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Abstract—The popularity of computational notebooks is
rapidly increasing because of their interactive code-output vi-
sualization and on-demand non-sequential code block execution.
These notebook features have made notebooks especially popular
with machine learning developers and data scientists. However,
as prior work shows, notebooks generally contain low quality
code. In this paper, we investigate whether the low quality code
is inherent to the programming style in notebooks, or whether
it is correlated with the use of machine learning techniques.
We present a large-scale empirical analysis of 246,599 open-
source notebooks to explore how machine learning code quality
in Jupyter Notebooks differs from non-machine learning code,
thereby focusing on code style issues. We explored code style
issues across the Error, Convention, Warning, and Refactoring
categories. We found that machine learning notebooks are of
lower quality regarding PEP-8 code standards than non-machine
learning notebooks, and their code quality distributions signifi-
cantly differ with a small effect size. We identified several code
style issues with large differences in occurrences between machine
learning and non-machine learning notebooks. For example,
package and import-related issues are more prevalent in machine
learning notebooks. Our study shows that code quality and code
style issues differ significantly across machine learning and non-
machine learning notebooks.

Index Terms—Jupyter Notebook, Python Code Style, Code
Quality, SE4ML

I. INTRODUCTION

Computational notebooks are the contemporary application
of Knuth’s literate programming paradigm [22], which com-
bines a programming language with a documentation language
to increase the program’s robustness, portability, and main-
tainability. Computational notebooks offer unique developer
features that are not available in traditional IDEs [17], such as
independent code cell execution and integrated output visual-
ization [30], [48]. Notebooks have already been successful in
a wide range of applications, i.e., developing machine learning
models [30], [41] and building rapid prototypes [35]. However,
computational notebooks have become particularly popular in
the data science and machine learning domains, as the above
unique features facilitate data exploration and analysis [17],
[30].

The most popular computational notebook technology by
far is Jupyter Notebook [30]. While Jupyter Notebook supports
several programming languages, such as R, Julia, and Scala,
most notebooks are written in Python [7], [38]. The popularity

of Python in notebooks goes hand in hand with its popularity
with machine learning (ML) developers.

The sudden increase in the popularity of notebooks has
led to software engineering challenges related to their qual-
ity [32]. Wang et al. showed that Jupyter notebooks have
lower quality code than Python scripts in terms of following
PEP-8 guidelines [46]. Additionally, van Oort et al. showed
that ML projects contain many code style issues [41]. Since
many notebooks contain ML code, it is unclear whether the
notebook programming style or ML features cause the lower
code quality.

In this paper, we investigate whether the usage of ML
functionality is the reason for the low code quality or whether
non-ML notebooks suffer from the same problem. Our study
will help narrow down the direction of future research efforts
on improving notebook code quality.

We conduct a large-scale empirical analysis of the code
quality and code style issues in ML and non-ML notebooks.
We study a publicly available open-source dataset [33] of
246,599 Jupyter notebooks written in Python. We use the
PEP-8 Python code standard [4], [42] to measure the code
quality and identify the code style issues in the notebooks. In
particular, we address the following research questions (RQs):
RQ1: How do the code quality ratings differ between ML

and non-ML notebooks?
Code quality ratings are lower in ML than in non-
ML notebooks, and their distributions are significantly
different, with a small effect size. Compared to non-
ML notebooks, the median code quality rating in ML
notebooks is lower (2.2 and 3.3 for ML and non-ML
respectively).

RQ2: How do the code style issues differ between ML and
non-ML notebooks?
The distributions of all four studied categories of code
style issues are significantly different, where the Error,
Warning, and Refactoring categories have non-weak
effect sizes. Package or library handling-related issues
are the most prevalent among the categories, with
larger differences between ML and non-ML notebooks
distributions.

Based on our findings, we conclude that the quality of ML
code in Jupyter notebooks is significantly different from non-
ML code. ML code depends more on libraries, which is the
primary reason for causing code style issues and low quality



code. Our studies suggest a need for different style guidelines
for ML code in notebooks. We also recommend developing
tools to detect and refactor ML-notebook-specific code issues.
The code and results of this study are available publicly.1

Paper Organization. The rest of this paper is organized
as follows. Section II gives background information about our
study. Section III describes related work. Section IV presents
our methodology. Sections V and VI present the findings
of our two research questions. Section VII discusses the
implications of our findings. Section VIII describes the threats
to the validity of our work. Finally, Section IX concludes the
paper.

II. BACKGROUND

Python Enhancement Proposal 8, or PEP-8, is a style guide
for Python code that lists all possible code style violations that
affect the overall code quality [15], [42]. PEP-8 can be used
as a reference for measuring Python code quality, i.e., using
a tool like Pylint. This section gives background information
about code style issues and code quality.

A. Python Code Style Issues

We used the Pylint tool to statically identify code style
issues in notebooks [2], [41]. Pylint groups code style issues
into six categories, i.e., Convention, Error, Fatal, Information,
Refactor, and Warning [6]. Since Pylint’s code quality rating
(see Section II-B) is measured based on four of these cate-
gories (Error, Convention, Warning, and Refactor), we focus
on these four in our study as well. Note that Pylint stops
processing a notebook as soon as it encounters a Fatal issue
(such as a syntax error). We do not include such notebooks as
this Pylint behaviour could bias our results. Below, we explain
the four studied categories of code style issues.
• Errors (E): These style issues indicate coding problems

that are likely to cause the program to behave incorrectly.
They indicate severe problems with the code that might
prevent it from running too. Examples of Error messages
include syntax errors, undefined variables, and unsup-
ported operators. These issues are serious and should be
fixed as soon as possible.

• Conventions (C): These style issues refer to a set of PEP-
8 coding guidelines and best practices recommended for
writing readable and maintainable Python code. Issues in
this category are less likely to cause actual bugs. For
example, this category covers conventions for naming
variables, using whitespace, and the length of a single
code line.

• Warnings (W): These style issues indicate potential
problems in the code but do not cause the program to be-
have incorrectly. Examples of Warning code style issues
include using deprecated functions, ignoring exceptions,
or using an else clause after a return statement. These
issues are less serious compared to Error messages but
should still be addressed.

1https://github.com/saeedsiddik/NotebookCodeStyleIssue

• Refactoring (R): These style issues cause the code to be
less readable or maintainable, but they do not cause the
program to behave incorrectly. Examples of Refactoring
code style issues include not using a docstring, a too-large
function or nondescriptive variable names.

B. Code Quality

Pylint computes a code quality rating between 0 and 10,
which indicates the quality of the code in the notebook, with
a higher rating indicating higher quality code. Equation 1
presents the code quality rating equation used by Pylint, which
combines the four code style issue categories discussed above
to compute the code quality rating of a Python file (or, in our
case, a notebook) [5]. Errors (E) are given the most weight
(5 times more than the other categories) since they can be
potential bugs and affect the functionality of the notebook. The
other categories are given equal weight. Furthermore, SLOC
denotes the number of lines of code analyzed by Pylint [13],
[27].

Rating = max(0, 10 − 5× E +R+W + C

SLOC
× 10) (1)

For example, consider a notebook with 50 SLOC in which
Pylint detects 2 Errors, 0 Refactoring issues, 10 Warnings,
and 5 Convention-related issues. Then the rating of that
notebook will be:

max(0, 10 − 5× 2 + 0 + 10 + 5

50
× 10) = 5

III. RELATED WORK

Jupyter notebooks are indispensable for data analysis and
scientific computing. However, the code quality and style in
these notebooks are often neglected. This section discusses
prior related work on the code quality and style issues in
Jupyter notebooks and on code analysis of notebooks.

A. Notebook Code Quality

Code quality is a critical aspect of software development,
especially in the context of Jupyter notebooks. As the popular-
ity of Jupyter notebooks continues to grow in the data science
and machine learning communities, it becomes increasingly
important to ensure that the code in these notebooks is of
high quality. According to Wang et al., the quality of the code
in Jupyter notebooks is lower than in Python scripts in terms
of adhering to PEP-8 standards [46]. Wang et al. examined
notebooks from GitHub and discovered more errors (36.26%)
than in Python scripts (13.40%). They also reported that it is
hard to reproduce Jupyter notebooks, as 73% of the publicly
available notebooks were not reproducible with straightfor-
ward approaches [45], [47]. Pimentel et al. demonstrated that
more than 75% of valid notebooks could not be re-executed
properly and that fewer than 5% would achieve the same
outcomes as the original [32].

Several studies have focused on how to improve the code
quality in notebooks. Subotic et al. proposed a static analysis
framework for data science notebooks to find potential issues



inside the code [39]. Their framework can detect data leakage
bugs triggered by wrong notebook execution sequences. Wang
et al. designed an automated documentation generation system
to increase the computational quality of notebooks and make
them more user-friendly [43]. Their system learned from 80
highly-voted Kaggle notebooks and was evaluated by 24 data
science practitioners. Patra and Pradel presented an automatic
name-value inconsistency detection tool for Jupyter Notebooks
to improve code quality by resolving misleading variable
names and their values [28]. They reported that their approach
complements existing techniques for finding coding issues
with 80% precision and 76% recall. Dong et al. demonstrated
that cleaning activities in Jupyter Notebooks improve their
quality [14]. They presented several code-cleaning activities
for improving understanding in a notebook, such as adding
markdown cells and reordering and splitting code cells. Titov
et al. showed that properly splitting notebook code cells can
improve the structure and quality of Jupyter notebooks [40].
They proposed an algorithm for automatically splitting cells
and reported that in 29.5% of cases, their suggestions were
selected as the preferred way of perceiving the code.

In contrast to prior work, our study focuses on analyzing
how (not) using machine learning-related functionality is cor-
related with code quality in Jupyter notebooks.

B. Code Style Issues and Smells

Addressing code style issues and smells is essential in
notebooks because they affect the code’s readability, main-
tainability, and overall quality. A consistent and clean code
style can make the code more understandable and easier to
work with, while code smells can indicate deeper problems
or inefficiencies. There have been many studies on detecting
code style issues — we refer to recent survey papers for an
overview [8], [23]. In this section, we give an overview of
empirical studies on code style issues in notebooks, Python
code and machine learning systems.

Van Oort et al. found at least one style issue in every
studied notebook during their study [41]. They conducted an
empirical study on the prevalence of code smells in Python
ML notebooks and found that style issues like unused-import
and invalid-name are the most frequent issues. Grotov et al.
showed that notebook code differs from Python scripts having
1.4 times more stylistic issues [17]. They presented their
empirical results from structural and stylistic points of view
and found more issues in every comparison.

Simmons et al. reported that coding style issues are also
more frequent in data science projects written in Python than
in non-data science projects [37]. ML code involves more
complex, and longer expressions than traditional code, and
the number of code smells increases across the releases of
ML applications [19]. Researchers also studied that Python
code tends to violate coding standards, i.e., Bafatakis et
al. showed that 93.87% of Python code on Stack Overflow
contains style violations, with an average of 0.7 violations
per statement [9]. Code clones are a type of code smell that
is also frequent in ML code [20]. Nikanjam and Khomh

reported that deep learning programs are designed differently
and have unique architectural design smells in the models [26].
Zhang et al. reported that machine learning code quality is
more challenging to evaluate [49]. They conducted a literature
review of academic papers, gray literature, Github commits,
and Stack Overflow posts to discover ML-specific code smells
to assess the quality of ML code.

Existing literature empirically studied code style issues and
smells in notebooks, in Python and in ML code. However,
we are the first to combine these three targets by studying
the differences in code style issues between ML and non-ML
notebooks in Python.

IV. METHODOLOGY

This section describes the methodology of our empirical
study on examining whether the low quality code is a byprod-
uct of notebook programming or if it is associated with the
usage of ML functionality. Figure 1 gives a visual overview
of the steps taken in our methodology. This section explains
how we collect notebook data, process notebooks, and analyze
code style issues.

A. Collecting and Labeling Notebooks

We studied the publicly available dataset of Jupyter Note-
books from Quaranta et al. [33]. The dataset contains 246, 599
notebook files from the Kaggle repository written in Python
and includes notebooks that were published between Novem-
ber 2015 and October 2020. We categorized the notebooks
based on whether they use at least one machine learning
library. If yes, the notebook is labelled as an ML notebook;
otherwise, it is labelled as a non-ML notebook. We retrieved
a list of machine learning libraries from literature [24], [41]
and matched this list with all import and from statements
in the notebooks. We ended up with 177, 252 ML note-
books (71.9%) and 69, 347 non-ML notebooks (28.1%). ML
notebooks (median SLOC 75) are typically larger than non-
ML notebooks (median SLOC 43). The Mann-Whitney U
test (see Section IV-C) shows that the distribution of SLOC
between ML and non-ML notebooks is significantly different
(p < 0.05) with a medium effect size (Cliff’s Delta d = 0.41).

B. Processing and Detecting Code Style Issues

We analyzed the notebooks in the dataset using Pylint
(through the nbQA [16] tool) and stored the output in a
separate corresponding text file. nbQA is a tool that facilitates
the execution of standard Python code style tools on Jupyter
notebooks. We used Pylint version 2.14.0 to identify the code
style issues and compute the code quality ratings.

We developed a Python script to extract the necessary
information (file name, code quality rating, and code style
issues) from the Pylint output files. We stored the extracted
style issues and code quality ratings with the corresponding
filename in an SQLite database for further processing. The
style issues are categorized by Pylint into the Error, Conven-
tion, Warning, and Refactoring categories. We extracted a total
number of 2, 773, 937 issues that occur in our dataset, where
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Fig. 1: Overview of the methodology of our empirical study

77.9% (2, 159, 994) and 22.1% (613, 943) come from ML and
non-ML notebooks respectively. We also excluded 28 ML and
2 non-ML notebooks from our analysis due to the presence of
a Fatal issue in the notebook.

C. Statistical Analysis

We used Pearson’s Chi-square (χ2) test [29] to determine
whether the numbers of detected code style issues in a category
(see Section VI) differ significantly between ML and non-ML
notebooks. We selected the chi-square test since basically, we
are comparing the columns of a contingency table in which
the rows represent the code style issues and the columns
the number of occurrences of those issues in ML and non-
ML notebooks. Additionally, we individually explored all
four code style issue categories (Error, Convention, Warning,
and Refactoring) to report how they differ across ML and
non-ML notebooks. Although we consider a 5% level of
significance for the chi-square test, we adjusted the p-value
using Bonferroni correction to 0.05

4 to mitigate the effect of
making multiple comparisons.

If the chi-square test shows that the distributions within
a category differ significantly, we calculate the Cramér’s V
effect size [12] to quantify the difference:

Cramér’s V =

√
χ2

n(k − 1)

where k is the length of the smaller dimension. We use the
following thresholds to interpret Cramér’s V effect size [3]:

Cramér′s V Effect size =

 weak, if |V | < 0.2
moderate, if 0.2 ≤ |V | < 0.6
strong, if 0.6 ≤ |V |

In addition, to identify which of the code style issues cause
the distributions to be significantly different, we conducted a
posthoc analysis using the residuals of the chi-square test [36].
The code style issues with the largest residuals contribute
the most to the chi-square statistic. We used standardized
residuals, also called Pearson residuals [18], to make the resid-
uals more comparable. To calculate the standard residual of a
code style issue, we measure the difference in its frequency
between ML and non-ML notebooks and then divide it by the
square root of the frequency in non-ML notebooks. Following
Sharpe [36], we define residuals as high when they have a
value greater than 3 or less than -3.

We used the Mann-Whitney U test [25] to determine
whether code quality rating distributions (see Section V)
or line of code distributions are statistically different. Since



those distributions are independent and continuous but neither
categorical nor normally distributed, we selected the Mann-
Whitney U test. If the p-value, produced by the test, falls below
a cutoff of 0.05, we consider those distributions as significantly
different. Then we calculate Cliff’s delta (d) effect size [11]
to show the magnitude of the difference. We follow Romano
et al.’s [34] thresholds to interpret the value of d:

Cliff ′s d Effect size =


negligible, if |d| < 0.147
small, if 0.147 ≤ |d| < 0.330
medium, if 0.330 ≤ |d| < 0.474
large, if 0.474 ≤ |d|
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Fig. 2: Distribution of the code quality ratings in ML and
non-ML notebooks

V. RQ1: HOW DO THE CODE QUALITY RATINGS DIFFER
BETWEEN ML AND NON-ML NOTEBOOKS?

A. Motivation

This research question aims to determine whether notebook
code quality is correlated with the use of ML features or
inherent to the programming style in notebooks. Research
showed that Python code in notebooks is of lower quality
than Python in scripts [17]. Since the majority of notebooks
contain ML code, we investigate whether the ML code is the
main reason for the low-quality code. Hence, we study the
code quality ratings across ML and non-ML notebooks.

B. Approach

We grouped the collected code quality ratings (found by
Pylint) by the notebook type (ML and non-ML). Code quality
ratings range from 0 to 10; the higher the rating, the better
the notebook code quality. We used the Mann–Whitney U-test
with a 5% significance level to test the differences between
the distributions. We computed Cliff’s delta (d) effect size to
determine how much code quality ratings differ between ML
and non-ML notebooks.

We report the skewness of the distributions of ML and
non-ML notebooks’ code quality ratings to determine the

differences in the shapes and symmetry of the distributions.
A positive skew (between 0.5 and 1) indicates that the dis-
tribution is skewed to the right (mostly low quality ratings),
and a negative skew (between −1 and −0.5) indicates that
the distribution is skewed to the left (a majority of high
quality ratings). We consider two distributions unskewed if
the skewness value is between −0.5 and 0.5.

We describe the distributions’ kurtosis to find the peak in
notebook code quality ratings. The greater the kurtosis value,
the higher the peak. The expected value of kurtosis is 3. A
distribution with a kurtosis smaller than 3 (negative kurtosis)
has a flat peak. In contrast, a distribution with kurtosis of
higher than 3 (positive kurtosis) has a sharp peak.

C. Findings

The code quality ratings of ML and non-ML notebooks
are significantly different, with a small effect size. Figure 2
shows the distribution of the code quality ratings of ML and
non-ML notebooks. The median of ML notebooks’ quality
ratings is 2.2, lower than non-ML notebooks’ quality ratings
(3.3), which indicates that ML notebooks are of lower quality
regarding PEP-8 coding standards. One possibility is that the
advances in ML are attracting the attention of users from
other disciplines who do not have a background in software
engineering and consequently make mistakes in following
code standards. The Mann–Whitney U test shows that the
code quality rating distributions of ML and non-ML notebooks
are significantly different (p = 0.0). Cliff’s delta (d = 0.15)
confirms that those rating distributions are different with a
small effect size.

The distribution of ML notebooks’ code quality ratings
is positively skewed, whereas it is unskewed for non-
ML. The skewness values of the distributions of the code
quality ratings of ML and non-ML notebooks are 0.603
and 0.228, respectively. Hence, the ML code quality rating
distribution is positively skewed, and the non-ML code quality
rating distribution is unskewed. That indicates that the rating
distribution of ML notebooks is more skewed to the right than
that of the non-ML notebooks (i.e., they are generally lower).

The distribution of code quality ratings has a lower kur-
tosis value for non-ML notebooks than for ML notebooks.
Both kurtosis values are negative (−0.214 and −1.367, respec-
tively). The lower value of non-ML distributions indicates that
the distribution of code quality ratings of non-ML notebooks
has a flatter peak and thinner tails compared to that of ML
notebooks. According to Figure 2, there are peaks near the
value of 0 in both distributions because Pylint has a lower cap
of 0 for the code quality rating. In addition, there is a second
peak (around 2.3) for the ML notebooks. ML notebooks tend
to have at least one Error code style issue (vs. zero in non-
ML notebooks – details will be discussed in Section VI). We
expect that the peak around 2.3 for ML notebooks is caused
by Error type issues decreasing the code quality faster than
other types of issues (see Equation 1).



The code quality ratings of non-ML notebooks are
generally higher than those of ML notebooks, and their
distributions are significantly different, with a small
effect size.

VI. RQ2: HOW DO THE CODE STYLE ISSUES DIFFER
BETWEEN ML AND NON-ML NOTEBOOKS?

A. Motivation:

This research question investigates whether the types of
code style issues correlate with using ML functionality. As
prior work showed that there exist machine learning-specific
style issues [26], [49], we investigate whether the use of ML
functionality also affects the occurrence of code style issues
in Jupyter notebooks.

B. Approach:

We explored the code style issue distributions in ML and
non-ML notebooks across the four studied categories (Error,
Convention, Warning, and Refactoring). We retrieved the issue
category from the Pylint output, where issues are depicted with
their code line. The issue code consists of the first letter of the
category and the issue number. For example, E0611 represents
an Error category code style issue with style issue number
0611.

We used the Pearson Chi-square (χ2) test as described
in Section IV-C to determine how code style issues differ
between ML and non-ML notebooks. If the chi-square test
indicates that the distributions of a code style category are
significantly different, we explored their standard residuals
to identify which code style issues are the reason for the
significant difference.

As an example of generating the contingency table that
serves as input to the chi-square test, suppose we want to
investigate whether the distributions of Refactoring code style
issues are different between ML and non-ML notebooks. To
create the contingency table, we detect the list of all unique
code style issues under the Refactoring category and count
the frequency of every code style issue for ML and non-ML
notebooks (including a 0 for zero occurrences).

Because our dataset contains a much larger number of ML
notebooks, we normalized the values in the contingency table
by replacing them with the percentage of the total number of
occurrences in that type of notebook in a style issue category.
Table I presents the top 5 most frequent code style issues in
each category in such a contingency table. It demonstrates
a sample of a contingency table for both using the absolute
frequency before conversion and the percentage values after
conversion.

We analyzed the Total %, ML %, non-ML %, and Standard
Residuals of every individual code style issue. Here Total %
represents the percentage of a style issue within all found style
issues in the respective category. For example, the Total % of
the code E1101 is 7.5, which indicates that 7.5% of all Error
code style issues are of type E1101. Likewise, the ML %

and non-ML % values represent the percentages for that type
of notebook within the respective category. Throughout this
section, whenever we present the occurrence percentage of a
code style issue, it denotes the value within its respective style
issue category.

C. Findings

1) Error code style issues: The prevalence of Error code
style issues is higher in ML than in non-ML notebooks;
the distributions significantly differ with a moderate effect
size. Figure 3a shows the number of Error code style issues per
notebook. The median number of Error code style issues per
notebook is higher in ML than in non-ML notebooks having
values of 4 and 1, respectively. The chi-square test shows
that the error code style issue distributions differ significantly
between non-ML and ML notebooks with a moderate effect
size (V = 0.43). We found that almost all (97.1%) of the
ML notebooks contain at least one Error code style issue, in
contrast to only 56.9% of the non-ML notebooks. The reason
is that 96.1% of ML notebooks have at least one E0401:
Import error code style issue.

ML notebooks are more sensitive to package or import-
related Errors because they deal with more packages than
non-ML notebooks. Table II shows that 3 of the top 4 Error-
type style issues (ranked by residual) are related to package
handling. These package-related Error-type style issues occur
almost twice as often in ML notebooks. E0401: import-error,
occurring when a module fails to import inside the notebook,
has the highest residual value (5.28) and occurs in 66.38% of
the ML vs. 35.10% of the non-ML notebooks. The package-
related Error style issue with the second-largest residual (4.42)
is E1101: No member. It occurs when a variable is accessed
from a nonexistent module or function. This style issue occurs
almost four times more frequently in ML (8.61%) than in non-
ML notebooks (2.14%). The third package-related Error style
issue based on residual is E0611: No name in module, which
also occurs more frequently in ML (4.86%) than in non-ML
notebooks (2.09%). It occurs when a name cannot be found
in a package called from the code.

The higher occurrence of package-related Error issues could
be due to the fact that machine learning models often require
specialized libraries and frameworks, some of which may not
be available or compatible with the current Python environ-
ment. It may also be because machine learning models are
often more complex and require more dependencies than non-
machine learning models. We observed that the average usage
of packages in ML notebooks is higher (6.05±2.90 packages
per notebook) than in non-ML notebooks (3.44 ± 2.28 pack-
ages per notebook), which could explain the higher occurrence
of package handling-related issues.

2) Convention code style issues: The distribution of
Convention-type code style issues significantly differs be-
tween ML and non-ML notebooks with a weak effect size.
The median numbers of Convention-type code style issues
are 36 and 11 in ML and non-ML notebooks, respectively.
The chi-square test shows that the Convention-type code style
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Fig. 3: Category-wise code style issue distributions for ML and non-ML notebooks

issue distributions significantly differ between non-ML and
ML notebooks with a weak effect size (V = 0.16). We
investigated the standard residual values to determine the cause
and found that 4 out of 38 issues have standard residuals of
more than 1 or less than -1 (shown in Table II). The frequency
of Convention code style issues in each ML and non-ML
notebook are depicted in Figure 3b. There is a long tail in the
Convention code style issues distribution, with a maximum
of 9, 919 issues in a single ML notebook. We investigated
and found an unusually large notebook with many hardcoded
values, which are not written following Python standards
causing numerous (9, 900) C0303: trailing-whitespace issues.

One of the Convention-type code style issues in the top
three residuals is related to package handling. Table III
shows that no Convention-type code style issues have high
residuals (greater than 3 or less than -3), which indicates that
no issue really stands out strongly, but there are several that
cause a significant difference. The package handling-related
style issue (C0413: wrong-import-position with a standard
residual of 1.29) is also more frequent in ML notebooks
(13.9% vs. 9.9% in non-ML notebooks). It occurs when code
and imports are mixed. The C0103: Invalid name issue has
the largest standard residual (1.52) and is also more frequent

in ML (28.9%) than in non-ML notebooks (21.8%). It occurs
when the name does not conform to naming rules associated
with its type, e.g., function names should be lowercase, with
words separated by underscores.

3) Warning code style issues: The prevalence of Warn-
ing code style issues is higher in ML than in non-ML
notebooks; the distributions significantly differ with a
moderate effect size. Figure 3c shows the number of Warning
code style issues per ML and non-ML notebook. The median
numbers of occurrences are 6 and 3, respectively. The Pearson
chi-square test indicates that the distributions of Warning
code style issues significantly differ between ML and non-ML
notebooks with a moderate effect size (V = 0.26). We explored
the standard residuals to check which Warning issues are
responsible for the difference. We found one issue with a high
standard residual (more than 3), and 7 issues with standard
residuals of more than 1 or less than −1 (see Table IV).

One of the top three differences in Warning-type code
style issues is package handling-related. Table IV presents
the Warning-type code style issues with standard residuals of
more than 1 or less than −1. W0611: Unused import (third-
largest residual, 2.21) is package handling-related, and also
the most occurring Warning issue (24.10% of all Warning-type



TABLE I: Part of a contingency table for code style issues for (non-)ML notebooks before and after conversion to percentage

Absolute frequency Percentage (%)Category Code Style Issue ML Non-ML Row Total ML Non-ML Row Total

E0401 import-error 748,983 79,048 828,031 66.38 35.10 61.17
E0602 undefined-variable 151,569 104,236 255,805 13.43 46.28 18.89
E1101 no-member 97,152 4,819 101,971 8.61 2.14 7.53
E1121 too-many-function-args 43,265 16,753 60,018 3.83 7.44 4.34
E0611 no-name-in-module 54,851 4,713 59,564 4.86 2.09 4.40

E
rr

or

Column Total 1,128,416 225,218 1,353,634 100 100 100

C0103 invalid-name 2,097,268 323,371 2,420,639 28.78 21.77 27.67
C0303 trailing-whitespace 1,358,955 380,428 1,739,383 18.71 25.62 19.88
C0301 line-too-long 1,282,391 313,161 1,595,552 17.66 21.09 18.24
C0413 wrong-import-position 1,011,630 146,556 1,158,186 13.93 9.87 13.24
C0116 missing-function-docstring 443,844 71,212 515,056 6.11 4.79 5.89C

on
ve

nt
io

n

Column Total 7,359,795 1,485,122 8,844,917 100 100 100

W0611 unused-import 571,391 81,964 653,355 25.73 16.70 24.10
W0621 redefined-outer-name 486,647 85,593 572,240 21.91 17.44 21.10
W0104 pointless-statement 304,734 132,951 437,685 13.72 27.09 16.14
W0311 bad-indentation 227,302 40,723 268,025 10.24 8.30 9.88
W0404 reimported 190,310 31,234 221,544 8.57 6.36 8.17W

ar
ni

ng

Column Total 2,220,708 490,758 2,711,466 100 100 100

R1705 no-else-return 17,261 8,234 25,495 11.27 20.22 13.15
R0913 too-many-arguments 18,402 2,782 21,184 12.01 6.83 10.92
R0914 too-many-locals 17,081 2,984 20,065 11.15 7.33 10.35
R0402 consider-using-from-import 15,336 1,727 17,063 10.01 4.24 7.80
R1732 consider-using-with 10,505 3,293 13,798 6.86 8.09 7.11R

ef
ac

to
r

Column Total 153,220 40,726 193,946 100 100 100

TABLE II: Error code style issues having standard residuals greater than 1 or less than -1

Code Style Issue Total (%) ML (%) Non-ML (%) Standard Residuals

E0401 import-error 61.17 66.38 35.10 5.28
E0602 undefined-variable 18.90 13.43 46.28 -4.83
E1101 no-member 7.53 8.61 2.14 4.42
E0611 no-name-in-module 4.40 4.86 2.09 1.91
E1121 too-many-function-args 4.43 3.83 7.44 -1.32
E0102 function-redefined 1.24 0.88 3.06 -1.25
E1102 not-callable 0.27 0.32 0.05 1.15
E0107 nonexistent-operator 0.19 0.00 1.16 -1.08

Absolute number of Error code style issues 1,353,634 1,128,416 225,218

TABLE III: Convention code style issues having standard residuals greater than 1 or less than -1

Code Style Issue Total (%) ML (%) Non-ML (%) Standard Residuals

C0103 invalid-name 27.67 28.87 21.77 1.52
C0303 trailing-whitespace 19.88 18.71 25.62 -1.36
C0413 wrong-import-position 13.24 13.93 9.87 1.29
C0114 missing-module-docstring 2.81 2.43 4.65 -1.03

Absolute number of Convention code style issues 8,844,917 7,359,795 1,485,122

issues). W0611 occurs when an imported module or variable is
not used, which is more prevalent in ML (25.73%) than in non-
ML notebooks (16.70%). As we described earlier, since ML
notebooks deal with more packages than non-ML notebooks,
it is expected to see more unused import issues in ML code.
Although the W1406: Redundant U-String Prefix issue has
a high standard residual (3.62), it is not very frequent in
notebooks (2.39% of all Warning issues).

4) Refactoring code style issues: The distributions of
Refactoring code style issues significantly differ across
ML and non-ML notebooks with a moderate effect size.

Refactoring code style issues are less prevalent than other
categories (only 1.48% of all code style issues). Figure 3d
presents the number of Refactoring code style issues per
notebook. The chi-square test indicates that the Refactoring
code style issue distributions differ significantly between ML
and non-ML notebooks with a moderate effect size (V =
0.34). We found 51 unique Refactoring code style issues in
the dataset, where a total of 10 issues have standard residuals
greater than 1 or less than −1 (shown by Table V).

One of the top three differences in Refactoring-type code



TABLE IV: Warning code style issues having standard residuals greater than 1 or less than -1

Code Style Issue Total (%) ML (%) Non-ML (%) Standard Residuals

W1406 redundant-u-string-prefix 2.39 2.82 0.43 3.64
W0104 pointless-statement 16.14 13.72 27.09 -2.57
W0611 unused-import 24.10 25.73 16.70 2.21
W0612 unused-variable 3.85 4.22 2.19 1.37
W0301 unnecessary-semicolon 2.34 1.90 4.31 -1.16
W0621 redefined-outer-name 21.10 21.91 17.44 1.07
W0401 wildcard-import 1.02 0.75 2.25 -1.00

Absolute number of Warning code style issues 2,711,466 2,220,708 490,758

TABLE V: Refactoring code style issues having standard residuals greater than 1 or less than -1

Code Style Issue Total (%) ML (%) Non-ML (%) Standard Residuals

R1725 super-with-arguments 4.54 5.70 0.19 12.77
R0402 consider-using-from-import 8.80 10.01 4.24 2.80
R0902 too-many-instance-attributes 2.41 2.85 0.72 2.50
R1703 simplifiable-if-statement 1.14 0.20 4.65 -2.06
R1705 no-else-return 13.15 11.27 20.22 -1.99
R0913 too-many-arguments 10.92 12.01 6.83 1.98
R1708 stop-iteration-return 0.14 0.18 0.01 1.70
R0914 too-many-locals 10.35 11.15 7.33 1.41
R0133 comparison-of-constants 0.90 0.54 2.29 -1.16
R1712 consider-swap-variables 0.24 0.01 1.11 -1.04

Absolute number of Refactoring code style issues 193,946 153,220 40,726

style issues is package handling related. R0402: Consider
using from import is a package handling-related Warning issue
with the second-largest residual (2.80, see Table V). R0402
occurs when a submodule of a package is imported and
aliased with the same name, e.g., use import os.path
as path instead of using from os import path. It is
more prevalent in ML (10.01%) than in non-ML notebooks
(4.24). R1725: Super with Arguments issue has the highest
standard residual among refactoring suggestions and is more
frequent in ML than in non-ML notebooks. It recommends
against using the super() function with explicit arguments
in a method and instead uses super() with no arguments.
This is because using explicit arguments can make the code
more brittle and harder to maintain, as it requires knowledge
of the superclass’ implementation details. In ML code, it is
common to define custom classes and override superclass
methods to implement specific functionality, such as training
or predicting with a model. This often requires calling the
superclass methods using super() and leads the occurrence
of R1725 to be much more frequent in ML notebooks.

The distributions of all four studied categories of
code style issues are significantly different across ML
and non-ML notebooks. Package or library handling-
related style issues are much more prevalent in ML
than in non-ML notebooks.

VII. IMPLICATIONS

A. Implications for PEP-8 code style developers

Our results show that all the studied PEP-8 code style
issue categories significantly differ between ML and non-

ML notebooks. Several individual code style issues have
large differences and are more prevalent in ML than non-
ML notebooks, e.g., R1725: super-with-arguments, E0401:
import-error and E1101: no-member. There are two possible
explanations for these differences: (1) ML developers care less
about code style than non-ML developers, or (2) not all PEP-8
style guidelines are suitable for ML code in notebooks. Since
the first reason is unlikely, we argue that some PEP-8 style
guidelines may need to be adapted to better fit ML code in
notebooks. A natural consequence of this observation is that
we may need different PEP-8 style guidelines for different
types of code. We encourage researchers to further investigate
which types of code could benefit from updated PEP-8 style
guidelines. The following is an example of a guideline that
could be improved to better fit ML code in notebooks.

R1725:super-with-arguments: This code style issue has the
largest difference in occurrence between ML and non-ML
notebooks (see Table V). Our observation indicates that this
refactoring-type code style issue is 30 times more prevalent
in ML (5.70%) than in non-ML notebooks (0.19%). One
possible reason is that, in machine learning code, it is com-
mon to use deep learning frameworks such as PyTorch or
TensorFlow that involve a large amount of inheritance and
multiple levels of subclassing. In such cases, it is important
to use super() with explicit arguments to avoid ambiguity
in method resolution order (MRO) and ensure the correct
order of inheritance. When we use super() without explicit
arguments, it automatically looks for the following method
in the MRO, which may not be what we intend and could
lead to unexpected behavior and errors in our code. Therefore,
using super() with explicit arguments in machine learning
code is more common to ensure that the intended method



is called in the correct order of inheritance. In fact, the
official TensorFlow documentation includes explicit arguments
when calling super().2 These examples demonstrate that the
circumstances for triggering the R1725:super-with-arguments
code style issue need to be adapted for ML notebooks.

B. Implications for researchers

We revealed that package handling-related issues such as
E0401: import-error are more prevalent in ML notebooks (see
Section VI-C1 and Table II). As researchers, when we run
Pylint in a large-scale study, we generally do not restore the
execution environment of a project or notebook before analyz-
ing it (since Pylint is a static analysis tool). This is not really
a problem for non-ML code, but as our results show, ML code
is much more affected by such package handling style issues.
Therefore, future studies should consider including a tool such
as SnifferDog [44] to restore the execution environment of
every notebook before analyzing it.

VIII. THREATS TO VALIDITY

A. Internal Validity

Validity of static analysis: Static analysis tools like Pylint
analyze code without executing it. However, Wang et al.
showed that many Jupyter notebooks are difficult to reproduce
due to issues with their dependencies [44]. We observed that
the code style issues that differed the most between ML and
non-ML notebooks mostly had to do with dependencies as
well. Therefore, the choice of not executing the notebooks
or at least restoring their execution environments may have
impacted the results. Tools such as SnifferDog [44] can help
to restore the execution environments of notebooks at a large
scale. However, such tools come with their own limitations
which may affect the study results as well. Future studies
should consider replicating the study in an environment that
allows the notebooks to execute.

Validity of Pylint: We used Pylint for identifying code style
issues in the studied notebooks since SE researchers widely
use this tool to lint Python code [33], [37], [41]. Other tools for
identifying code style issues in Python, such as Pyflakes [1],
exist. Future studies should investigate whether our findings
hold for the results of other code style detection tools.

One might argue that some of the results from Pylint are
false positives. For example, one might argue that the often-
occurring import error (E0401) stems from an incorrectly
configured execution or Pylint environment, rather than actual
low quality code. We used the default Pylint and notebook
configuration for our experiments, as this is the most repre-
sentative of what developers and users will run into when using
notebooks from others (which is one of the most common use
cases of notebooks, as explained by Kery et al. [21]).

Validity of ML notebooks identification: We follow the
repository filtering strategy of Biswas et al. [10] to identify
the ML notebooks in our study. In that paper, they filtered

2https://www.tensorflow.org/guide/keras/custom layers and models#
calling the super constructor

their repositories that use data science libraries in the import
statements. Here, we prepared a list of ML libraries3 and
checked whether they are used in the import statements. If
yes, we labelled the notebook as ML; otherwise we labelled
them as non-ML. This process did not check whether any
features from the imported ML packages were called during
the notebook execution.

Validity of notebook code quality calculation: An internal
threat to the validity of how we compute notebook code quality
is that Errors are weighted five times as heavy as other types of
issues. The way to compute the notebook code quality score
was a design decision by the Pylint developers [5], and we
decided to use the same weighting to allow future researchers
to compare their results with ours without having to make
changes to Pylint.

B. External Validity

Threats to the external validity of our study concern the
generalizability of the results. We focused on Python note-
books. Even though 93% of the computational notebooks
are written in Python [31], future studies should investigate
whether our results hold for other programming languages.
Finally, we focused on notebooks from Kaggle, an online
community platform for publicly sharing notebook code. As a
consequence, our results apply to notebooks on Kaggle only.
Future studies should investigate whether our results apply to
notebooks from other platforms, such as GitHub.

IX. CONCLUSION

In this paper, we conducted a large-scale empirical investi-
gation on code style issues in 246, 599 open-source Jupyter
notebooks written in Python. In particular, we investigated
whether lower code quality in notebooks is correlated with
the usage of machine learning functionality. We grouped the
dataset into 177, 252 ML notebooks (71.9%) and 69, 347
non-ML notebooks (28.1%) based on the usage of at least
one machine learning library in a notebook. We studied the
notebook’s code quality based on PEP-8 code standards and
explored how code style issues differ between ML and non-
ML notebooks. The most important findings of our study are:
• ML notebooks tend to have lower code quality in terms

of PEP-8 code standards than non-ML notebooks.
• All types of studied code style issue categories occur

significantly more frequently in ML notebooks.
• Package or library handling-related style issues are much

more prevalent in ML than in non-ML notebooks.
We conclude that the usage of ML functionality is an

important reason for low quality code (based on the PEP-8
standard) in notebooks. However, the differences between code
style issues in ML and non-ML notebooks also suggest that the
PEP-8 standard may not always be the most suitable for ML
code in notebooks. Hence, we recommend that future studies
investigate how existing style guidelines can be improved to
better fit code inside ML notebooks.

3https://github.com/saeedsiddik/NotebookCodeStyleIssue/blob/main/data/
ml python package.txt
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