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Abstract
Browser rendering bugs can be challenging to detect for browser de-

velopers, as they may be triggered by very specific conditions that

are exhibited on only a very small subset of websites. Cross-browser

inconsistencies (XBIs), variations in how a website is interpreted

and displayed on different browsers, can be helpful guides to detect

such rendering bugs. Although visual and Document Object Model

(DOM)-based analysis techniques exist for detecting XBIs, they

often struggle with dynamic and interactive elements. In this study,

we discuss our industry experience with using vision language

models (VLMs) to identify XBIs. We present the XBIDetective tool
which automatically captures screenshots of a website in Mozilla

Firefox andGoogle Chrome, and analyzes themwith a VLM for XBIs.

We evaluate XBIDetective’s performance with an off-the-shelf and

a fine-tuned VLM on 1,052 websites. We show that XBIDetective
can identify cross-browser discrepancies with 79% accuracy and

detect dynamic elements and advertisements with 84% and 85%

accuracy, respectively, when using the fine-tuned VLM. We discuss

important lessons learned, and we present several potential prac-

tical use cases for XBIDetective, including automated regression

testing, large-scale monitoring of websites, and rapid triaging of

XBI bug reports.

CCS Concepts
• Computing methodologies → Matching; Intelligent agents;
Information extraction; • Information systems→ Browsers.
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1 Introduction
Cross-browser inconsistencies (XBIs) occur when the same website

renders differently across browsers due to how the browser may

interpret or display a website’s source code depending on the ar-

chitecture of the browser [26]. Even with web standards intended

to unify behaviour, differences in implementation details, feature

support, or CSS and JavaScript handling remain, and these can act

as signals of deeper rendering bugs in browsers. XBIs can range

from subtle layout shifts to complete unavailability of a website [26]

making them valuable indicators for detecting rendering bugs. For

browser developers, ensuring broad website compatibility is crucial,

but the process is time-consuming, especially when rendering bugs

are triggered only under certain conditions. Catching these bugs

before a browser update can significantly reduce post-release issues,

and automated approaches offer a solution to achieve this.

Most automated approaches for detecting XBIs involve computer

vision techniques [5, 6, 29] or DOM (Document Object Model) anal-

ysis [4, 44]. However, computer vision approaches face challenges

with variable element detection [30], and DOMmodel analysis may

not capture all elements of a website such as HMTL5 <canvas>
elements [20]. Most XBI detection techniques are relatively dated,

likely due to their limitations in handling variable or interactive

elements, such as dynamic elements or advertisements, which have

become increasingly common in modern websites. With recent

advances in vision language models (VLMs), it may now be possible

to revisit XBI detection in ways that overcome prior limitations,

particularly with variable and dynamic elements, and make the

techniques more practical for use on real-world websites.

This paper proposes XBIDetective, a tool for leveraging VLMs

to detect XBIs in websites rendered on different browsers. Specifi-

cally, to detect XBIs, XBIDetective takes two screenshots of the

same website in Mozilla Firefox
1
and Google Chrome

2
, and then

prompts a VLM to identify XBIs.

We evaluated XBIDetective on 1,052 bug reports of poten-

tial cross-browser inconsistencies, comparing its results with the

ground truth from the reports. Using both an off-the-shelf think-

ing VLM and a fine-tuned VLM, XBIDetective achieved precision

scores of 77% and 79%, respectively, for identifying XBIs. Both

versions of XBIDetective also identify dynamic elements and

advertisements with high accuracy. In a larger-scale analysis of

1,695 websites, XBIDetective correctly ignored changing adver-

tisements but struggled with dynamic elements that changed on

each reload and with pop-up elements.

1
https://www.firefox.com

2
https://www.google.com/chrome/
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This study demonstrates that VLMs can meaningfully analyze

visual differences in website renderings by leveraging their ability

to process both visual and textual information. Thus, browser de-

velopers can leverage XBIDetective to aide in identifying XBIs,

which in turn can help to identify potential breakages before a

browser update is made available to users. In summary, our main

contributions are as follows:

• A demonstration of how VLMs can capture XBIs by compar-

ing website renderings.

• The XBIDetective tool to capture and identify XBIs in web-

sites loaded in different browsers available at [9].

• A discussion of the lessons learned of running

XBIDetective in a large-scale analysis of 1,695 web-

sites.

The rest of the paper further describes the study with Section 2

discussing related work. Section 3 covers a motivational study.

Sections 4 and 5 cover the methodology for XBIDetective and

the experimental setup of the study. Sections 6 and 7 present the

experimental results and lessons learned. Section 8 discusses threats

to validity of the study. Finally, Section 9 concludes the paper.

2 Related Work
2.1 Detecting cross-browser inconsistencies
Sabaren et al. [30] conducted a literature review on cross-browser

inconsistency tools and found that most research focuses on tech-

niques such as DOM model analysis, visual analysis, navigation

model analysis, record/replay, static analysis, attribute comparison,

and heuristic comparison. The authors highlight the challenges

with these approaches; for instance, computer vision techniques

struggle with detecting variable elements, like image carousels, and

face difficulties in capturing accurate screenshots. DOMmodel anal-

ysis is challenged by interactive elements, different DOM models

of the same webpage, and security measures that complicate DOM

extraction. Navigation model analysis faces challenges with trigger

state changes, unreachable states, and interactive elements.

Many of the current tools consist of combining visual analy-

sis with the other techniques for desktop [4–6, 29] and mobile

browsers [31, 43, 44]. For example, Watanabe et al. [44], building

on their previous work [43], proposed a classification model that

combines features of DOM-based analysis and computer vision tech-

niques. Their approach, applied to mobile browsers, reports higher

F1-scores for identifying external and internal layout failures.

Further, research has explored identifying the causes of XBIs [18,

22, 24, 25, 46]. Notably, Xu et al. [46] propose X-Diag, an automated

technique that aims to find the root cause of XBIs by checking

if the inconsistency is caused by incompatible DOM APIs, CSS

properties, or HTML elements. X-Diag achieves a precision of 89%

in identifying a root cause for an inconsistency between browsers,

with a median runtime of 7.95 seconds. Currently, Xfix, a tool

proposed by Mahajan et al. [22], is one of the only automated

techniques that generates repairs for XBIs. Xfix resolves a median

of 93% of XBIs reported by X-PERT [28], an XBI detection approach.

Some techniques have also explored detecting rendering bugs in

browsers primarily using fuzzing [32, 33, 48], but it is not vastly ex-

plored. Recently, Zhou et al. [48] proposed Janus, a practical fuzzer

that relies on Visual Delta Consistency, a test oracle. The intuition

in the test oracle is that changes to an HTML file should be ren-

dered either the same or differently by all browsers. Janus detects

31 non-crash rendering bugs, with 8 being fixed by developers.

To the best of our knowledge, our study is the first to explore

the use of visual language models as a tool for identifying con-

tent and structural XBIs. The objective of this study is to evaluate

whether a tool with current state-of-the-art VLMs can replace tra-

ditional XBI detection techniques and serve as a viable tool for

finding XBIs linked to underlying rendering bugs. We also evaluate

XBIDetective on real-world websites to assess its usability and

effectiveness in practical scenarios.

2.2 Visual analysis of software
The rapid advancement of VLMs has led to their growing use for

game bug detection [35, 36, 38]. For example, Lu et al. [19] utilize

GPT-4o to rank keyframes of a gameplay video based on how closely

it matches a textual bug description. Their approach provides a

method for reducing manual effort of quality assurance teams by

providing an automated bug retrieval pipeline.

Similarly, VLMs have been applied to bug detection and testing

of web applications [7, 11, 13, 17, 20]. In particular, Wang et al. [42]

propose VETL, an end-to-end vision language model (VLM)-driven

web testing technique that consists of two components: a text input

generator and a target element selector. VETL effectively explores

web state/action spaces and detects functional bugs, exposing issues

in top-ranking commercial websites.

Further, visual analysis techniques are used in various areas of

research such as regression testing [39, 41], web page testing [1, 21,

23, 34], and game testing [12, 27, 37, 40].

In game testing, Paduraru et al. [27] suggest computer vision

techniques for testing games. The authors point out that some cur-

rent methods for aspects of game testing included using Tesseract

OCR from OpenCV
3
for textual recognition, scene segmentation or

template matching for output image recognition, and OpenPose [3]

for animation testing. The authors further observe that automated

agents for checking visual results can be effective, given that human

testers are susceptible to errors. For web testing, Mahajan et al. [23]

present a computer vision–based technique that detects and local-

izes presentation failures in web pages by identifying difference

pixels to locate faulty HTML elements. To deal with dynamic text

or images, the technique allows developers to specify those regions.

Overall, the technique was able to identify 100% of presentation

failures and locate the faulty element in 93% of cases.

For mobile applications, research has investigated the use of

computer vision techniques to identify display issues in the UI

of applications [2, 15, 16, 45, 47] and to support mobile UI test-

ing [8, 14]. For example, Liu et al, [16] propose Nighthawk, a fully

automated approach to detect GUIs with display issues, and locate

the region of the issue in a GUI.

In line with these applications, we investigate the use of a VLM

for identifying visual XBIs. Our approach leverages screenshots of

the same website rendered in different browsers, using the VLM’s

image understanding capabilities to identify potential inconsis-

tencies. While techniques like VETL apply VLMs to support web

application developers in testing the functionality of a site’s GUI,

3
https://opencv.org

https://opencv.org
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our focus is instead on assisting browser developers by detecting

XBIs that may point to underlying rendering bugs. Hence, compar-

ing our work with prior research experimentally is difficult, since

the expected output of the approaches is different.

3 Motivational Study
We begin by investigating howwell a VLMmodel can can effectively

identify continuously changing elements such as dynamic elements

and advertisements on a website page. As stated by Sabaren et

al. [30], most computer vision techniques for XBI identification

struggle with variable elements such as image carousels; we aim to

assess if limitations of traditional image detection methods can be

overcome by leveraging a VLM.

We used screenshots captured of a list of 1,052websites inMozilla

Firefox and Google Chrome. As described in Section 4 we took five

screenshots of each website and overlaid them onto each other. We

then prompted Gemini 2.0 Flash (VLM
base

) and Gemini 2.0 Flash

Thinking (VLM
thinking

) to identify advertisements and dynamic

elements as shown in Listing 1 and Listing 2, respectively.

We also fine-tuned VLM
base

on a sample of 88 bug reports to

create two separate models: one for detecting advertisements and

one for detecting dynamic elements to assess whether the model

can perform similar to the thinking model.

Listing 1: Prompt template used to instruct VLM to identify
advertisements.
Two renderings of the same website are provided, displayed in Chrome (

image_1) and Firefox (image_2). Please analyze each rendering and

focus on identifying any advertisements (excluding pop−ups) that

might be present in either rendering. Answer the following

question after doing your analysis:

1. Are there advertisement(s) in either rendering (not including pop−ups)

? (Answer Yes or No) If there is, where is it?

Here is an example using the following two renderings:

<Examples 1−5>

Now, it is your turn to idenitfy advertisements in the Chrome rendering (

image_1) and the Firefox rendering (image_2) as described. Please

number your answer as:

1.

We evaluated the VLMs’ performance using precision, recall,

and accuracy based on the model’s “Yes" or “No" responses when

identifying the presence of dynamic elements or advertisements,

compared to the ground truth labelled by the first author.

Findings: VLMbase achieves an accuracy of 86% at iden-
tifying advertisements in the screenshots of websites. As
shown in Table 1, VLM

thinking
and VLM

fine-tuned
achieve a slightly

lower accuracy of 85%. Overall, the thinking and non-thinking,

and fine-tuned VLMs perform similarly, though recall decreases

for VLM
thinking

, and VLM
fine-tuned

has a notably lower precision.

We also observe that VLM
thinking

often hallucinates, incorrectly

identifying advertisements in multiple sections of a website. Ad-

ditionally, we find that VLM
thinking

struggles to recognize adver-

tisement placeholders such as grey boxes labelled as “ads" that

indicate an ad slot but may not contain a loaded ad. The lower

precision of VLM
fine-tuned

reflects its higher number of false posi-

tives (97), suggesting that it frequently hallucinates the presence of

advertisements Overall, all three VLM versions perform similarly

at advertisement detection.

Listing 2: Prompt template used to instruct VLM to identify
dynamic elements.
Two renderings of the same website are provided, displayed in Chrome (

image_1) and Firefox (image_2). Please analyze each rendering and

focus on identifying dynamic elements (sliders, carousels, progress

bars, videos, dynamic graphs or charts, personalized

recommendations, location−based recommendations, and real−time

content) present in either rendering, excluding pop−ups. Answer

the following question after doing your analysis:

1. Are there any type of dynamic element(s) (only look for sliders,

carousels, progress bars, videos, dynamic graphs or charts,

personalized recommendations, location−based recommendations,

and real−time content) in either rendering? (Answer Yes or No) If

there is, where is it? (do not include pop−ups)

Here is an example using the following two renderings:

<Examples 1−5>

Now, it is your turn to idenitfy dynamic elements in the Chrome

rendering (image_1) and the Firefox rendering (image_2) as

described. Please number your answer as:

1.

VLMthinking achieves an accuracy and recall value of 90%
and 93% respectively at identifying dynamic elements in web
renderings. The precision achieved by the model is 89%. As seen

in Table 1, VLM
base

and VLM
fine-tuned

achieve a lower accuracy of

83% and 84%, respectively, indicating that VLM
thinking

performs

much better at identifying dynamic elements. The results from

VLM
thinking

contain 28 false negatives from which 12 (43%) are

caused by the model misidentifying real-time based content such

as a list of trending news stories. VLM
thinking

also does not cor-

rectly identify 4 (14%) content carousels, 4 changing background

images in websites, and 4 video players. While VLM
fine-tuned

does

not match the performance of VLM
thinking

on this task, it out-

performs VLM
base

, indicating that fine-tuning improves detection

accuracy. Analyzing the false positives made by VLM
fine-tuned

, we

find that the model misses 15 instances (37%) of video players and

5 instances (12%) of carousels. However, compared to VLM
thinking

,

VLM
fine-tuned

performs better at detecting live content such as news

articles, missing only 3 instances.

We find that, for the most part, VLM
thinking

performs better

than VLM
base

and VLM
fine-tuned

at identifying advertisements and

dynamic elements. Overall the results show that VLMs can reliably

detect advertisements and dynamic elementswithoutmisclassifying

them as cross-browser inconsistencies. This is encouraging, as prior

work [30] has shown that computer vision techniques often struggle

to correctly recognize these variable elements, leading to false

positives.
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Task VLM version Accuracy Precision Recall

Advertisement detection VLM
base

86% 70% 90%

VLM
thinking

85% 72% 76%

VLM
fine-tuned

85% 67% 98%

Dynamic element detection VLM
base

83% 80% 92%

VLM
thinking

90% 89% 93%

VLM
fine-tuned

84% 83% 89%

Table 1: Experimental results for the base, thinking and fine-tuned versions of the VLM at detecting advertisements and
dynamic elements

While VLMthinking outperforms VLMfine-tuned, there are
still scenarios where the fine-tuned model may be preferable.
Fine-tuning can be more cost-effective depending on the number

and frequency of prompts to the VLM. Moreover, fine-tuning on a

larger and more diverse dataset could mitigate the lower precision

values as seen in Table 1 by exposing the model to a broader range

of examples and cases. However, assembling sufficiently large and

diverse datasets is costly and time-consuming, and poor fine-tuning

practices may still bias the model toward the training data.

Takeaway: We find that VLMs can reliably detect advertisements
and dynamic elements, addressing the limitations of earlier computer
vision techniques for XBI detection. While thinking models achieve
the highest performance, fine-tuned models offer comparable accu-
racy at lower cost, making them a practical choice for large-scale or
continuous XBI monitoring.

4 Detecting XBIs with XBIDetective
XBIDetective consists of two stages, as seen in Figure 1: capturing

screenshots from a list of websites, and prompting the VLM for XBI

identification. We explain both portions below.

4.1 Capturing screenshots
To capture full-page screenshots of the websites, we use Selenium

4
,

a web browser testing tool. We capture website screenshots in two

browsers running in headless mode. Five screenshots of each site

are taken and overlaid to differentiate dynamic elements (e.g., image

carousels) from static elements (e.g., backgrounds). For example,

as shown in Figure 2, we take screenshots at one-second intervals

to capture changes in the main carousel of a website displaying

video suggestions. The overlay on the right merges instances where

the carousel is in transition, allowing the VLM, when prompted, to

recognize the element as not static by observing the change.

4.2 Identifying XBIs
A VLM that supports multiple images can be prompted to identify

XBIs by providing two screenshots of the same website (cropped to

the same size) rendered in different web browsers (or the same for

regression testing). There are three stages to identifying XBIs.

4.2.1 Stage 1: Advertisement detection: In the first stage, advertise-

ments are identified in the screenshots. Identifying advertisements

4
https://www.selenium.dev

Take 5
screenshots

with Selenium

Website
screenshots

Capturing
screenshots Identifying XBIs

Identify
advertisements

Identified XBIs
visualization

Identify
dynamic
elements

Identify XBIs

Website list

Overlay
screenshots

Figure 1: Overview of XBIDetective.

ensures that we can avoid marking them as XBIs when identifying

them later on. The prompt that we used is seen in Listing 1.

4.2.2 Stage 2: Dynamic element detection: In the second stage, the

following dynamic elements are identified in the screenshots: slid-

ers, carousels, progress bars, videos, dynamic graphs or charts,

personalized recommendations, location-based recommendations,

and real-time content. These elements are excluded from XBI de-

tection because, while they may change during website rendering,

such changes do not reflect inconsistencies between two websites.

The VLM prompt we used is shown in Listing 2.

4.2.3 Stage 3: XBI detection: In the final stage, XBIs are identified

while ignoring the advertisements and dynamic elements detected

in the previous stages. Listing 3 shows the prompt we used, which

includes examples to help the model understand the task. During

this stage, an impact score is also assigned to each identified XBI,

categorizing it into one of four severity levels. These impact scores

https://www.selenium.dev
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Figure 2: Example of overlay process with two screenshots taken of a website (https://www.crave.ca/en) with a dynamically
changing carousel. Note that only 2 of the 5 screenshots used for the overlay are shown for brevity.

Listing 3: Prompt template used to instruct VLM to identify
XBIs between browsers.
Two renderings of the same website are provided, displayed in Chrome (

image_1) and Firefox (image_2).

In terms of advertisements, this is what was found: <prompt 1 output>

In terms of dynamic elements, this is what was found: <prompt 2 ouput>

Please analyze each rendering and focus on comparing each rendering in

terms of layout, font style and size, colour consistency, alignment,

and the presence or absence of elements (such as buttons, text

fields, advertisements, pop−ups and images). Ensure to analyze

beyond a pop−up (if applicable). Ignore the advertisements and

dynamic elements identified as mentioned. Answer the following

questions after doing your comparison:

1. Is there any functionally or perceptually meaningful difference

between the renderings (ignoring the advertisements for question 1

and ignoring the dynamic elements found in question 2 unless

they cause a meaningful difference between renderings)?

INCLUDING the presence or absence of pop−ups? (Answer Yes or

No.)

If your answer was yes to the question 1, then answer these questions:

2. What specific element(s) are affected?

3. How do the renderings differ?

4. What would be the impact be? The impact can be evaluated by

selecting the relevant label. The labels and their definitions are:

(blocked−unsupported) ... (significant−visual) ... (minor−visual) ...

Here is an example using the following two renderings:

<Examples 1−5>

Now, it is your turn to compare the Chrome rendering (image_1) and the

Firefox rendering (image_2) as described. Please ensure to number

your answers as:

<1.−4.>

Remember only answer questions 2−4 if your answer to 1 was yes and

think about the impact while analyzing the renderings.

provide Mozilla developers with guidance on which XBIs to priori-

tize for bug analysis. The impact scores, originally used internally

at Mozilla and adapted for the task of XBI detection, are as follows:

• minor-visual: the site has an XBI, but it does not affect the

content or functionality of the site, and users are unlikely

to notice. Some examples include different focus outlines on

elements, small discrepancies in text rendering such as font

that does not comprise readability, slight misalignments, or

different background colours.

• significant-visual: the entire site does not load, the site

loads but is effectively unusable, the site has visible lay-

out problems, some parts of the page content (text, images,

videos, or pop-ups) are missing or hard to access, or some

features of the site are missing or broken. Some examples

include, an entirely blank page, missing copy/paste buttons

in a text editor, missing a pop-up on the website, or a layout

that renders the website as unreadable.

• blocked-unsupported: there is a message indicating the

browser is not supported. This is considered an XBI because a

rendering bug might be preventing the website from display-

ing, even though it should be accessible to users. Additionally,

the browser may be unsupported due to site requirements

or rendering bugs that could potentially be addressed by the

browser developer.

• no-XBI: no XBIs are observed.

Once the XBIs are identified, we generate an HTML-based visu-

alization of the VLM’s results for developers.

5 Experimental setup
Below we describe the experimental setup, where we collected and

verified web compatibility bug reports to evaluate the effective-

ness of XBIDetective at identifying XBIs. The overview of the

experimental setup can be seen in Figure 3.

5.1 Collecting web compatibility bugs
To conduct an evaluation of XBIs, we collected a list of websites

and their corresponding bug reports of web compatibility issues

from Bugzilla
5
, an issue tracker for Firefox. The collected bugs

5
https://bugzilla.mozilla.org/home

https://www.crave.ca/en
https://bugzilla.mozilla.org/home
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WebCompat

Extract bug
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browser
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Manually review
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bug report

Remove
screenshots not
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XBIDetective's
output

Reviewed Bug
Reports
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bugs Filtering data Identifying XBIs with

XBIDetective

Bugzilla

Extract bug
reports marked

as 'Web
Compatibility'

Figure 3: Overview of experimental setup.

are those marked as web compatibility issues in Bugzilla and that

have undergone triage. Additionally, we gathered websites and bug

reports from WebCompat
6
, a website dedicated to reporting web

compatibility bugs. The web compatibility issues are collected from

the ‘fixed’ milestone in the WebCompat GitHub repository
7
. The

web compatibility tags used by both websites refer to reported XBIs

for Mozilla Firefox (in both Bugzilla and WebCompat) as well as

for other browsers (in WebCompat). By selecting triaged Bugzilla

bugs and WebCompat bugs marked as fixed, we ensured that all

collected reports corresponded to verified XBIs.

We extracted the following fields from each bug report:

• BugID: the unique ID of the bug.

• URL: the URL of the affected website.

• Browser/version: the browser and version where the issue

occurs (some reports may lack version details).

• Summary: a description of the bug.

• Impact score: If available for some Bugzilla reports, the

severity of the bug as determined by the WebCompat team,

used for the ground truth.

Although WebCompat allows reporters to submit screenshots,

these are not included in the dataset. In total, we collected 4,725

web compatibility bug reports for analysis.

5.2 Filtering data
We first removed bug reports that do not provide a website URL. To

ensure compatibility with Selenium, bug reports collected fromWe-

bCompat were filtered to exclude mobile browsers, and all browsers

except Mozilla Firefox. To maintain relevance, we also excluded

reports referencing Firefox versions older than 100, given that the

latest version is 143. After filtering, 1,052 bug reports remain.

5.3 Identifying XBIs with XBIDetective
For this experiment, we used Selenium with Mozilla Firefox and

Google Chrome. For bug reports for older Firefox versions, we

6
https://webcompat.com

7
https://github.com/webcompat/web-bugs

reverted Selenium to that version to capture the screenshot to

increase the chances of reproducing the bug.

To verify the quality of the screenshots from Selenium, the first

author manually reviewed the screenshots with respect to the fol-

lowing criteria in order to prepare a ground truth:

• Proper website loading and full-page capture.

• Any XBIs found that were not originally mentioned in the

bug report are appended to the report.

• The presence of advertisements.

• The presence of the following dynamic elements: sliders,

carousels, progress bars, videos, dynamic graphs or charts,

personalized recommendations, location-based recommen-

dations, and real-time content.

• An impact score is assigned to each bug report if one is not

already specified. The impact scoring process was calibrated

in consultation with Mozilla developers.

After manual analysis, there were screenshots from 243 web-

sites that contained an XBI. 538 screenshots were the same across

browsers, likely because the underlying XBIs had been resolved, and

271 screenshots were deemed unusable, e.g., due to being blocked

by bot detectors.

We evaluated three VLMs: Gemini 2.0 Flash, Gemini 2.0 Flash

Thinking, and a fine-tuned variant of Gemini 2.0 Flash. This com-

parison allows us to assess the performance of a base model, a

thinking model, and a fine-tuned base model in identifying XBIs.

Thinking models may provide better results due to their extended

reasoning capabilities, whereas base models are often more cost-

effective. Finally, we analyzed whether a fine-tuned base model can

achieve performance comparable to that of a thinking model.

To fine-tune Gemini 2.0 Flash, we used a statistically represen-

tative sample of 88 randomly selected bug reports (with 90% con-

fidence and a 10% margin of error) from the reviewed reports de-

scribed above. Supervised fine-tuning was performed using the

prompt template shown in Figure 2. We omitted the bug reports

used for fine-tuning during the rest of the experiments for the

fine-tuned model.

https://webcompat.com
https://github.com/webcompat/web-bugs
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We evaluated the three VLM’s performance using precision,

recall, and accuracy based on the model’s predicted impact scores

with the impact score assigned by the first author. The metrics are

defined as follows:

Precision =
1

𝑁

𝑁∑︁
𝑖=1

TP𝑖

TP𝑖 + FP𝑖

Accuracy =
TP + TN

TP + TN + FP + FN

Recall =
1

𝑁

𝑁∑︁
𝑖=1

TP𝑖

TP𝑖 + FN𝑖

Where 𝑁 is the 4 impact labels. The components of the confusion

matrix are defined as follows:

• True Positive (TP): The model assigned the correct impact

score denoting the presence of an XBI to a bug report.

• True Negative (TN): The model correctly identified the bug

report as not containing an XBI.

• False Positive (FP): The model identifies an XBI and assigns

an impact score when there is no XBI.

• False Negative (FN): The model identifies that a bug report

has no XBI when it does contain an XBI.

The first author manually compared Gemini 2.0 Flash Thinking ’s

textual output describing the identified XBIs (true positives) to the

ground truth to determine the number of correctly detected XBIs.

To evaluate XBIDetective on a broader dataset of websites, we

collected a secondary dataset of 1,695 websites consisting of the top

1,000 websites with the highest number of reported bugs and 695

bug reports fromWebCompat. For this dataset, we did not manually

filter screenshots or establish a ground truth. We then used the

fine-tuned version of XBIDetective to analyze the screenshots

and detect XBIs.

For the remainder of the paper XBIDetective with the

use of Gemini 2.0 Flash as the VLM will be referred to as

XBIDetective
base

, XBIDetective with Gemini 2.0 Flash Thinking

as XBIDetective
thinking

, and XBIDetective with the use of the

fine-tuned version of Gemini 2.0 Flash as the VLM will be referred

to as XBIDetective
fine-tuned

.

6 Experimental Results
XBIDetectivefine-tuned achieves an accuracy and precision of
79%, and 72%, respectively at labelling the impact scores. The
recall achieved by the fine-tuned XBIDetective is 59%. Whereas,

XBIDetective
thinking

achieves an accuracy and precision of 77%,

and 69%, respectively at labelling the impact score of XBIs. The

recall achieved by XBIDetective
thinking

is 48%. In comparison, as

shown in Table 2, XBIDetective
base

performs considerably worse,

achieving a precision of 42% and producing many more incorrect

classifications, as shown in Figure 4. As seen from the confusion

matrix in Figure 5, XBIDetective
thinking

incorrectly classifies 121

web renderings as “no-XBI" despite the presence of XBIs. Since

false negatives are the most frequent type of error by the model, we

examine them in more detail to understand which discrepancies the

model is likely to miss. The false negatives primarily involve missed

XBIs in layout differences (34 instances), the presence of pop-ups
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Figure 4: Confusion matrix of XBIDetectivebase’s labelling
of the impact score.
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Figure 5: Confusion matrix of XBIDetectivethinking’s la-
belling of the impact score.

(24 instances), the dynamic elements themselves (15 instances), an

image not rendering (13 instances), and the site failing to load (7

instances).

As seen in Figure 6 XBIDetective
fine-tuned

incorrectly identi-

fies 106 screenshots as “no-XBI". These false negatives, similar to

XBIDetective
thinking

, involve missing XBIs such as the presence

of pop-ups (31 instances), font discrepancies (13 instances), and im-

ages not rendering (8 instances). Notably, 81 of the false negatives

identified by the fine-tuned XBIDetective were also identified by
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Figure 6: Confusion matrix of XBIDetectivefine-tuned’s la-
belling of the impact score.

XBIDetective version Accuracy Precision Recall

XBIDetective
base

42% 57% 54%

XBIDetective
thinking

77% 69% 48%

XBIDetective
fine-tuned

79% 72% 59%

Without advertisement
detection
XBIDetective

thinking
68% 59% 42%

XBIDetective
fine-tuned

76% 64% 58%

Without dynamic
element detection
XBIDetective

thinking
73% 63% 45%

XBIDetective
fine-tuned

76% 65% 58%

Table 2: Experimental results on the performance of
XBIDetective versions in assessing XBI impact score

the base version of XBIDetective, indicating potential ambiguity

in those renderings.

Overall, XBIDetective
thinking

and XBIDetective
fine-tuned

per-

form well, indicating that they can reliably detect XBIs. Devel-

opers are mostly interested in the significant-visual and blocked-

unsupported categories, as the impact of such XBIs is likely the

largest. Hence if we combine the minor-visual and no-XBIs cate-

gories, we focus on the discrepancies that browser developers are

most likely to prioritize. Under this perspective, the model’s perfor-

mance appears even stronger for real-world applications, achieving

an accuracy of 85% for both versions of XBIDetective, since mi-

nor visual issues, such as a search bar with a smaller width than

the page width, may not be prioritized for fixes. Nevertheless, it

is important to consider the non-combined metrics, as they show

how many minor issues are correctly flagged by XBIDetective,
providing a more complete picture of its detection behaviour.

XBIDetectivethinking’s textual output identifying the XBI,
correctly matched 92% of XBIs labelled in the ground truth.
In these instances, XBIDetective

thinking
correctly located the XBI

on each page. Among the incorrect classifications (9 instances),

XBIDetective
thinking

occasionally hallucinates issues, including

misidentifying spacing inconsistencies (5 instances), and incorrectly

identifying an advertisement as a website element (1 instance). Fur-

ther, XBIDetective also misclassified a dynamic element change

as an XBI (1 instance). For the final 2 instances, the hallucinations

made by XBIDetective are of a change in colour between the

screenshots of the websites, and the presence of a sidebar in the

website.

Explicitly directing the VLM to identify dynamic el-
ements and ads increases the accuracy of XBIDetective
in detecting XBIs. Without prompting XBIDetective

thinking

and XBIDetective
fine-tuned

to identify advertisements, their ac-

curacy in identifying XBIs drops to 68%, and 76% respectively.

Similarly, without prompting the XBIDetective to identify dy-

namic elements, the accuracy in detecting XBIs drops from

77% to 73% for XBIDetective
thinking

and from 79% to 76% for

XBIDetective
fine-tuned

The drop in performance in identifying

XBIs by both versions of XBIDetective suggests that prompt-

ing the model to identify advertisements and dynamic elements,

then ignore them is an essential step within the pipeline. With-

out ad detection, both versions of XBIDetective generate signifi-
cantly more false positives, incorrectly classifying no-XBI sections

as significant-visual (56 instances vs. 5 for XBIDetective
thinking

)

and minor-visual (39 instances vs. 11 for XBIDetective
thinking

).

XBIDetective
fine-tuned

’s performance does not drop as drastically

as XBIDetective
thinking

, but it is still significant enough to make

the results from the pipeline less informative. Further, because dy-

namic elements can appear differently across browsers when a page

loads, failing to identify them may lead the model to misinterpret

them as XBIs, even though these variations are considered to be

expected variations in a website.

Takeaway: Overall, XBIDetectivefine-tuned demonstrates bet-
ter performance than XBIDetectivethinking in identifying XBIs.
XBIDetectivethinking uses a thinking model that involves multiple
reasoning steps for the VLM, making it more computationally ex-
pensive and slower to run. The cheaper, faster XBIDetectivebase
underperforms in identifying XBIs. However, after fine-tuning
XBIDetectivebase into XBIDetectivefine-tuned, we can still use a
non-thinking model which is optimized for the three specific stages to
identify XBIs, allowing it to operate more efficiently in the long run.

7 Lessons Learned
The ground truth dataset described in the previous section was

carefully curated. For instance, we manually removed broken or

incomplete screenshots. While this level of curation was neces-

sary to evaluate XBIDetective, it would not be feasible in a real-

istic large-scale run on many websites. To better understand how

XBIDetective performs under such conditions, we conducted a

larger-scale run on 1,695 websites. From this run, XBIDetective
identified 78 XBIs (55 significant-visual, 10 minor-visual, and 13
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blocked-unsupported). Note that these are realistic results, as the

normal assumption is that most websites do not contain XBIs. In

this section, we discuss the lessons learned from that experiment.

7.1 Lesson 1: Capturing comparable screenshots
across browsers is hard

We find that capturing consistent and comparable screenshots

across different browsers presents a major challenge. The most

important obstacles for capturing comparable screenshots were:

Obstacle 1: Rendering quirks in headless mode.When us-

ing Selenium with Google Chrome, the browser does not support

full-page screenshots unless it is run in headless mode. However,

headless mode is not ideal as it can introduce its own rendering

quirks [10]. Despite this limitation, we use headless mode as a nec-

essary compromise to ensure consistent sizes across screenshots.

Obstacle 2: Inherent stylistic differences between browsers.
Browsers behave differently and may render websites with slight

variations, e.g., because of differences in how scrollbars are handled.

Obstacle 3: Blocked websites. Some websites blocked

XBIDetective, most likely due to anti-bot systems (such as Cloud-

flare). Especially Google Chrome is more susceptible to bot de-

tection when driven by Selenium, and was frequently blocked by

anti-bot systems.

The first two obstacles are difficult to overcome automatically.

We found two effective ways to ignore blocked websites:

• Preprocessing: During the screenshot taking process, if a
site displays keywords that suggest blocked access, we do

not take the screenshot. Keywords include phrases such as

“403 Forbidden” or “you have been blocked”.

• Post-inference filtering: After the fine-tuned

XBIDetective provides its output for XBI detection,

we pass the images and the XBIDetective ’s output to

a secondary VLM. This model analyzes the text for any

mention of a page not loading, and reviews the images

to ensure they do not contain a message indicating they

are blocked. Prompting the VLM allows for cases where

blocked messages are in a different language or the original

VLM output mentions being blocked to be filtered out,

removing false positives from the report that is analyzed by

developers.

These filtering steps reduce the number of false positives that

browser developers need to inspect in large-scale runs. Importantly,

filtering websites has little effect on the overall usefulness of the

results, since large-scale analyses are still likely to uncover multiple

instances of XBIs that point to the same underlying problem.

7.2 Lesson 2: XBIDetective can be used for
regression testing as well

In the experiments we discuss in this paper, we focused on XBIs.

Another interesting application of XBIDetective is using two

versions of the same browser to do regression testing. Using

XBIDetective in this setting actually removes a lot of the chal-

lengeswe came across compared to the cross-browser setting.When

using XBIDetective for regression testing for Firefox, there are

fewer false positives and negatives. The screenshots are largely con-

sistent in shape and size when captured from two different versions

of the same browser. Additionally, the regression test encounters

fewer blocking issues, allowing an extra 180 screenshot sets (998 for

the regression test vs 818 for the cross browser test) to be compared.

7.3 Lesson 3: Unaddressed pop-ups, such as
cookie consent dialogs, can lead to false
positives and should be explicitly handled

Pop-ups (or more precisely, modal dialogs), can vary in position,

content, or behaviour across browser sessions. These pop-ups, such

as cookie consent banners, subscription prompts, or advertisement

overlays, can differ depending on timing, or whether the pop-up

successfully loads. In some cases, a pop-up may appear in one ren-

dering but not in another, leading XBIDetective to falsely interpret
this variation as an XBI.

To address false positives caused by pop-ups, we use Selenium to

close the most common types of pop-ups. Selenium is provided with

filters specifying the pop-up types it can attempt to close. However,

the filters used to close pop-ups are limited in scope and cannot

account for all variations, particularly less common or dynamically

introduced pop-ups. As a result, some pop-ups persist and introduce

visual differences that do not represent true XBIs. We found that the

most effective strategy is to isolate results from XBIDetective that
contain information about pop-ups and place them into a separate

table for review by developers. Thus, noise is reduced in the primary

results and developers are able to focus on issues that are more

likely to be genuine XBIs. We also preliminarily explored the use of

web agents to automate the task of closing pop-ups. This approach

appears promising, as the agents can identify and dismiss pop-ups

without the need for predefined filters.

7.4 Lesson 4: Some false positives are very
difficult to prevent

These false positives are seen in scenarios involving dynamic el-

ements such as changing pictures, backgrounds, or placeholder

text. Because XBIDetective processes a single static instance of

the page, it often lacks sufficient context to recognize that these

elements are dynamic. Although dynamic elements can create dis-

crepancies between website screenshots, they are not considered

XBIs, as such variations are expected on a website. For example, as

seen in Figure 7, a login page with a different background image

across visits might be flagged as an XBI, even though the variation

is intentional and not a true inconsistency. The same issue occurs

with placeholder text or images that change on each page reload.

While one potential solution is to reload the site multiple times to

capture variability, this approach is computationally expensive and

time-consuming.

In contrast, we noticed no instances where an advertisement is

marked as a XBI. Ads, despite also being dynamic, often include in-

dicators (such as labels or structural cues) that help XBIDetective
correctly identify them as non-critical changes, while dynamic

elements may not have an indication of such.
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(a) Firefox screenshot (b) Chrome screenshot

Figure 7: Example of two screenshots taken of https://moodle-app2.let.ethz.ch with a dynamically changing background in
Firefox and Chrome

8 Threats to Validity
Construct validity: Our approach intentionally ignores advertise-

ments or dynamic elements to reduce false positives in XBI identifi-

cation. While this reduces noise from expected content variability,

it may also omit genuine XBIs in these elements. As a result, our

approach currently misses XBIs that occur in dynamic elements or

advertisements. This choice was intentional to reduce false positives

in the generated reports.

Internal validity: A threat to the validity of the study stems from

the use of Selenium to take the screenshots of the websites. Because

an automation tool such as Selenium is used, some websites block

the tool from taking screenshots, thus decreasing the number of

websites analyzed. Future studies should consider looking into other

web testing frameworks to take the screenshots, or settings for

Selenium that would decrease the number of blocked screenshots.

Changing VLM versions are also a potential threat to the validity

of this study. New models are released at a rapid pace, making it

challenging to keep evaluations up to date. As such, newer mod-

els may perform either better or worse than the ones used with

XBIDetective in this study. We designed XBIDetective to be eas-

ily adaptable to different model versions, but future work should

evaluate its performance with newer VLM releases.

A final threat to the internal validity of this study lies in the cre-

ation of the ground truth for evaluating XBIDetective, which was

manually verified by the first author. This process may introduce

bias in labelling the impact of each bug report, a task that is already

inherently ambiguous. To mitigate this risk, we verified a sample

of the training data for fine-tuning with Mozilla developers.

External validity: A potential threat to the validity of this study

is that we only use bugs reported on Bugzilla or WebCompat. This

website is managed by Mozilla employees and volunteers, thus,

the web compatibility bugs may be biased toward issues related to

Mozilla’s Firefox browser. Consequently, the dataset may not fully

reflect the diversity of web compatibility bugs across all browsers.

Further, Selenium only supports a few browsers for taking screen-

shots, thus we only analyze Google Chrome and Mozilla Firefox.

Though these browsers make up the majority of popular web

browser engines, the results of this studymay not generalize to com-

patibility bugs found exclusively on other bug reporting platforms

or browsers.

9 Conclusion
We introduce XBIDetective, a tool to leverage vision language

models to detect cross-browser inconsistencies by comparing web-

site screenshots. We evaluate the effectiveness of both off-the-shelf

(base and thinking) and fine-tuned VLMs with XBIDetective in

identifying XBIs across browser renderings. We find that both the

base and fine-tuned versions of XBIDetective perform well at this

task, achieving an accuracy of 77% and 79%, respectively.

A cornerstone of our approach is to explicitly direct the VLM

to identify advertisements and dynamic elements before analyzing

for XBIs. To evaluate the foundation for this cornerstone, we show

that VLMS are effective in identifying these elements, though the

fine-tuned version shows a drop in accuracy for dynamic element

detection. We also show that a fine-tuned base VLM can perform

better than a thinking VLM at a fraction of the cost.

In a large-scale evaluation of 1,695 websites with no ground truth

established, we found that reducing false positives, from ambiguous

cases involving dynamic elements and pop-ups is essential for

generating usable reports for developers. Furthermore, ensuring

accurate XBI identification requires minimizing differences in how

screenshots are captured across browsers.

Overall, this work demonstrates that XBIDetective, especially
when fine-tuned, is a approach for detecting of cross-browser incon-

sistencies in web development, helping to highlight discrepancies

in website renderings that may indicate underlying bugs.

https://moodle-app2.let.ethz.ch
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