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Abstract—During software development, developers often
make numerous modifications to the software to address existing
issues or implement new features. However, certain changes may
inadvertently have a detrimental impact on the overall system
performance. To ensure that the performance of new software re-
leases does not degrade (i.e., absence of performance regressions),
existing practices rely on system-level performance testing, such
as load testing, or component-level performance testing, such as
microbenchmarking, to detect performance regressions. However,
performance testing for the entire system is often expensive
and time-consuming, posing challenges to adapting to the rapid
release cycles common in modern DevOps practices. In addition,
system-level performance testing cannot be conducted until the
system is fully built and deployed. On the other hand, component-
level testing focuses on isolated components, neglecting overall
system performance and the impact of system workloads. In
this paper, we propose a novel approach to early detection
of performance regressions by bridging the local performance
data generated by component-level testing and the system-level
architectural models. Our approach uses local performance data
to identify deviations at the component level, and then propagate
these deviations to the architectural model. We then use the
architectural model to predict regressions in the performance
of the overall system. In an evaluation of our approach on two
representative open-source benchmark systems, we show that it
can effectively detect end-to-end system performance regressions
from local performance deviations with different intensities
and under various system workloads. More importantly, our
approach can detect regressions as early as in the development
phase, in contrast to existing approaches that require the system
to be fully built and deployed. Our approach is lightweight and
can complement traditional system performance testing when
testing resources are scarce.

Index Terms—performance regression, regression testing, per-
formance modeling, performance engineering

I. INTRODUCTION

Performance is a critical aspect of the quality of service
(QoS) of software systems. It is important to ensure that
software consistently delivers optimal performance after each
new release (i.e., absence of performance regressions) [10],
[35], [45], [54], [60]. However, throughout the development
cycle, developers may implement various modifications to the
software to implement new features or address existing issues,

some of which could potentially impact the performance of the
system adversely [15], [16], [66]. Such performance regres-
sions can result in higher resource consumption (e.g., excessive
memory or CPU usage), increased response time, or even field
failures, thereby causing significant financial and reputation
losses [1], [62]. For instance, according to a recent report [1],
even a mere two-second difference in the website response
time can drastically decrease user satisfaction, causing the
bounce rate to surge from 9% to 38%. Ultimately, this could
result in a remarkable loss of market share and revenue.
Therefore, it is crucial to detect and resolve any performance
regressions before deploying the system.

In practice, traditional system-level performance testing is
widely adopted to prevent potential performance regressions
from sneaking into production [25], [46], [47]. Existing prac-
tices involve running field-like workloads for an extended
period of time (from hours to days) to exercise both the old
and the new versions of the system in an in-house perfor-
mance testing environment. During testing, a large number
of performance metrics and execution logs are generated,
and performance analysts collect and analyze this information
from both old and new versions to determine the existence of
performance regressions [25]. However, performance testing
can be expensive, especially for large-scale systems, requiring
significant resources and time to set up the environment and
execute the performance tests [14]. Furthermore, such a pro-
cess is often conducted late in the software development and
release cycle, i.e., after the system is built or even integrated,
making it challenging and laborious to diagnose and address
the performance regressions at such a late stage.

To tackle this challenge, there has been a growing interest
in leveraging component-level (e.g., function or class) per-
formance information to detect performance regressions in
software systems. These approaches [13], [22], [32], [34], [37],
[41], [48] propose to leverage unit tests (e.g., JUnit tests)
or microbenchmarks (e.g., Java Microbenchmark Harness)
to collect the corresponding performance metrics, such as
execution time or throughput. Through conducting statistical
analysis on the performance metrics collected from the test



runs before and after code changes, developers can identify
any remarkable performance improvement or regressions in
individual components of the system. Such approaches are
relatively lightweight to execute and avoid the expensive
resources and time required for running traditional perfor-
mance tests on the entire system. However, due to the unique
nature of component-level tests, they typically do not explain
the system-level performance well [14]. In particular, the
performance changes of components may be propagated to the
system very differently. For instance, a function executed once
may have a negligible performance impact whereas a function
executed in a long loop may have a much more significant
impact. In addition, it is also challenging to consider realistic
workloads in the component-level testing.

In this paper, we propose a novel approach to early detection
of performance regressions by bridging the local performance
data generated by component-level testing and the architectural
models of the system. After developers make code changes
during development, we first collect local performance infor-
mation by running component-level tests and then identify
performance deviations at the component level. Afterward,
we propagate these component-level performance deviations to
the architectural model. Finally, we leverage the architectural
model to predict performance regressions of the entire system.
To evaluate the effectiveness of our approach, we conduct
experiments on two representative open-source benchmark
systems, i.e., TeaStore [59] and TrainTicket [67]. In the ex-
perimental results, we find that by bridging local performance
data and architectural models, our approach can effectively
detect end-to-end system performance regressions with dif-
ferent intensities of local performance deviations and can
maintain its effectiveness when the system experiences various
workloads. The experimental results also demonstrate that our
approach can assist developers in identifying and addressing
performance regressions as early as the software development
phase and can be adapted into the rapid software development
and release practices (e.g., DevOps) to complement traditional
system performance testing in resource-constrained scenarios.

This paper makes the following main contributions:

• We develop a novel approach to the early detection of per-
formance regressions by bridging the local performance
testing data and the system architectural models.

• Our approach is lightweight and can be integrated into
fast-paced software development and release practices
(e.g., DevOps) to complement traditional system perfor-
mance testing in situations where testing resources are
scarce.

Paper organization. Section II discusses the background of
our work. Section III outlines our approach to detecting system
performance regressions. Section IV introduces the evaluation
setup. Section V presents the evaluation analysis and results.
Section VI discusses the prior related research. The threats to
the validity of our work are discussed in Section VII. Finally,
Section VIII concludes our work.

II. BACKGROUND

In this section, we introduce the background of our study,
including software performance testing and model-based per-
formance analysis.

A. Software performance testing

Software performance testing evaluates a software system’s
performance under various conditions to ensure the system
meets the specified performance requirements and operates
efficiently. Software performance testing can be conducted at
both the system and component levels.

At the system level, performance testing evaluates the over-
all performance of the entire software system under a workload
similar to real-world scenarios. It simulates user interactions
and workload scenarios to assess performance metrics such
as response times, throughput, and resource utilization of the
system. Typically, there are four phases in system performance
testing: 1) defining a system workload (e.g., Apache JMeter
HTTP(S) test script [27]), 2) preparing an in-house testing
environment, 3) executing the performance tests, and 4) an-
alyzing the testing results. System performance testing has
demonstrated its effectiveness in assisting developers in deter-
mining compliance with performance goals, identifying system
bottlenecks, and detecting performance regressions [25]. How-
ever, since it involves the entire software system, and modern
software systems are often large in scale and highly complex,
the testing process can be extremely time- and resource-
consuming.

On the other hand, at the component level, performance
testing focuses on evaluating the performance of individual
software components or modules in isolation. These com-
ponents can be different functions or classes that can be
independently tested. Component-level performance testing
involves developers writing tests (microbenchmarks) targeting
specific components of concern with performance unit test-
ing frameworks, such as JMH, JunitPerf, and ContiPerf, or
directly using JUnit to test the performance combined with
functional tests [19], [42]. This type of performance testing is
lightweight to execute and effective to uncover performance
issues at the component level and ensure components meet
performance requirements individually [22]. However, it often
does not explain the system-level performance well [14], since
performance changes of a component may be propagated to
the system very differently (e.g., the function executed once
versus executed within a long loop). Furthermore, it is also
challenging to consider realistic workloads in the component-
level testing.

B. Model-based performance analysis

Model-based performance analysis is a methodology that
utilizes analytical models to predict and assess the perfor-
mance of software systems [4]. Model-based performance
analysis involves constructing abstract models of the system,
describing its components, interactions, and resource utiliza-
tion, and then employing mathematical and computational
techniques for analysis and simulation [8], [9]. Models can
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Fig. 1: An example software system with two subsystems and
its corresponding architectural model

take various forms, such as queueing network (QN) [36], [38],
[49], [63], layered queueing network (LQN) [24], [53], [57],
or queueing Petri nets (QPN) [3], [5]–[7], to capture different
aspects and characteristics of the system. Figure 1a shows an
illustrative example of a software system with two subsystems
and Figure 1b presents the corresponding architectural model
of the system. Model-based performance analysis provides an
efficient and effective means for developers and system design-
ers to better understand and optimize the performance char-
acteristics of software systems. Through modeling, developers
can identify potential performance bottlenecks, predict system
performance under various workload conditions, and make
design optimizations to enhance system performance [39].
However, when dealing with modern systems that are typically
large-scale and complex, accurately modeling the performance
of the entire system is challenging, leading to the adoption
of high-level modeling representations, such as modeling at
the subsystem or service levels [40] as illustrated in Figure 1.
While these high-level models offer a macroscopic understand-
ing of the overall system performance, they also constrain the
model’s ability to capture nuanced performance changes at the
system’s finer levels (e.g., functions).

In this paper, we propose a novel cost-effective approach
to detecting system performance regressions during the devel-
opment phase by bridging local performance data generated
from component-level performance testing and architectural
models. Our approach allows developers to understand earlier
that there is a performance regression, instead of running
expensive system performance testing after the system is built
or even integrated. We present our approach in detail in the
next section.

III. APPROACH

In this section, we present our approach for detecting system
performance regressions by bridging local performance data
and architectural models. Figure 2 gives an overview of our
approach, and each subsection corresponds to a step in the

figure. To ease the illustration of our approach, we show a
running example of a software system with two subsystems,
each with three and four functions, as shown in Figure 1a.
However, the number of subsystems and functions is much
larger in our evaluation and real-life scenarios. Our approach
is designed to be lightweight and can be seamlessly integrated
into the software development process, such as the CI/CD
pipeline. In particular, after developers make changes to the
software (e.g., after a commit), our approach aims to provide
developers with timely feedback on whether these changes will
cause system performance regressions or not, without the need
for running expensive system-level performance testing.
Preparing system architectural model. Our approach relies
on the architectural model to detect performance regressions.
The model is typically available as part of the software
artifact [31] and can be directly utilized for our approach.
As an alternative when there is no available model, we can
also recover the architectural model through relatively low-
frequency system-level performance testing, which has been
extensively discussed in prior studies [18], [39], [53]. In
particular, compared to component-level performance testing
that typically occurs after each commit (alongside unit tests
in the CI pipeline), system-level performance testing is often
conducted only once at the beginning of a major release [25].
It is also worth noting that our approach does not necessarily
depend on system performance testing and specific types of ar-
chitectural models. Instead, our approach primarily focuses on
bridging the local performance data and architectural models
to detect performance regressions, assuming the availability of
the system architectural model.

A. Collecting local performance data

In the first step, we collect the performance data of local
components (i.e., functions) before and after developers make
changes to the software during development. In particular, we
run the component-level tests of the software, e.g., unit tests
or JMH microbenchmarks, for the performance testing of the
local components. We execute these test cases on both the
original and the updated version of the code. Each test is
executed with a total of 30 iterations; in each iteration, we
compile, deploy, and test the system from scratch, to minimize
the impact of fluctuations and outliers in the performance
data (potentially caused by environmental noise, cache effects,
system randomness, or flaky tests). This also follows the
performance testing practices that have been done in prior
work [20]. Furthermore, during testing, we actively utilize ap-
plication performance monitoring tools to monitor and collect
the software system’s runtime behavior (i.e., the interactions
of local components – functions), and the corresponding
performance data (i.e., the execution time of each component).

B. Identifying local performance deviations

We analyze the local performance data collected in the pre-
vious step to estimate the performance deviation (in execution
time) of local software components. We first conduct Wilcoxon
rank-sum statistical tests [61] to compare the performance data
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Fig. 2: An overview of our approach for system performance regression detection by bridging local performance data and
architectural models

distributions before and after the update. We run the statistical
test at the 5% level of significance, and the null hypothesis is
that there exists no statistically significant difference between
the performance of the original and updated versions of the
component. If the p-value of the test is not greater than 0.05,
we would reject the null hypothesis and favor the alternative
hypothesis, i.e., there is a statistically significant difference.
However, recognizing that statistical tests solely reveal the
existence of differences without quantifying their magnitude,
we complement this statistical analysis by calculating Cliff’s
Delta effect size [17] to determine the magnitude of the ob-
served differences. We employ the widely adopted thresholds
for Cliff’s Delta effect size, as provided in prior research [50].
It is worth noting that the choices of the Wilcoxon rank-sum
test and Cliff’s Delta effect size are deliberate since they do
not assume a specific distribution for the performance data.

In the cases where statistical analysis indicates significant
differences with an effect size larger than negligible, we
further propagate the local performance deviation to the system
architectural model. To do so, we calculate the mean difference
(MD) of local performance before and after updates. A positive
value indicates decreased performance (i.e., longer execution
time) in the updated version, while a negative value suggests
performance improvement (i.e., shorter execution time).

C. Propagating local performance deviations to architectural
model

With the identified local software components that suffer
from deviated performance, intuitively, one may utilize the
local performance deviations and the number of times the
components are called as a proxy to determine system per-
formance regressions. However, such a naı̈ve approach may
overlook the crucial impact of the system’s complexity and
dynamics, such as resource contention, queue wait times, and
various workloads. Therefore, the architectural model is used
to detect performance regressions, especially when the system
is under various workloads. In this step, we first analyze
the local performance data collected from the prior step (cf.
Section III-A) to establish a dependency graph to represent
the structure and performance of the local components. Such
a graph is a directed acyclic graph, with nodes representing
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Fig. 3: An illustrative example of propagating local perfor-
mance deviations to architectural model (for subfigures (a), (b),
and (c), the red boxes indicate components with performance
deviations, while for subfigure (d), the red box indicates
updated performance parameter in the architectural model)

the local components, and edges representing their interaction
dependencies (e.g., function calls). Performance information is
represented as node attributes. We then extract a subgraph with
local components that have deviated performance (identified
from the previous step in Section III-B) within the local
dependency graph and mark them accordingly, as depicted in
Figure 3a.



Afterward, we map the local performance deviations to
the corresponding system level through graph mapping. In
particular, we first identify common substructures shared be-
tween the extracted local graph and the existing system graph
by leveraging the ISMAGS algorithm [33], which finds the
maximum common subgraph of two graphs. We then align the
performance deviation (i.e., MD) from the local level to the
corresponding system level. Figure 3b shows an example of
mapping the local performance deviation marked in Figure 3a
to the corresponding system level.

Since system architectural models typically operate at a rel-
atively higher level, such as the subsystem level, merely under-
standing the performance deviations at the lower (component)
level is insufficient. Therefore, we further employ a bottom-up
strategy to propagate performance deviations upwards through
the hierarchical dependency layers of the system. We begin
this process from the identified components of concern and
extend it until it reaches the top-level components of that sub-
system, since these components encompass the performance
of their invoked components and constitute the performance
of the subsystem. As illustrated in the example in Figure 3c,
after we successfully map the local performance deviation to
the system level for Function B3 and Function B4, we further
propagate to the top-level component Function B1.

Finally, we calculate the overall performance of the sub-
system by summing up the top-level component performance
(e.g., Function B1 and Function B2 in Figure 3c) and cal-
culate the deviation (i.e., relative difference) between the
overall performance of the subsystem before and after the
changes. With this deviation in the overall performance of
the subsystem, we then update the corresponding performance
parameters within the architectural model. For example, in
Figure 3d, we propagate the local performance deviation to the
architectural model by updating the service demand parameter
for Microservice B from 0.3 seconds to 0.5 seconds.

D. Detecting system performance regressions

The last step of our approach is to identify system per-
formance regressions by comparing the original architectural
model and the model updated in the last step. We first use both
models to get the original and updated predicted performance,
including the resource utilization and response time. We then
utilize a statistical analysis approach similar to the one used
for identifying local performance deviation in Section III-B. In
particular, we utilize the Wilcoxon rank-sum test and Cliff’s
Delta effect size, to determine whether there is a significant
difference between the two performance distributions and the
magnitude of the difference. If the p-value is smaller than
0.05 and the effect size is larger than negligible, we would
consider that the changes to the software may lead to system
performance regressions.

IV. EVALUATION SETUP

To evaluate the effectiveness of our approach, we conduct
case studies on two prevalent open-source systems (i.e., TeaS-

tore and TrainTicket) with injected performance regressions1.
Our selected subject systems are well-established benchmark
systems that provide detailed documentation, abundant system
tests, and a certain extent of representativeness with real-
world systems regarding scale and complexity. In addition,
these systems have been widely used and studied in prior
software performance engineering studies [18], [43], [55]. In
this section, we present the details about the subject systems,
evaluation environment, performance regressions, component-
level and system-level performance test design, architectural
models, and evaluation scenario design.

A. Subject systems

TeaStore [59] is a microservice reference and benchmark
application that serves as a simulated web store. As a dis-
tributed microservice application, TeaStore consists of five
distinct services plus a separate service registry. We choose
TeaStore as a subject since it is positioned as a benchmark
application and widely utilized for evaluating various perfor-
mance aspects [59], including performance modeling, auto-
scaling, and energy-efficiency analysis. The system comprises
approximately 33k lines of source code and 400 files.

TrainTicket [67] is a web train ticket booking system that
provides various typical train ticket booking functionalities,
such as ticket inquiry, reservation, payment, and rebooking.
This system is a benchmark system and also adopts a mi-
croservice architecture, containing up to 41 microservices. The
system comprises approximately 289k lines of source code and
2k files.

B. Evaluation environment

The evaluation of our subject systems is conducted on two
separate machines interconnected within the same internal
network. Each machine has a configuration of Intel Core i7-
6700 CPU, 32GB of RAM, and operates on Ubuntu 22.04.3
LTS. The first machine functions as the application server to
host the subject system, while the second machine serves to
generate workloads (via JMeter load driver [27]) to simulate
real-world users interacting with the system. We leverage Pod-
man container (v4.6.2) and Podman-Compose orchestration
(v1.0.6) for the deployment and management of our subject
systems, where each container runs a particular microservice.
It is worth noting that we deliberately restrict the CPU usage
for each service container to avoid resource contention among
containers. We utilize the logs generated by the load generator
to collect the response time of each request and leverage
podman stats to gather the resource (CPU) usage statistics
for each of the containers. Furthermore, we have instrumented
the subject systems with Kieker [58] to collect the execution
time of each function and their interactions. Kieker offers
comprehensive dynamic analysis capabilities at runtime with
low overhead and does not require modifying the source code.

1Our evaluation setup, scripts, and results are shared online via https://doi.
org/10.5281/zenodo.13135986 as a replication package.



C. Performance regressions

By checking the development history (i.e., commit logs,
issue tracking, and comments) of our subject systems, we
did not find any historical performance regressions of specific
commits or versions. Therefore, we opt to manually inject
performance regressions in the source code of the subject
systems for the evaluation of our approach. We consider
injecting performance regression by adding busy waiting in
the source code to slow down the software execution. Al-
though real-world performance regressions can differ, busy
waiting has been used in previous studies [20], [34], [41] to
simulate additional heavy-weight operations. To mitigate the
bias introduced by injecting performance regressions at one
specific location in the software, we systematically examine
the source code of our subject systems and arbitrarily identify
three distinct locations from different subsystems and different
components for regression injection, denoted as L1, L2, and
L3.

Furthermore, we also investigate the performance regres-
sions with various intensities, i.e., different waiting time
lengths. According to prior work on evaluating software mi-
crobenchmark suites, Laaber and Leitner [41] observe that
slowdowns exceeding 50% (i.e., 1.5x slower) in most Java
projects can often be reliably detected. Inspired by this finding,
at each of the selected locations in the source code, we re-
spectively inject busy waiting with three distinct time lengths,
including 10%, 50%, and 250% of the component’s original
execution time, and denote them as Low, Medium, and High.
This process would yield a total of nine distinct versions per
subject system, each of which incorporates the performance
regression of a specific intensity and at a specific location.
In addition, we measure the performance of each version in
isolation to prevent interference between different injections.

D. Component-level and system-level performance test design

Our evaluation relies on component-level performance tests
to understand the impact of the injected performance regres-
sions at the component level and further propagate such impact
to the architectural model. For both of our subject systems,
although they lack existing performance microbenchmarks,
there exists a large number of unit tests, i.e., TeaStore has
163 test cases and TrainTicket has 628 test cases. In addition,
prior studies [22], [34], [42], have pointed out that unit tests
can be a good proxy for performance tests (if there are no
real performance tests). Therefore, we leverage these existing
unit tests to facilitate the performance testing of the local
components of our subject systems. We run each test a total
of 30 times to minimize environmental noise and system
randomness, similar to what was done in prior work [20].

While our approach does not inherently require system-level
performance tests (cf. Section III), our study still relies on
these tests to establish an oracle regarding the impact of per-
formance regressions on the system-level performance, which
is crucial for evaluating the effectiveness of our approach. We
examine the design documentation of our subject systems and
identify typically triggered usage scenarios to exercise various

aspects of the system. We choose the workload intensity that
exercises the system performance without saturation since our
approach is intended to work before extreme performance
degradation. In particular, for the TeaStore application, we
have designed a diverse workload scenario in which the clients
check the store, log into the system, and browse various
categories and products, with the intensity of 50 requests/sec,
and for the TrainTicket subject, we have realized a workload
scenario in which the admin logs into the system, updates
user information, and clients check their order and change
a ticket reservation, with the intensity of 133 requests/sec.
To ensure steady-state performance, we conduct 15-minute
system performance testing for each run, in which we ex-
clude the initial 5-minute warm-up period data and retain the
subsequent 10-minute data as steady-state performance data.
Furthermore, we repeat each system performance testing run
three times to ensure robust results and mitigate the impact of
the environmental noise and randomness during performance
measurements.

E. Architectural models

Our study leverages architectural models of the system to
detect system performance regressions, however, after manu-
ally checking both of our subject systems, we find that their
architectural performance models are not explicitly provided.
Therefore, we need to construct the architectural models
of our subject systems for evaluation purposes. To achieve
it, we rely on the collected system runtime behavior and
performance information during system performance testing
(cf. Section IV-D) to construct the system’s structure and
calculate the model service demands, which is similar to the
process in prior studies [39], [53]. In our study, we utilize the
QPN [6] modeling formalism to construct the architectural
model due to its superior expressiveness and effectiveness in
modeling the performance of complex software systems [57].
The architectural models used in our study are also shared
in the replication package. It is also worth noting that our
study does not rely on specific types of architectural models,
and the construction of architectural models is also not the
primary focus of our study. Practitioners are encouraged to
refer to the existing literature (cf. Section II) for insights into
various modeling techniques and methodologies.

F. Evaluation scenario design

We consider two evaluation scenarios to assess the effective-
ness of our approach. In the traditional in-house performance
testing scenario, developers often fix the workloads when they
model, test, and analyze the performance of different versions
of systems [25]. Therefore, we consider fixed-workload as our
first evaluation scenario. In this scenario, for each of our sub-
ject systems, we first perform system-level performance testing
on both the original version (with no injected regression) and
the updated versions (each version has an injected regression
of a specific intensity and at a specific location in the source
code) with our designed workload (cf. Section IV-D). We then
compare the performance testing results from the original and



updated versions to understand the impact of performance
regressions on the system performance in terms of response
time and CPU percentage. It is noteworthy that our approach
does not inherently require system-level performance testing
(cf. Section III), and the purpose of doing so is to establish
an oracle regarding the impact of performance regressions on
the system-level performance, which is crucial for evaluating
the effectiveness of our approach. Afterward, we apply our
approach to each of the updated versions with the same
workload and then examine whether our approach can detect
performance regressions and keep consistent with the perfor-
mance testing results.

In the second evaluation scenario, we assess whether our ap-
proach works when system workloads change between system
versions. Changes in the system workload are common, as they
are influenced by the dynamics of the operating environment
(e.g., an increase in the number of users over time). In
such cases, the same local performance deviation may impact
the system-level performance differently. Therefore, we also
consider a various-workload evaluation scenario to explore
whether our approach can capture these diverse impacts and
remain effective under various workloads. In this scenario, we
carefully devise three different workload variants based on
the original workload. In particular, the first variant changes
the original workload intensity, the second variant changes
the original execution ratio among various request types, and
the third variant combines both the first and second variants
simultaneously. Similar to the fixed-workload scenario, we
first conduct system-level performance testing to understand
the impact of the same regressions under various workloads
on the system-level performance and then apply our approach
to these various workloads. We pay special attention to the
minimum detectable regressions at each location in the fixed-
workload scenario (if absent, then the highest intensity is used)
to examine whether our approach can still successfully detect
these performance regressions and remain consistent with the
performance testing results under various workloads.

V. EVALUATION ANALYSIS AND RESULTS

In this section, we first present the data analysis approaches
for the evaluation. Then, we discuss the evaluation results.

A. Data analysis

Table I and Table II show the detailed results of applying
our approach to detecting end-to-end system performance
regressions for our subject systems in the fixed-workload
and various-workload scenarios, respectively. We use the
following three metrics to evaluate our approach.

MPD refers to the mean performance degradation between
two versions (with and without performance regressions). It
explains how the regression impacts the mean of system
performance. A positive value indicates a longer response time
or higher CPU percentage in the updated version.

Effect size is a statistical metric used to quantify the practi-
cal significance of the observed effects of performance regres-
sions in a standardized way (independent of the measurement

scales or units). It compares the performance distributions
before and after injecting regressions. This metric can help
determine whether the observed effects are meaningful or
merely coincidental, and its magnitude reflects effect strength.
We opt to calculate Cliff’s Delta effect size since it does not
assume a specific distribution for the performance data.

Outcome examines whether the impact of performance
regressions measured during performance testing (i.e., the or-
acle) and the impact predicted by our approach are consistent.
In particular, for response time, we consider the effect size
larger than negligible as the presence of regressions, and the
“Outcome” indicates the classification (including TP for true
positive, TN for true negative, FP for false positive, and FN for
false negative) of model prediction compared to performance
testing based on the effect size, while for CPU percentage,
since only mean CPU percentage is produced, the “Outcome”
measures the absolute difference (|∆|) between the MPD of
performance testing and model prediction.

B. Evaluation results

Evaluation in the fixed-workload scenario:
When there exist significant local performance devi-

ations, their impact on end-to-end system performance
may not always be significant. For example, as shown in
Table I, in the TeaStore subject, for the local performance
deviation at location L2 with Low and Medium intensities and
L3 with all three intensities (i.e., Low, Medium, and High),
there exist significant local performance deviations with up to
250% slowdown (cf. Section IV-C), however, their impact on
end-to-end system performance is all insignificant, i.e., with a
p-value > 0.05 or only negligible effect size in response time
and very low MPD (≤ 1.01) in CPU percentage. After further
investigation, we observe that these components exhibiting
performance deviations have an inherently low impact in terms
of system performance. For instance, even when subjected to
the most severe performance regression (i.e., injecting an extra
250% waiting time), the execution time of these components
mostly does not exceed 1 millisecond. Furthermore, these
components are often executed infrequently during system
runtime (e.g., only once), further diminishing their impact on
system performance. Such a finding indicates that significant
local performance deviations may not always cause a notable
impact at the system level, potentially leading to false posi-
tives. Therefore, if developers consistently choose to conduct
system performance testing whenever there are notable local
performance deviations, it could result in a considerable waste
of resources and time. This finding signifies the importance of
our approach.

Our approach does not generate false alarms when
there is local performance deviation but no system per-
formance regression. As shown in Table I, when there is
local performance deviation but no performance regression in
system performance testing, our approach does not generate
false alarms (i.e., FP). For instance, in TeaStore, for the local
performance deviation at the location of L2 with Low and
Medium intensities and L3 with all three intensities (i.e., Low,



TABLE I: Overall results of detecting end-to-end system performance regressions in the fixed-workload scenario
Local performance deviation System performance regression

Location Intensity
Response time CPU percentage

Performance testing Model prediction Outcome Performance testing Model prediction Outcome (|∆|)
MPD (ms) Effect size MPD (ms) Effect size MPD MPD

L1
Low 7.02 medium 7.60 small TP 6.53 6.09 0.44

Medium 41.68 large 37.67 large TP 33.03 28.82 4.21
High 250.37 large 749.01 large TP 110.60 149.55 38.95

L2
Low 5.31 p > 0.05 0.39 negligible TN 0.13 0.27 0.14

Medium 4.52 negligible 1.36 negligible TN 1.01 -0.08 1.09
High 8.65 small 6.42 small TP 3.91 5.21 1.30

L3
Low -1.08 negligible 0.11 negligible TN -0.12 < 0.01 0.12

Medium 0.52 p > 0.05 0.51 negligible TN -0.19 0.31 0.50
High -0.88 negligible 2.11 negligible TN -0.11 1.68 1.79

(a) TeaStore

Local performance deviation System performance regression

Location Intensity
Response time CPU percentage

Performance testing Model prediction Outcome Performance testing Model prediction Outcome (|∆|)
MPD (ms) Effect size MPD (ms) Effect size MPD MPD

L1
Low 3.63 p > 0.05 -0.25 p > 0.05 TN 0.41 -0.03 0.44

Medium -1.61 p > 0.05 1.01 negligible TN < 0.01 0.28 0.28
High 12.51 small 6.37 negligible FN 1.97 1.69 0.28

L2
Low 0.48 small 0.33 negligible FN 1.16 0.89 0.27

Medium 1.47 medium 1.64 small TP 3.77 4.25 0.48
High 5.34 large 8.00 large TP 13.81 20.12 6.31

L3
Low 0.04 negligible 0.46 negligible TN 0.08 1.18 1.10

Medium 0.40 negligible 1.72 negligible TN 1.05 4.43 3.38
High 1.86 large 9.12 large TP 4.92 22.76 17.84

(b) TrainTicket
Note 1: “MPD” refers to the mean performance degradation between two versions (with and without performance regressions).
Note 2: For response time, the “Outcome” indicates the classification of model prediction compared to performance testing based on effect size, while for CPU percentage, since
only mean CPU percentage is produced, the “Outcome” measures the absolute difference (|∆|) between the MPD of performance testing and model prediction.
Note 3: “TP” (true positive) and “TN” (true negative) indicate the successfully detected presence and absence of performance regressions by our approach, respectively, while
“FP” (false positive) and “FN” (false negative) indicate falsely detected presence and absence of performance regressions, respectively.

Medium, and High), when there exists insignificant system
performance impact observed from performance testing, the
results predicted from our approach always indicate a neg-
ligible difference between the system response times before
and after injecting the performance regressions. In addition,
regarding CPU percentage, for both of our subject systems
(i.e., TeaStore and TrainTicket), the MPD between our model
predictions and performance testing results are also similar.
The largest difference between the model predicted and the
actual MPD for CPU percentage is only 3.38 when there exist
no system performance regressions.

Our approach can effectively detect end-to-end system
performance regressions caused by local performance
deviations in the components. As presented in Table I, for the
cases where the local performance deviation leads to notable
system performance regression (i.e., with a small to large effect
size in performance testing), our approach can detect seven out
of nine cases in our subject systems with comparable results
(in MPD and effect size) to the performance testing results
in terms of response time. The two (FN) cases missed by
our approach are all from TrainTicket, i.e., L1-High and L2-
Low. It is worth noting that despite missing these two cases,
their actual impact on the system performance is relatively
low (i.e., both have small effect sizes in performance testing).
Furthermore, we suspect that one potential reason for these
cases could be the quality of the architectural models that we

recovered through the system-level performance testing (cf.
Section IV-E), thus impacting the effectiveness of detecting
performance regressions. Concerning CPU percentage, we
observe that the differences between the model predicted
and the actual MPD when there are system performance
regressions are relatively larger than those when there are
no regressions. However, such differences are consistently in
the right direction, i.e., model prediction shows a larger MPD
than performance testing, therefore, they do not fundamentally
impact the determination of performance regressions.

The presence of local performance deviations may not
always indicate a notable deviation of the end-to-end
system performance, thus conducting system perfor-
mance testing in such cases would lead to wastage in
terms of both time and resources. Our approach can
successfully detect end-to-end system performance re-
gressions without the execution of time- and resource-
consuming system-level performance testing.

Evaluation in the various-workload scenario:
Our approach can maintain its effectiveness in detecting

end-to-end system performance regressions even when the
system experiences various workloads. As shown in Table II,
we find that our approach can demonstrate effectiveness when
the system experiences various workloads. In particular, for



TABLE II: Overall results of detecting end-to-end system performance regressions in the various-workload scenario
Local performance deviation System performance regression

Location Intensity Workload
Response time CPU percentage

Performance testing Model prediction Outcome Performance testing Model prediction Outcome (|∆|)
MPD (ms) Effect size MPD (ms) Effect size MPD MPD

L1 Low

Original 7.02 medium 7.60 small TP 6.53 6.09 0.44
Variant 1 7.25 small 8.51 small TP 12.24 12.29 0.05
Variant 2 7.27 medium 7.58 small TP 4.17 4.15 0.02
Variant 3 7.22 small 7.90 negligible FN 8.48 8.22 0.26

L2 High

Original 8.65 small 6.42 small TP 3.91 5.21 1.30
Variant 1 2.03 small 6.65 small TP 6.24 10.59 4.35
Variant 2 4.14 small 6.46 small TP 4.28 7.10 2.82
Variant 3 -1.82 negligible 7.04 small FP 7.99 14.09 6.10

L3 High

Original -0.88 negligible 2.11 negligible TN -0.11 1.68 1.79
Variant 1 -3.16 negligible 2.08 negligible TN 0.66 3.52 2.86
Variant 2 -2.73 negligible 2.06 negligible TN 0.31 3.54 3.23
Variant 3 -1.81 negligible 2.16 negligible TN 1.61 7.06 5.45

(a) TeaStore

Local performance deviation System performance regression

Location Intensity Workload
Response time CPU percentage

Performance testing Model prediction Outcome Performance testing Model prediction Outcome (|∆|)
MPD (ms) Effect size MPD (ms) Effect size MPD MPD

L1 High

Original 12.51 small 6.37 negligible FN 1.97 1.69 0.28
Variant 1 32.79 small 7.47 negligible FN 5.31 2.80 2.51
Variant 2 3.73 small 6.80 negligible FN 0.73 1.73 1.00
Variant 3 11.64 small 7.50 negligible FN 3.10 2.89 0.21

L2 Medium

Original 1.47 medium 1.64 small TP 3.77 4.25 0.48
Variant 1 1.36 medium 1.67 small TP 5.26 6.33 1.07
Variant 2 1.31 medium 1.66 small TP 5.05 6.03 0.98
Variant 3 2.49 medium 1.71 small TP 7.92 9.07 1.15

L3 High

Original 1.86 large 9.12 large TP 4.92 22.76 17.84
Variant 1 1.77 medium 9.71 large TP 6.76 34.17 27.41
Variant 2 1.74 medium 8.91 large TP 3.20 16.17 12.97
Variant 3 1.90 medium 9.18 large TP 5.29 24.22 18.93

(b) TrainTicket
Note 1: “MPD” refers to the mean performance degradation between two versions (with and without performance regressions).
Note 2: For response time, the “Outcome” indicates the classification of model prediction compared to performance testing based on effect size, while for CPU percentage, since
only mean CPU percentage is produced, the “Outcome” measures the absolute difference (|∆|) between the MPD of performance testing and model prediction.
Note 3: “TP” (true positive) and “TN” (true negative) indicate the successfully detected presence and absence of performance regressions by our approach, respectively, while
“FP” (false positive) and “FN” (false negative) indicate falsely detected presence and absence of performance regressions, respectively.

TrainTicket, except for the local performance deviation of L1,
which is undetectable even under the original workload, the
model prediction results consistently align with the perfor-
mance testing results. As for TeaStore, our approach maintains
consistency with the performance testing results in seven out
of nine cases. We notice an FN case in TeaStore for local
performance deviation of L1-Low under variant 3, i.e., small
regression in performance testing while negligible regression
in model predictions. Upon a closer examination, we find
that the MPD in response time from performance testing
and model prediction is quite close, with values of 7.22 ms
compared to 7.90 ms. In addition, the effect size for the model
prediction results is 0.141, which is just slightly different from
the threshold of small effect size at 0.147. In addition, we
identify an FP case in TeaStore at L2-High under variant
3, i.e., negligible regression in performance testing but small
regression in model predictions. After further investigation, we
find that from the performance testing results, the mean re-
sponse time after injecting the performance regression is even
slightly lower (i.e., with a negative MPD), which indicates
a faster execution compared to the pre-injection state. Such a
phenomenon would be explained by the nature of the system’s

intricacies, where the system may cache certain hotspot codes
or adopt other optimization strategies to improve overall
performance. Nevertheless, capturing such optimizations in
models can prove challenging and requires more consideration
of the underlying structure and mechanisms of the system,
which we leave for further research.

Component-level performance testing can hardly cap-
ture the variety in the system workloads, thus it cannot
consistently reflect the true effect of local performance
deviation on the end-to-end system performance under
various workloads. From Table II, we also observe that
even the local performance deviation with the same intensity
and at the same location in the source code can lead to
different impacts (different MPD and effect size) on the end-
to-end system performance when the system is under various
workloads. For instance, in the performance testing results
of TeaStore, for the local performance deviation L1-Low,
when the system experiences the workload variant 2, the
MPD of CPU percentage is only 4.17. However, when the
system experiences workload variant 1 (cf. Section IV-F), the
impact of local performance deviation on CPU percentage
drastically escalates to 12.24 in MPD, approximately tripling



the original value. Upon deeper investigation, it has come to
our attention that due to the increased workload intensity in
variant 1, the component experiencing performance deviations
is being executed much more frequently. As a result, the
workload variant (i.e., variant 1) has resulted in a more
significant performance impact at the system level, even with
the same local performance deviation in the source code. Such
a finding implies that only focusing on the local performance
deviation without considering the various system workloads is
often not enough to accurately reflect the true effect of local
performance deviation on the end-to-end system performance.

Without considering the system workloads, it is of-
ten challenging to reflect the true effect of local
performance deviations on the system performance.
Our approach remains effective in detecting end-to-
end system performance regressions even when the
systems experience various workloads.

VI. RELATED WORK

In this section, we discuss the prior research that is related
to our work in two aspects, including: 1) detecting system
performance regressions, and 2) reducing the resources needed
for performance testing.
Detecting system performance regressions. Extensive prior
research has proposed to utilize statistical analysis tech-
niques [13], [22], [30], [46], [47] to analyze the system perfor-
mance testing results. For example, Nguyen et al. [47] propose
to utilize statistical process control charts to compare the
performance metrics generated by the performance testing of
both old and new version systems. Since performance testing
data is typically large in quantity and highly complex, existing
research [12], [23], [29], [56] has also proposed to leverage
data mining techniques to capture the existence of performance
regressions. For instance, Foo et al. [23] propose to extract
the association rules between multiple performance metrics.
The changes in association rules may indicate performance
regressions in the systems. Additionally, machine learning
models are also widely adopted in prior work [21], [44], [51],
[64], [65] to identify changes in system behavior that result
in performance regressions. For example, Zhang et al. [65]
propose to build multiple machine learning models and utilize
the ensemble algorithm to fuse the information from these
models to adapt to the impact of changing workloads or
external disturbances.

However, these approaches mainly detect system perfor-
mance regressions based on time- and resource-consuming
system performance testing. In contrast, our approach fo-
cuses on providing developers with an early impression of
performance regressions, instead of running expensive system
performance testing.
Reducing the resources needed for performance testing.
Along with the component-level performance testing discussed
in Section II, extensive research has also explored various
other techniques to reduce the resources (e.g., time) needed

for performance testing. In particular, prior studies [2], [11],
[28] propose to utilize various statistical analysis techniques
to measure whether the performance metrics or log traces col-
lected during performance testing are repetitive and searching
for the point to stop performance testing early. In addition,
there are also prior studies [26], [52] proposing to reduce
the system resources during testing a workload. For example,
Shariff et al. [52] focus on browser-based (with Selenium) per-
formance testing. They propose to share the browser instances
between the simulated test user instances, thereby reducing the
total number of browser instances and the system resources
needed during testing.

Prior research mainly reduces the time and resources of
system performance testing or proposes to utilize the tests
on a smaller scale. However, system performance testing is
conducted late, making the diagnosis challenging and labo-
rious, while component-level performance testing does not
explain the system-level performance well. In comparison, in
our work, we bridge local performance data and architectural
models earlier without the need to run expensive system per-
formance testing after the system is built or even integrated.

VII. THREATS TO VALIDITY

This section discusses the threats to the validity of our study.
External validity. Our study is performed on two representa-
tive and prevalent open-source systems. Although both subject
systems adopt the microservice architecture, it is worth noting
that our approach is not limited to the unique characteristics
of microservices, but rather applicable to all systems with
subsystems. Nevertheless, more case studies on other software
systems adopting other types of architecture and in other do-
mains can benefit the evaluation of our approach. In addition,
our study only considers one type of architectural model (i.e.,
QPN model) developed from performance testing data (cf.
Section IV-E). However, in practice, there exist other types
of architectural performance models (e.g., the LQN model),
and the models can also be developed from other sources,
like actual field performance data. Considering more types
of architectural models developed from various sources of
performance data is in our future plan.
Internal validity. Our study relies on the performance data
collected during the component-level and system-level per-
formance testing of the system. The unsatisfactory quality
of the performance data, e.g., non-stable or high-noisy data,
can adversely impact the internal validity of our study. To
mitigate this threat, we conduct our experiments with rigorous
measures. We repeat the experiment 30 times for local perfor-
mance testing, and for system performance testing, we repeat
the experiment 3 times, each lasting 15 minutes. Additionally,
we exclude data from the initial 5-minute warm-up period. Our
approach also depends on the availability and the accuracy of
an architectural model of the software system. Therefore, our
approach may not be feasible when there is no architectural
model and may not perform well when the model provides
poor accuracy or the model is outdated.



Construct validity. Our study is conducted under constant
load during system performance testing, and the system behav-
iors may differ when conducted under continuously varying
loads. Future work may extend our approach under continu-
ously varying loads.
Conclusion validity. Our evaluation results depend on thresh-
olds to determine the statistical significance, while in practice,
developers usually rely on their subjective judgment to deter-
mine the significance for their systems.

VIII. CONCLUSION

In this paper, we propose a novel approach to detecting
end-to-end system performance regressions as early as in
the software development phase, i.e., before the expensive
system performance testing. By bridging the local performance
data collected during the performance testing of individual
components and the architectural models of the entire system,
our approach can predict the impact of component-level per-
formance deviations on the end-to-end system performance,
enabling lightweight performance regression detection. Our
evaluation results on two representative benchmark systems
demonstrate that our approach can effectively detect system
performance regressions with different intensities of local
performance deviations and under various system workloads.
Furthermore, our proposed approach also offers a promising
solution to complement traditional system performance testing
to ensure the software performance in the fast-paced software
development and release practice (e.g., DevOps) where testing
resources are limited.
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