Computer Society, Los Alamitos, CA, USA, pp 518–522, DOI
10.1109/MSR59073.2023.00077

Katz J (2020) Libraries.io Open Source Repository and Dependency Metadata.
DOI 10.5281/zenodo.3626071, URL https://doi.org/10.5281/zenodo.

3626071

Kochanthara S, Dajsuren Y, Cleophas L, van den Brand M (2022) Painting
the landscape of automotive software in GitHub. In: 2022 IEEE/ACM 19th
International Conference on Mining Software Repositories (MSR), pp 215–
226, DOI 10.1145/3524842.3528460

Kula RG, Robles G (2019) The Life and Death of Software Ecosystems,
Springer Singapore, Singapore, pp 97–105. DOI 10.1007/978-981-13-7099-1
6

Kula RG, Roover CD, Germán DM, Ishio T, Inoue K (2018) A generalized
model for visualizing library popularity, adoption, and diffusion within a
software ecosystem. In: 25th International Conference on Software Analysis,
Evolution and Reengineering, IEEE Computer Society, SANER 2018, pp
288–299, DOI 10.1109/SANER.2018.8330217

Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R (2020) ALBERT:
A lite BERT for self-supervised learning of language representations. In: 8th
International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020, OpenReview.net, pp 1–17, URL https:

//openreview.net/forum?id=H1eA7AEtvS

Lee B, Wiedermann B, Hirzel M, Grimm R, McKinley KS (2010) Jinn: syn-
thesizing dynamic bug detectors for foreign language interfaces. SIGPLAN
Not 45(6):36–49, DOI 10.1145/1809028.1806601

Lei H, Zhang S, Wang J, Xiao G, Liu Y, Sui Y (2023) Why do deep learning
projects differ in compatible framework versions? an exploratory study. In:
2023 IEEE 34th International Symposium on Software Reliability Engineer-
ing (ISSRE), pp 509–520, DOI 10.1109/ISSRE59848.2023.00076

Li H, Bezemer CP (2024) Bridging the Language Gap: An Empirical Study
of Bindings for Open Source Machine Learning Libraries in Software Pack-
age Ecosystems. DOI 10.5281/zenodo.12746638, URL https://doi.org/

10.5281/zenodo.12746638

https://www.iso.org/standard/67465.html
https://www.iso.org/standard/67465.html
1906.11940
1906.11940
https://doi.org/10.5281/zenodo.3626071
https://doi.org/10.5281/zenodo.3626071
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.5281/zenodo.12746638
https://doi.org/10.5281/zenodo.12746638

Bindings for machine learning libraries across package ecosystems 35

Li H, Cogo FR, Bezemer CP (2023) An empirical study of yanked releases
in the rust package registry. IEEE Transactions on Software Engineering
49(1):437–449, DOI 10.1109/TSE.2022.3152148

Li H, Rajbahadur GK, Bezemer CP (2024) Studying the impact of tensorflow
and pytorch bindings on machine learning software quality. ACM Trans
Softw Eng Methodol pp 1–31, DOI 10.1145/3678168, URL https://doi.

org/10.1145/3678168, just Accepted
Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer
L, Stoyanov V (2019) RoBERTa: A robustly optimized bert pretraining
approach

Long JD, Feng D, Cliff N (2003) Ordinal Analysis of Behavioral Data, Ameri-
can Cancer Society, chap 25, pp 635–661. DOI 10.1002/0471264385.wei0225

Manikas K (2016) Revisiting software ecosystems research: A longitudinal
literature study. Journal of Systems and Software 117:84–103, DOI https:
//doi.org/10.1016/j.jss.2016.02.003

Mann HB, Whitney DR (1947) On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathe-
matical Statistics 18(1):50–60, DOI 10.1214/aoms/1177730491

Mens T, Claes M, Grosjean P, Serebrenik A (2014) Studying Evolving Software
Ecosystems based on Ecological Models, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp 297–326. DOI 10.1007/978-3-642-45398-4 10

Mohagheghi P, Conradi R (2007) Quality, productivity and economic benefits
of software reuse: a review of industrial studies. Empirical Software Engi-
neering 12:471–516

Nakata S, Sugaya M, Kuramitsu K (2011) Fault model of foreign function
interface across different domains. In: 2011 IEEE/IFIP 41st International
Conference on Dependable Systems and Networks Workshops (DSN-W), pp
248–253, DOI 10.1109/DSNW.2011.5958850, iSSN: 2325-6664

OBrien D, Biswas S, Imtiaz S, Abdalkareem R, Shihab E, Rajan H (2022)
23 shades of self-admitted technical debt: an empirical study on machine
learning software. In: Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, Association for Computing Machinery, New York, NY, USA,
ESEC/FSE 2022, pp 734–746, DOI 10.1145/3540250.3549088

OpenCV (2021) OpenCV-Python is now an official
OpenCV project. URL https://opencv.org/blog/

opencv-python-is-now-an-official-opencv-project, Accessed: 13
March 2024

Osman K, Baysal O (2021) Health is wealth: Evaluating the health of the bit-
coin ecosystem in GitHub. In: 2021 IEEE/ACM 4th International Workshop
on Software Health in Projects, Ecosystems and Communities (SoHeal), pp
1–8, DOI 10.1109/SoHeal52568.2021.00007

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison
M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019)
PyTorch: An imperative style, high-performance deep learning library. In:

https://doi.org/10.1145/3678168
https://doi.org/10.1145/3678168
https://opencv.org/blog/opencv-python-is-now-an-official-opencv-project
https://opencv.org/blog/opencv-python-is-now-an-official-opencv-project

36 Hao Li, Cor-Paul Bezemer

Advances in Neural Information Processing Systems 32, Curran Associates,
Inc., NeurIPS, pp 8024–8035

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blon-
del M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cour-
napeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-Learn: Machine
learning in Python. the Journal of machine Learning research 12:2825–2830

PyTorch (2021) PyTorch Mobile, end-to-end workflow from training to de-
ployment for ios and android mobile devices. URL https://pytorch.org/

mobile/ios, Accessed: 13 March 2024
PyTorch (2022) Pytorch design philosophy. URL https://pytorch.org/

docs/stable/community/design.html, Accessed: 13 March 2024
Rajpurkar P, Zhang J, Lopyrev K, Liang P (2016) SQuAD: 100,000+ ques-
tions for machine comprehension of text. In: Su J, Duh K, Carreras X (eds)
Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing, Association for Computational Linguistics, Austin, Texas,
pp 2383–2392, DOI 10.18653/v1/D16-1264

Rajpurkar P, Jia R, Liang P (2018) Know what you don’t know: Unanswerable
questions for SQuAD. In: Gurevych I, Miyao Y (eds) Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), Association for Computational Linguistics, Melbourne,
Australia, pp 784–789, DOI 10.18653/v1/P18-2124

Reppy J, Song C (2006) Application-specific foreign-interface generation. In:
Proceedings of the 5th international conference on Generative programming
and component engineering, Association for Computing Machinery, New
York, NY, USA, GPCE ’06, pp 49–58, DOI 10.1145/1173706.1173714

Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring
methods for evaluating group differences on the NSSE and other surveys:
Are the t-test and Cohen’s d indices the most appropriate choices. In: annual
meeting of the Southern Association for Institutional Research, Citeseer, pp
1–51

Sanh V, Debut L, Chaumond J, Wolf T (2019) DistilBERT, a distilled version
of bert: smaller, faster, cheaper and lighter

da Silva Amorim S, McGregor JD, de Almeida ES, von Flach G Chavez C
(2016) Software ecosystems architectural health: Challenges x practices. In:
Proccedings of the 10th European Conference on Software Architecture
Workshops, Association for Computing Machinery, New York, NY, USA,
ECSAW ’16, DOI 10.1145/2993412.3011881

Smilkov D, Thorat N, Assogba Y, Nicholson C, Kreeger N, Yu P, Cai S, Nielsen
E, Soegel D, Bileschi S, Terry M, Yuan A, Zhang K, Gupta S, Sirajuddin S,
Sculley D, Monga R, Corrado G, Viegas F, Wattenberg MM (2019) Tensor-
Flow.js: Machine learning for the web and beyond. In: Talwalkar A, Smith
V, Zaharia M (eds) Proceedings of Machine Learning and Systems, vol 1,
pp 309–321

Song X, Wang Y, Cheng X, Liang G, Wang Q, Zhu Z (2024) Efficiently trim-
ming the fat: Streamlining software dependencies with Java reflection and
dependency analysis. In: Proceedings of the IEEE/ACM 46th International

https://pytorch.org/mobile/ios
https://pytorch.org/mobile/ios
https://pytorch.org/docs/stable/community/design.html
https://pytorch.org/docs/stable/community/design.html

Bindings for machine learning libraries across package ecosystems 37

Conference on Software Engineering, Association for Computing Machinery,
New York, NY, USA, ICSE ’24, pp 1–12, DOI 10.1145/3597503.3639123

de Souza CR, Figueira Filho F, Miranda M, Ferreira RP, Treude C, Singer
L (2016) The social side of software platform ecosystems. In: Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems,
Association for Computing Machinery, New York, NY, USA, pp 3204–3214,
DOI 10.1145/2858036.2858431

StackOverflow (2023) Stack Overflow Annual Developer Survey 2023. URL
https://survey.stackoverflow.co/2023, Accessed: 13 March 2024

Steglich C, Majdenbaum A, Marczak S, Santos R (2020a) A study on organi-
zational it security in mobile software ecosystems literature. In: 2020 IEEE
International Conference on Software Architecture Companion (ICSA-C),
pp 234–241, DOI 10.1109/ICSA-C50368.2020.00047

Steglich C, Marczak S, Santos R, Mosmann LH, Guerra LP, de Souza C, Filho
FF, Perin M (2020b) How do business factors affect developers in mobile
software ecosystems? In: XVI Brazilian Symposium on Information Systems,
Association for Computing Machinery, New York, NY, USA, SBSI’20, pp
1–8, DOI 10.1145/3411564.3411571

Stringer J, Tahir A, Blincoe K, Dietrich J (2020) Technical lag of dependencies
in major package managers. In: 2020 27th Asia-Pacific Software Engineering
Conference (APSEC), pp 228–237, DOI 10.1109/APSEC51365.2020.00031

Wei M, Huang Y, Wang J, Shin J, Harzevili NS, Wang S (2022) API rec-
ommendation for machine learning libraries: how far are we? In: Proceed-
ings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Association for
Computing Machinery, New York, NY, USA, ESEC/FSE 2022, pp 370–381,
DOI 10.1145/3540250.3549124

Wittern E, Suter P, Rajagopalan S (2016) A look at the dynamics of
the JavaScript package ecosystem. In: Proceedings of the 13th Interna-
tional Conference on Mining Software Repositories, Association for Com-
puting Machinery, New York, NY, USA, MSR ’16, pp 351–361, DOI
10.1145/2901739.2901743

Wolter T, Barcomb A, Riehle D, Harutyunyan N (2023) Open source license
inconsistencies on GitHub. ACM Trans Softw Eng Methodol 32(5):1–23,
DOI 10.1145/3571852

Xia X, Zhao S, Zhang X, Lou Z, Wang W, Bi F (2023) Understanding the
archived projects on GitHub. In: 2023 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp 13–24, DOI
10.1109/SANER56733.2023.00012

Zaimi A, Ampatzoglou A, Triantafyllidou N, Chatzigeorgiou A, Mavridis
A, Chaikalis T, Deligiannis I, Sfetsos P, Stamelos I (2015) An empirical
study on the reuse of third-party libraries in open-source software develop-
ment. In: Proceedings of the 7th Balkan Conference on Informatics Confer-
ence, Association for Computing Machinery, New York, NY, USA, BCI ’15,
pp 1–8, DOI 10.1145/2801081.2801087, URL https://doi.org/10.1145/

2801081.2801087

https://survey.stackoverflow.co/2023
https://doi.org/10.1145/2801081.2801087
https://doi.org/10.1145/2801081.2801087

38 Hao Li, Cor-Paul Bezemer

Zerouali A, Mens T, Gonzalez-Barahona J, Decan A, Constantinou E, Robles
G (2019) A formal framework for measuring technical lag in component
repositories — and its application to npm. Journal of Software: Evolution
and Process 31(8):e2157, DOI https://doi.org/10.1002/smr.2157

	Introduction
	Background
	Related work
	Methodology
	Results
	Implications
	Threats to Validity
	Conclusion

