
Software Engineering and Foundation Models:
Insights from Industry Blogs Using a Jury of

Foundation Models
Hao Li

Queen’s University
Kingston, Canada
hao.li@queensu.ca

Cor-Paul Bezemer
University of Alberta
Edmonton, Canada

bezemer@ualberta.ca

Ahmed E. Hassan
Queen’s University
Kingston, Canada

ahmed@cs.queensu.ca

Abstract—Foundation models (FMs) such as large language
models (LLMs) have significantly impacted many fields, including
software engineering (SE). The interaction between SE and FMs
has led to the integration of FMs into SE practices (FM4SE)
and the application of SE methodologies to FMs (SE4FM). While
several literature surveys exist on academic contributions to these
trends, we are the first to provide a practitioner’s view. We
analyze 155 FM4SE and 997 SE4FM blog posts from leading
technology companies, leveraging an FM-powered surveying
approach to systematically label and summarize the discussed
activities and tasks. We observed that while code generation is the
most prominent FM4SE task, FMs are leveraged for many other
SE activities such as code understanding, summarization, and
API recommendation. The majority of blog posts on SE4FM are
about model deployment & operation, and system architecture
& orchestration. Although the emphasis is on cloud deployments,
there is a growing interest in compressing FMs and deploying
them on smaller devices such as edge or mobile devices. We
outline eight future research directions inspired by our gained
insights, aiming to bridge the gap between academic findings
and real-world applications. Our study not only enriches the
body of knowledge on practical applications of FM4SE and
SE4FM but also demonstrates the utility of FMs as a powerful
and efficient approach in conducting literature surveys within
technical and grey literature domains. Our dataset, results, code
and used prompts can be found in our online replication package
at https://zenodo.org/records/14563992.

Index Terms—Foundation models, FM4SE, SE4FM, LLM-as-
a-judge, industry trends, LLM

I. INTRODUCTION

In recent years, the rapid advancements in machine learning
(ML) have fundamentally transformed various fields, including
software engineering (SE). Among these developments, foun-
dation models (FMs) such as large language models (LLMs)
have emerged as a major force, reshaping how software
is developed, tested, and maintained [17]. The interaction
between SE and FMs has led to the emergence of two key
trends: (1) FMs for SE (FM4SE), where FMs are leveraged to
automate or enhance various SE tasks, such as code generation
and testing, and (2) SE for FMs (SE4FM), where SE practices
are adapted to the development and deployment of FMs.

Academic research has made significant strides in exploring
these trends, but literature surveys have only focused on

FM/LLM

Jury
Labels & Scores

Labels & Scores

Labels & Scores

Final
Labels

Merge

Documents

No

No

YesExisting
Label?

Discard

Yes

Human-in-the-loop

Ok?

Fig. 1. An overview of our FM/LLM Jury approach for labelling blog posts.
A blog post is labelled by every FM in the jury, and the final label is selected
through a majority vote (using the normalized confidence score as a tie-
breaker).

published, peer-reviewed literature [17], [28], mostly leaving
out the perspectives and experiences of industry practitioners.
The input of practitioners, who work at the intersection of
SE and FMs in real-world settings, is a crucial yet under-
explored source of insights. While the research community
has recognized the value of user-generated contents such as
Q&A websites [2] and issue reports [32], less attention has
been paid to grey literature such as technical blog posts
from industry leaders. Tech companies publish blog posts for
several reasons, including positioning themselves as innovation
leaders and establishing thought leadership [4]. As a result,
these blog posts often provide in-depth discussions on cutting-
edge challenges and solutions in SE and FM integration.

To bridge the gap between academic findings and industry
practices, we analyze blog posts from leading technology com-
panies, focusing on how practitioners discuss the challenges
and approaches related to FM4SE and SE4FM. By system-
atically labelling and examining these blog posts, we seek to
provide a clearer picture of how FMs are being integrated into
the SE domain (i.e., FM4SE), and how SE principles are being
applied to FMs (i.e., SE4FM) in industry. This study stands
out by offering a synthesized industry voice, derived directly
from real-world, practitioner-driven insights. We employ an
ensemble of FMs as judges [50] into an FM/LLM Jury [42]
(see Figure 1) to assist with the labelling and synthesis of
knowledge within 155 FM4SE and 997 SE4FM blog posts.

ar
X

iv
:2

41
0.

09
01

2v
2

 [
cs

.S
E

]
 6

 J
an

 2
02

5

https://zenodo.org/records/14563992

Our study focuses on these research questions (RQs):
RQ1. Which FM4SE activities are discussed in industry

blog posts? Software development tasks, particularly
code generation, are the most frequently discussed
across FM4SE blogs. FMs are increasingly integrated
as code assistants, providing developers with multifunc-
tional tools to boost productivity. Vulnerability detec-
tion is the dominant software quality assurance task,
while software maintenance activities primarily focus
on refactoring and transforming existing codebases.

RQ2. Which SE4FM activities are discussed in industry
blog posts? The most discussed activities in SE4FM
blog posts are model deployment & operation, with a
focus on cloud hosting and model serving & scaling.
Other trends include prompt chaining, workflow or-
chestration, and building AI agents. Data management
activities focus on RAG and vector databases to sup-
port unstructured data and information retrieval. Model
customization relies on fine-tuning methods such as full
fine-tuning, LoRA, and RLHF.

The main contributions of this paper are:
• The first study of industry blog posts on FM4SE and

SE4FM to provide the practitioner’s view on these emerg-
ing and crucial topics in today’s software industry.

• A dataset of 1,152 blog posts from top technology
companies related to FM4SE or SE4FM.

• A list of eight research directions that are driven by the
findings of our survey on blog posts.

• A demonstration of an efficient approach that leverages
a jury of FMs to assist with grey literature surveys on
SE-related topics.

Paper Organization. The rest of this paper is organized
as follows. Section II presents background information and
related work. Section III details the proposed FM/LLM Jury
framework. Section IV presents our methodology. Sections V
and VI present the findings of our research questions. Sec-
tion VII discusses promising future research directions that
follow from our survey. Section VIII discusses the threats to
the validity our study. Section IX concludes this paper.

II. BACKGROUND AND RELATED WORK

A. LLM-as-a-judge

Leveraging FMs/LLMs as evaluators, or LLM-as-a-judge,
has emerged as a scalable alternative to traditional human
evaluations to assess the quality of outputs from LLMs [21].
This assessment is not straightforward, as LLMs generate
natural language, which needs to be compared with a ground
truth semantically. LLM-as-a-judge builds on the idea that
state-of-the-art models, especially those trained with Rein-
forcement Learning from Human Feedback (RLHF) [36] (e.g.,
GPT-4) are well-aligned with human judgments, making them
promising substitutes [50]. While the use of FMs like GPT-4
as evaluators has become more common, these models often
exhibit biases, such as favouring their own outputs over those
from other models [38]. To mitigate these biases, researchers

have proposed the use of a panel of FM evaluators instead
of relying on a single model [42]. Instead of using a single
FM/LLM to evaluate FM/LLM outputs, in this paper, we
propose using a jury of FMs/LLMs to assist with the labelling
and summarization of industry blog posts.

B. Related work

The work that is closest related to our work consists
of other literature surveys on FM4SE and SE4FM. Recent
comprehensive surveys on FM4SE have examined the rapidly
growing field of FMs/LLMs applied to SE activities and
tasks. Hou et al. [17] conducted a systematic survey of 395
studies covering the application of LLMs to 84 specific SE
tasks across 6 SE activities. In addition, Wang et al. [44]
surveyed 102 studies that have used LLMs for software testing.
These applications have shown promise, but several challenges
remain. For example, Fan et al. [12] emphasized technical
challenges like hallucinations when applying LLMs for SE,
and highlighted the importance of hybrid techniques that
combine traditional SE with LLMs.

Other surveys (on SE4FM) focus on how established SE
practices can be adapted to support building, testing, deploying
and maintaining FMs. Chang et al. [5] reviewed evaluation
methods and benchmarks for LLMs in different areas such as
education and social sciences, highlighting the importance of
robust benchmarks to assess the performance of LLMs. Most
prior surveys on SE for models have focused on SE4ML rather
than SE4FM (i.e., SE for machine learning models that are not
foundation models). Martı́nez-Fernández et al. [28] reviewed
248 studies and classified them based on the Software En-
gineering Body of Knowledge (SWEBOK), identifying gaps
in areas like maintenance and data handling. Villamizar et al.
[43] discussed gaps in requirements engineering for ML, while
Masuda et al. [29] surveyed quality assurance approaches,
highlighting the need for specialized testing techniques in
verifying an ML system’s output.

All prior surveys on FM4SE and SE4FM focused on aca-
demic efforts. Our work is the first to provide an overview of
FM4SE and SE4FM activities in top technology companies.

III. USING AN FM/LLM JURY FOR LABELLING BLOG
POSTS

Labelling blog posts using a single frontier FM (e.g., GPT-
4o) in the LLM-as-a-judge approach [50] can be both expen-
sive and potentially biased. To address these limitations, we
propose FM/LLM Jury, a methodology that leverages multiple
FMs to collaboratively label blog posts. In this framework,
each model provides a label along with a confidence score, and
these outputs are merged using a majority vote to determine
a final label. This framework is inspired by Verga et al. [42].

A. Constructing the prompt

The prompt construction process is iterative and consists of
the following key steps:

Step 1 – Create the golden dataset. To evaluate the perfor-
mance of the prompts that we send to the FM and the quality of

RQ2. Which SE4FM activities are
discussed in industry blog posts?

RQ1. Which FM4SE activities are
discussed in industry blog posts?

A. Identifying blogs related to SE and FM from technology companies

Search for keywords
inside blogs using the

Google Search API

Collect a list of blogs
from technology

companies

Filter out non-blog
posts and non-
English results

Download the
contents of the blog

posts 4,463 blogs

B. Identifying the FM4SE and SE4FM area, activities and tasks
discussed in the blog posts

Label blog posts as
FM4SE or SE4FM

with LLM Jury 155 FM4SE blogs

997 SE4FM blogs

Label the FM4SE
activities in the blog

posts

Label the SE4FM
activities in the blog

posts

Fig. 2. An overview of our methodology.

our FM/LLM Jury, we begin by constructing a golden dataset.
We randomly sample a subset of blog posts and manually label
them to serve as ground truth.

Step 2 – Design the prompt. We design prompts following
best practices in prompt engineering [35] and techniques
outlined by Liu et al. [26]. The prompt should instruct the
FMs on how to label the blog posts, specifying the labelling
criteria and providing the necessary context. To improve
labelling accuracy, we incorporate advanced techniques such
as Chain-of-Thought prompting [46] and few-shot in-context
learning [3]. We used a predefined set of labels to ensure
a common vocabulary for the classification. Because FMs
generate natural language text, a common vocabulary is nec-
essary to (1) group many different blog posts that may use
different terms to describe the same aspects and (2) facilitate
a comparison with prior work which also uses that vocabulary.
We also ask FMs to provide new labels if the predefined ones
do not fit the content. Our replication package [23] includes all
used prompts. We encourage researchers to refine and rerun
the process with new blog posts to ensure relevance in this
rapidly moving field.

Step 3 – Run the prompt on the golden dataset. Each
FM in the jury is prompted to label the blog posts in the
golden dataset. For each blog post, the FM outputs both a
label and an associated confidence score. As FMs may exhibit
overconfidence, directly using the raw confidence scores is
likely to introduce bias [25]. While calibration methods exist to
address this issue, they typically require access to the model’s
internal information or fine-tuning [31], which is not feasible
with closed-source FMs. Therefore, we apply a z-score stan-
dardization based on the confidence score distribution across
the dataset to normalize the confidence values.

Step 4 – Compare FM labels with human labels. The

produced labels are compared with the human-provided labels
from the golden dataset. We assess inter-rater reliability using
Cohen’s κ coefficient [11], which measures the degree of
agreement between the FM-generated labels and human labels.
We set a threshold of κ > 0.78 (indicating excellent agree-
ment) for at least one FM in the jury. Additionally, all FMs
must achieve κ ≥ 0.63 (indicating substantial agreement). If
these thresholds are not met, we return to Step 2 and refine
the prompt iteratively. The refinement process involves adding
clarifications, improving instructions, or reordering prompt
components to resolve ambiguities [14]. The iterative loop
continues until the desired agreement is reached.

Step 5 – Freeze the prompt for full dataset labelling. Once
the prompt achieves the required level of agreement in Step
4, it is finalized and used to label the entire dataset.

B. Merging the FM outputs

After the individual FMs in the jury provide their labels,
we aggregate the results using a majority vote, where the
final label is determined by the label that receives the most
votes from the individual FMs. In case of a tie, we use the
normalized confidence scores to break the tie.

C. Human-in-the-loop

A human-in-the-loop process was employed to decide
whether to accept or reject new labels proposed by FMs.
However, the process is only required when the FM/LLM Jury
cannot resolve the final label. In our study, the FM/LLM Jury
successfully handled all cases without the need for human
involvement in the labelling process.

D. Selected FMs

The jury FMs are selected based on their performance and
ability to follow complex instructions. We used the LLM

TABLE I
COLLECTED BLOGS WITH AT LEAST ONE RELEVANT POST.

Company Blog

AMD https://community.amd.com/t5/ai/
Adobe https://blog.developer.adobe.com/

https://blog.adobe.com/
Alibaba https://www.alibabacloud.com/blog/
Amazon https://www.amazon.science/blog

https://aws.amazon.com/blogs/
Cisco https://blogs.cisco.com/

https://blog.talosintelligence.com/
Google https://developers.googleblog.com/en/

https://blog.google/
https://cloud.google.com/blog/
https://research.google/blog/
https://deepmind.google/discover/blog/

IBM https://research.ibm.com/blog
https://developer.ibm.com/blogs/
https://www.ibm.com/blog/

Meta https://tech.facebook.com/engineering/
https://research.facebook.com/blog/
https://engineering.fb.com/

Microsoft https://www.microsoft.com/en-us/research/blog/
https://blogs.microsoft.com/
https://devblogs.microsoft.com/
https://techcommunity.microsoft.com/t5/

Nvidia https://blogs.nvidia.com/
https://developer.nvidia.com/blog/

Oracle https://blogs.oracle.com/
Qualcomm https://www.qualcomm.com/developer/blog
SAP https://community.sap.com/t5/technology-blogs-by-sap
Salesforce https://www.salesforce.com/blog/

https://engineering.salesforce.com/blog/
https://blog.salesforceairesearch.com/

Arena Leaderboard [8] to identify strong candidates. We
selected the open-source Qwen2-72B-Instruct [47] model, and
two closed-source models, GPT-4o-mini [34] and Gemini-1.5-
Flash [41]. These models were selected due to the balance
between cost and performance. We did not select the top-
performing models, as they are around ten times as expensive.

IV. METHODOLOGY

Figure 2 gives an overview of our methodology. In this
section, we discuss every step.

A. Identifying blogs related to SE and FM from technology
companies

We employed a systematic approach using search queries
based on keywords related to FM4SE and SE4FM to gather
blog posts. The data collection process consists of these steps:

Step 1 – Collect a list of blogs from technology compa-
nies. We began by collecting a list of companies from the
“Technology” sector with a market capitalization greater than
$200 billion (“Mega”) based on data from NASDAQ.1 In
addition, we manually went through the top 100 companies
from Forbes’ Global 2,000 list [33] and included companies
that are categorized under the “IT Software & Services”
industry. In total, we included 20 companies. For each of these
companies, we searched for relevant blogs using this query:

1https://www.nasdaq.com

TABLE II
COHEN’S KAPPA BETWEEN LLMS AND HUMAN LABELS ON THE GOLDEN

SET FOR SE-FM AREA, FM4SE ACTIVITY, AND SE4FM ACTIVITY
CLASSIFICATION TASKS.

Model SE-FM
Area

FM4SE
Activities

SE4FM
Activities

Gemini-1.5-Flash-002 0.64 0.81 0.69
GPT-4o-mini-2024-07-18 0.70 0.81 0.77
Qwen2-72B-Instruct 0.85 0.76 0.73

FM/LLM Jury 0.92 0.91 0.86

blog AND (“software” OR “research” OR “engineer” OR
“engineering”)

We identified 35 blogs from 17 companies (see Table I).
This list is easily updated to include new companies/blogs.

Step 2 – Search for keywords inside blogs using the Google
Search API. We adapted the keywords used in prior work [48]
to suit the FM4SE and SE4FM contexts:
“software” AND (“large language model” OR “large lan-
guage models” OR “LLM” OR “LLMs” OR “foundation
model” OR “foundation models” OR “FM” OR “FMs” OR
“generative AI” OR “GenAI”) site:{url}

Using these keywords, we queried the Google Search API
across all the blogs identified in Step 1, limiting the date
range from August 10, 2023, to August 10, 2024. This process
yielded 7,120 search results, including information about each
result’s URL, title, and snippet. We assigned a unique identifier
(ID) to each search result, ranging from 0 to 7,120.

Step 3 – Filter out non-blog posts and non-English results.
The search results might contain unrelated pages such as index
pages and author information pages. We filtered out URLs that
contain strings such as “/index/” and “/author/” to eliminate
non-blog posts. We used the langdetect library2 to remove
results where the title or snippet was not in English.

Step 4 – Download the contents of the blog posts. We
downloaded all the content of all valid links. To further remove
potential noise, we applied an outlier filter based on the
interquartile range (IQR) to exclude content that was either too
short or too long. After filtering, we retained 4,463 blog posts,
each referenced by a unique ID from Step 2. Throughout this
paper, individual blog posts are cited using their corresponding
IDs (e.g., [122] for blog post 122), allowing for direct
reference to specific entries in the dataset. The full list of blog
posts can be found in our online replication package [23].

B. Identifying the FM4SE and SE4FM area, activities and
discussed tasks in the blog posts

We first label blog posts as FM4SE or SE4FM-related.
Second, we label the FM4SE or SE4FM activities discussed
in the blog posts. Finally, we summarize the activity-specific
tasks that are discussed, to facilitate our manual review of
the posts. Tables III and IV show the identified activities

2https://github.com/Mimino666/langdetect

https://community.amd.com/t5/ai/
https://blog.developer.adobe.com/
https://blog.adobe.com/
https://www.alibabacloud.com/blog/
https://www.amazon.science/blog
https://aws.amazon.com/blogs/
https://blogs.cisco.com/
https://blog.talosintelligence.com/
https://developers.googleblog.com/en/
https://blog.google/
https://cloud.google.com/blog/
https://research.google/blog/
https://deepmind.google/discover/blog/
https://research.ibm.com/blog
https://developer.ibm.com/blogs/
https://www.ibm.com/blog/
https://tech.facebook.com/engineering/
https://research.facebook.com/blog/
https://engineering.fb.com/
https://www.microsoft.com/en-us/research/blog/
https://blogs.microsoft.com/
https://devblogs.microsoft.com/
https://techcommunity.microsoft.com/t5/
https://blogs.nvidia.com/
https://developer.nvidia.com/blog/
https://blogs.oracle.com/
https://www.qualcomm.com/developer/blog
https://community.sap.com/t5/technology-blogs-by-sap
https://www.salesforce.com/blog/
https://engineering.salesforce.com/blog/
https://blog.salesforceairesearch.com/
https://www.nasdaq.com
https://github.com/Mimino666/langdetect

and tasks. The first author, a PhD graduate with 5 years of
SE research experience, conducted all labelling and validated
through discussions with co-authors.

Step 1 – Label blog posts as FM4SE or SE4FM with
FM/LLM Jury. We used the FM/LLM Jury framework (Sec-
tion III) to classify blog posts as SE4FM, FM4SE, or un-
related. A golden dataset of 100 blog posts was randomly
selected to evaluate this classification. Table II shows that the
framework achieved an excellent agreement (κ = 0.92) with
human labels on the test set. We then applied the framework
to the entire dataset of 4,463 blog posts, classifying 3,126 as
unrelated, 156 as FM4SE and 1,122 as SE4FM.

Step 2 – Label the FM4SE activities in the blog posts. We
used the FM4SE activity labels from prior work [17] and a
golden set of 30 FM4SE posts was randomly sampled for eval-
uation. Following our iterative prompt construction process
(Section III), we reached an excellent agreement (κ = 0.91)
between the FM/LLM Jury and the human labels (see Table II).
We applied the Jury to label all FM4SE activities in the 156
FM4SE blog posts. One blog post was labelled as ‘Other’
as the FM/LLM Jury could not identify any specific FM4SE
activities, ending up with 155 FM4SE blog posts in total.

Step 3 – Label the SE4FM activities in the blog posts.
Following a similar process, we labelled the SE4FM activities
in the 1,122 SE4FM blogs. We created a list of SE4FM
activity labels based on prior work [1], [15], [28]. We ran-
domly sampled a golden set of 30 SE4FM blog posts and
manually labelled the SE4FM activities. Following our prompt
construction process, the FM/LLM Jury demonstrated strong
agreement (κ = 0.86) with the human labels. We used the
best-performing prompt to label the SE4FM activities in all
1,122 SE4FM blog posts. 125 blog posts were labelled as
‘Other’ as the FM/LLM Jury could not identify any SE4FM
activities, ending up with 997 FM4SE blog posts in total.

Step 4 – Identify the activity-specific tasks in the blog posts.
To facilitate our manual review of the blog posts, we prompted
the FMs to take an additional step to identify the activity-
specific tasks in the posts. For FM4SE blogs, we prompted
the FMs to identify relevant tasks from a curated task set [12],
[17], [24]. Similarly, for SE4FM blogs, the FMs identified
SE4FM-related tasks from a curated task set [1], [15], [28].
If no predefined tasks were relevant, we asked the FMs to
generate new tags based on the blog content. In cases where
the FMs proposed new task tags, we employed a human-in-
the-loop process to determine whether to reclassify or ignore
these tags. However, no human intervention was required for
FM4SE posts, and eight new SE4FM task tags identified by
the FM Gemini-1.5-Flash were resolved by the FM/LLM Jury.

V. RQ1: WHICH FM4SE ACTIVITIES ARE DISCUSSED IN
INDUSTRY BLOG POSTS?

Motivation. Industry practitioners are at the forefront of apply-
ing FMs to SE, sharing practical insights and real-world expe-
riences through blogs. While academic research has explored
many aspects of FM4SE, the industry’s perspective remains
underexplored. This study analyzes industry blogs to uncover

TABLE III
FM4SE ACTIVITIES AND TASKS THAT ARE DISCUSSED IN INDUSTRY BLOG

POSTS. THE COMP. COLUMN INDICATES THE NUMBER OF COMPANIES
PUBLISHING BLOG POSTS ABOUT THE TASK.

Activity Posts Task Comp.

Software
development

101 Code generation 11
54 Code completion 8
12 Code assistant 5
10 Code understanding 5
6 Code summarization 4
3 Code optimization 3
1 API recommendation 1

Total 121 11

Software
quality
assurance

10 Vulnerability detection 3
5 Debugging 3
4 Test generation/automation 2

Total 17 5

Software
maintenance

4 Code refactoring or revision 3
7 Code transformation 2
3 Code translation 2
2 Code review 1
1 Program repair 1
1 Software operations 1
1 Log analysis 1

Total 15 4

Software
management 1 Software tool configuration 1

Requirement
engineering 1 Requirements analysis 1

Software design 0 – 0

Total 155 11

key FM4SE activities and tasks discussed by practitioners,
providing insights into real-world applications of FMs in SE.

Approach. We used the FM/LLM Jury to label the FM4SE
activities and tasks in the 155 FM4SE blog posts. To avoid
overrepresentation, we counted each activity and task uniquely
per company, even if they were mentioned in multiple blog
posts from the same company. To gain insights into how these
activities and tasks are discussed, we manually reviewed the
selected blog posts. We also compared our findings with those
reported by Hou et al. [17].

A. Software development

Although code generation is the most prominent task,
FMs are used for many other tasks in the software develop-
ment process. As shown in Table III, code generation emerges
as the most prominent task. Practitioners report leveraging
FMs to generate code in modern languages [B140] such
as Python and Java, but there is also growing attention for
legacy systems, with FMs being used to generate COBOL
code [B830]. Additionally, FMs are applied to specialized
domains such as SQL query generation [B183], and domain-
specific languages (DSLs) tailored to industry-specific needs
such as semiconductor design [B8]. The flexibility of FMs
to adapt across various programming languages and domains
highlights their versatility in software development.

A topic that is closely related to, and often discussed
together with code generation is code completion. A no-
table technique is fill-in-the-middle [13] for code completion,
which allows models to complete code based on partial
inputs [B157], further expanding the usability of FMs in
practical coding environments.

Beyond code generation and completion, FMs are in-
creasingly being integrated into software development as
code assistants, offering a range of functionalities. These
assistants not only generate and complete code but also help
with code understanding, code summarization, code optimiza-
tion, and API recommendations. For instance, code assistants
can understand code and explain it to developers [B5668],
summarize code changes for reviews [B322], optimize code
for performance [B3357], or recommend APIs based on both
public and private code repositories [B3177]. This multi-
faceted support streamlines the development process, boosting
developer productivity and efficiency.

B. Software quality assurance

Vulnerability detection is the most frequently discussed
software quality assurance (QA) task. Practitioners employ
FMs to automate common vulnerabilities and exposures (CVE)
detection and analysis [B101]. Other tasks under this category
include test generation and automation, where FMs are used
to generate test cases based on the functionality of a given
code. For instance, the FM can suggest test cases for invalid
inputs, edge cases, and error handling [B5518]. For debugging
tasks, FMs can suggest where to insert logging and exception
handling to track code execution and errors, and FMs can also
be used to detect anomalies and fix common issues such as
syntax and logical errors [B5465].

C. Software maintenance

The use of FMs in software maintenance focuses on
the refactoring, translation, and transformation of exist-
ing codebases. Practitioners often discuss these tasks in the
context of modernizing legacy systems. For instance, FMs are
employed to refactor and translate legacy COBOL code into
Java [B769]. In addition, upgrading Java applications to newer
Long-Term Support (LTS) versions [B369] or migrating Java
codebases to cloud-based infrastructures [B6378] are tasks
frequently associated with code transformation. Using FMs
for these tasks helps industries transition from older systems
to modern architectures more efficiently.

D. Software management, requirement engineering, and soft-
ware design

Software management receives the least attention in
FM4SE blogs, and no discussions were found regarding
requirements engineering or software design. Practitioners
use FMs to generate software tool configurations for managing
cloud infrastructure components [B5625]. We did not find
discussions on requirements engineering or software design in
FM4SE blogs. One blog, which was initially misclassified as
covering requirements analysis [B1182], was actually about

using FMs to extract developer intent from code comments or
function documentation for generating formal postconditions.
Overall, FM-based requirements engineering and software
design remain an underreported area in the industry.

E. Comparison with Academic Research

Software development is the most discussed activity in both
industry blog posts and SE research papers [17]. Both prac-
titioners and researchers frequently highlight code generation
as a key task. However, there are some notable differences.
Regarding software maintenance, for example, industry blogs
focus more on code refactoring and revision, while academic
research papers focus more on program repair. Additionally,
while Hou et al. [17] reported that 4.3% of surveyed papers
(17 out of 395) cover requirements engineering, we found no
substantial discussion on this topic in the industry blogs we
analyzed (except the one misclassified).�

�

�

�

RQ1 Summary: Software development tasks, par-
ticularly code generation, are the most frequently
discussed across FM4SE blogs. FMs are increasingly
integrated as code assistants, providing developers
with multifunctional tools to boost productivity. In
the domain of software quality assurance, vulnera-
bility detection is the dominant task, while software
maintenance activities are primarily focused on refac-
toring and transforming existing codebases. Software
management, requirements engineering, and software
design receive less attention in these industry blogs.

VI. RQ2: WHICH SE4FM ACTIVITIES ARE DISCUSSED IN
INDUSTRY BLOG POSTS?

Motivation. As FMs are integrated into production systems,
applying SE principles to the development cycle of FM-based
systems becomes increasingly important. While academic
research studied SE for AI-based systems [28], FM-based
systems present unique challenges [15], such as the resource-
intensive nature of FMs, and the complexities involved in fine-
tuning, deployment, and monitoring at scale. Industry blog
posts offer valuable insights into how practitioners adapt SE
principles for developing, deploying, managing, and scaling
FMs in real-world settings. This study gives an overview of
key SE4FM activities and tasks discussed in these blog posts.

Approach. We used the FM/LLM Jury to label the SE4FM
activities and tasks in the 997 SE4FM blog posts. Similar
to Section V, we counted each activity and task uniquely
per company and manually reviewed selected blog posts for
each task. We did not compare the discussion frequency with
previous research like we did in Section V, because there exists
no prior survey on SE4FM, and SE4FM activities and tasks
are quite different from those for SE4ML [28].

A. Model deployment & operation

Model deployment & operation is the most frequently
discussed activity in SE4FM industry blog posts. Model

deployment on cloud is the dominant task (see Table IV), re-
flecting the industry’s reliance on cloud environments for host-
ing foundation models. Foundation models are very resource
intensive. For example, a large model such as Meta Llama 3
(with 405 billion parameters [9]) [B1749,B5439,B6691]
requires ∼810GB of GPU VRAM for inference, ∼3.25TB for
fine-tuning [40] and much more for training from scratch. The
cloud facilitates using such large models on-demand without
the need for buying very expensive hardware.

For model serving & scaling [B111,B627,B6028], tech-
niques such as speculative decoding [7] accelerate model infer-
ence by using draft models for faster response times [B5308].
In addition, automatic model scaling ensures that resources au-
tomatically adjust to workload needs [B701,B4518]. Model
monitoring [B6659] is another key task, involving tracking
token usage [B406,B920] and monitoring system metrics
such as memory and GPU load [B5192].

While cloud deployment dominates, there is increasing
interest in model deployment on local devices such as
edge or mobile devices, and PCs. For example, practitioners
deploy FM-based medical chatbots for healthcare applica-
tions on edge devices, to facilitate data privacy [B139].
Another reason to deploy FMs on smaller devices is to
overcome the GPU supply-and-demand problem, which makes
it hard for many companies to integrate FMs into their
products [B1355]. To enable running the resource-intensive
FMs on relatively small devices, companies frequently use
model compression techniques [51] to reduce the required
resources [B1744,B1993,B5463,B5714]. For example,
quantization techniques (e.g., 4-bit precision) enable running
models on CPUs, avoiding the need for GPUs [B669]. Com-
pression techniques are not limited to text models: model
quantization is also applied to image generative models such
as Stable Diffusion [39] [B2254]. Several libraries are used
by practitioners that assist with running FMs on CPU, such as
LLaMA.cpp3 and ExLlama4 [B1355]. Also, several practition-
ers describe how the use of Neural Processing Units (NPUs)
can facilitate running FMs locally [B914,B1750].

B. System architecture & orchestration

System architecture & orchestration activities, including
building AI agents and model & prompt chaining, have be-
come a popular topic in SE4FM industry blog posts. One of
the most frequently discussed tasks is model & prompt chain-
ing, which is used to manage complex workflows by breaking
them into smaller, more manageable steps, each handled by
different models or prompts [B881]. For example, a task such
as responding to customer reviews might be divided into steps
like filtering harmful content, performing sentiment analysis,
and generating an appropriate response [B4881]. Tools and
frameworks like LangChain [6] and PromptFlow [30] are
commonly mentioned as practical solutions for implementing
these chained workflows [B1357].

3https://github.com/ggerganov/llama.cpp
4https://github.com/turboderp/exllama

TABLE IV
SE4FM ACTIVITIES AND TASKS THAT ARE DISCUSSED IN INDUSTRY BLOG

POSTS. THE COMP. COLUMN INDICATES THE NUMBER OF COMPANIES
PUBLISHING BLOG POSTS ABOUT THE TASK.

Activity Posts Task Comp.

Model
deployment
& operation

237 Model deployment on cloud 13
168 Model serving & scaling 12
30 Model monitoring 8
31 Model compression 7
39 Model deployment on local 6

Total 373 13

System
architecture
& orchestration

94 Model & prompt chaining 11
108 Workflow orchestration 10
83 Building AI agents 10
99 Development platform & studio 9
6 Implementing guardrails 3

Total 287 12

Data
management

90 RAG integration 11
48 Specialized databases 8
40 Dataset cleaning & preparation 8
43 Dataset collection 6
7 Feature engineering 5
3 Dataset labelling 2

Total 182 11

Model
customization

85 General fine-tuning 10
20 LoRA 4
10 RLHF 4

Total 104 11

Evaluation
& quality
assurance

17 Model evaluation 6
15 Model safety & compliance 6
6 Model risk & trust 4
5 Testing strategies 4
2 Model fairness & bias 2
1 Model explainability 1

Total 40 7

Prompt
construction

10 Prompt engineering 5
4 Automated prompt generation 3

Total 11 6

Requirements
engineering 0 – 0

Total 997 14

A closely related discussion topic is building AI agents,
which extend the functionality of FMs by integrating external
tools and orchestrating workflows. In multi-agent systems,
multiple AI agents collaborate using a complex workflow to
handle different parts of a task [B1166]. These AI agents can
autonomously decide which tools to use, retrieve necessary
data, and execute predefined plans based on user input or real-
time data [B414]. Another key feature of AI agents is their
ability to leverage working memory, allowing them to retain
information from previous interactions or external tool outputs,
which can be critical for managing long-term tasks [B442].

Enterprise development platforms & studios provide support
for building FM-based systems based on chaining or AI
agents [B414,B1166,B4881]. These platforms, such as
FMArts [15], simplify the orchestration of workflows [B358],

https://github.com/ggerganov/llama.cpp
https://github.com/turboderp/exllama

allowing developers to easily integrate FMs with external sys-
tems. These platforms also support implementing guardrails.
Guardrails can take the form of filters that are applied to user
inputs or LLM outputs [B4677], or can be embedded in the
prompts to guide the model’s responses [B2456].

C. Data management

Data management has evolved in the FM era, with new
techniques supporting the vast amounts of both struc-
tured and unstructured data. At the core of this evolution
is the shift to specialized, more dynamic data management
techniques. The most frequently discussed task is Retrieval-
Augmented Generation (RAG) [22], which combines the use
of private datasets (i.e., data on which the FM was not trained
before such as proprietary data) with FMs. With RAG, the
FM generates its response based on the prompt and infor-
mation in the private dataset [B4270]. Several practitioners
discuss how they build datasets for RAG [B6492,B6688]
using techniques including document chunking, embedding,
and vector storage. Another example of usage of RAG by
practitioners is GraphRAG [10] which enhances RAG by
generating knowledge graphs from the private data which can
then be used for prompt augmentation [B1155,B1156].

There is a great amount of discussion of special-
ized databases, particularly vector databases. Specialized
databases are key to enabling RAG. These databases sup-
port semantic search by indexing unstructured data like text
and images, making FM-based retrieval faster and more
accurate [B1571]. Advanced features include multimodal
search, where users retrieve image or video content using text
queries [B5035]. This shift from traditional keyword-based
search to semantic search also integrates with SQL queries
for managing both structured and unstructured data [B1426].
As data management moves beyond traditional data types
(e.g., rows, columns, JSON), vector-based storage and retrieval
systems are becoming more important [B5370]. Likewise,
embedding as feature engineering is becoming increasingly
important in FM-based systems, enabling text, images, and
structured data to be converted into numerical vectors that
FMs can process [B1982]. Multimodal embeddings, which
map both text and images into a shared vector space, are
particularly useful in cross-modal applications such as text-
to-image search or video retrieval [B5815].

Synthetic data generation provides scalable, domain-
specific data without privacy risks, reducing reliance on
real-world datasets. As FM data requirements grow, syn-
thetic data is increasingly used to address the challenges
of high-quality data collection [B35,B4210]. In parallel,
automated data labelling is being transformed by model-
assisted approaches. For example, the Recognize Anything
Model (RAM) [49] can automatically label visual datasets,
enabling users to search for images or videos using natural
language queries [B3649]. Additionally, human-in-the-loop is
applied for combining model-generated annotations with man-
ual oversight to ensure accuracy while reducing the time and
cost associated with traditional labelling methods [B5181].

There is a noticeable push on data privacy in data
cleaning & preparation. Data cleaning & preparation re-
mains essential, but data privacy has become an important
focus. Since the data used for customizing FMs could contain
Personally Identifiable Information (PII), data anonymization
techniques such as differential privacy [B5934] are used to
remove PII [B1286,B1309,B3213]. Beside data privacy,
removing duplicate is frequently applied to preprocess the
dataset to ensure data quality [B188,B804,B2326].

D. Model customization

Model customization is achieved through fine-tuning
techniques for adapting FMs to specific application needs.
Fine-tuning methods such as supervised fine-tuning (SFT)
tune the entire model on domain-specific data, rather than
train it from scratch. Enterprise platforms now support no-
code fine-tuning, simplifying the process and accelerating
development [B4777]. Open source libraries such as Hugging
Face’s PEFT [27] support both full fine-tuning and Low-Rank
Adaptation (LoRA) [B353]. LoRA is an efficient approach
where original model parameters are frozen and injected with
trainable matrices. LoRA reduces the number of trainable
parameters and lowers GPU requirements, making it cost-
effective [B109]. With different LoRA adapters, a single FM
can adapt to handle different tasks. Platforms support dynamic
loading and caching of LoRA adapters, offering flexibility and
optimizing performance [B2462]. RLHF is used to align mod-
els with user preferences to improve their experience [B656]
and can also be applied to image models [B2367].

E. Evaluation & quality assurance

SE4FM blog posts outline practical strategies for en-
suring the safety, fairness, and trustworthiness of FMs
through systematic evaluation & QA processes. With
the diverse applications of FMs, establishing robust model
evaluation frameworks is essential to ensure models meet
operational requirements [B898]. For example, for FM-based
systems with RAG integration, an evaluation framework in-
cludes metrics such as answer relevance, context precision, and
recall to assess the effectiveness of model outputs [B1305].
Ensuring model safety & compliance is particularly critical
in high-stakes industries. Industry blogs highlight the use
of adversarial testing to identify model vulnerabilities, while
automated raters are often deployed to perform consistent
safety assessments [B437]. Standardized benchmarks are also
leveraged to ensure models meet security and compliance
standards, especially in regulated industries [B845].

Practitioners are increasingly adopting automated testing
strategies for FMs, which often use academic benchmarks
like BIG-bench [B158]. However, custom datasets tailored
to specific domain requirements are also vital for evaluating
FMs in domain-specific applications [B845]. One emerging
approach in this area is the use of LLM-as-a-judge techniques,
which leverage LLMs to provide scalable and consistent
evaluations [B158]. Additionally, adversarial testing is used
to strengthen models against potential threats by uncovering

weaknesses that may not surface under traditional testing
methods [B845]. Another emerging task is model explain-
ability & interpretability, which is important particularly in
sensitive industries. Tools that generate natural language ex-
planations for model outputs are becoming common, help-
ing developers understand why certain test cases pass or
fail [B4776]. This increases transparency and aligns FMs with
best practices for software engineering.

Some practitioners discuss model fairness & bias, as bi-
ased outputs from FMs can lead to ethical concerns or
operational risks. To reduce bias in FM-generated outputs,
techniques such as prompt engineering and scenario testing
are employed [B1295]. Adversarial testing and diverse rater
systems are also leveraged to ensure fairness and prevent
harmful outputs [B437]. Additionally, practitioners highlight
the importance of human oversight in critical decision-making
processes to mitigate risks associated with harmful or biased
outputs [B1064]. To enhance trust in FM-based systems,
practitioners conclude and follow a set of best practices for AI
security, such as the Secure AI Framework (SAIF) [B697].

F. Prompt construction

Prompt construction receives the least attention, and
no discussions were found regarding requirements en-
gineering. Prompt engineering techniques are discussed in
the blog posts, such as structured prompts [B374] and
multi-shot prompts [B4401]. In database contexts, prompts
consider schema, query history, and user-specific factors
to generate SQL queries [B3601]. In addition, automated
prompt generation techniques are explored through dynamic
metaprompts which are optimized for greater control and
adaptability [B1172]. For tasks like text-to-image generation,
prompts are improved based on semantic search and user
context [B3754]. In addition, prompt compression is proposed
to automatically reduce prompt length without sacrificing
essential information [B1173].�

�

�

�

RQ2 Summary: The most discussed activities in
SE4FM blog posts are model deployment & opera-
tion, with a focus on cloud hosting and model serving
& scaling. With regards to system architecture, trends
include prompt chaining, workflow orchestration for
FMs, and AI agents. Data management emphasizes
RAG and vector databases to support unstructured
data and information retrieval. Model customization
relies on fine-tuning methods such as full fine-tuning,
LoRA, and RLHF. Evaluation & quality assurance
practices focus on automated testing, safety, trustwor-
thiness, and bias mitigation, while prompt engineering
receives limited attention. Discussion about require-
ments engineering is not found in SE4FM blog posts.

VII. DISCUSSION OF FUTURE RESEARCH DIRECTIONS

A. Research Directions for FM4SE

Research Direction 1: Using FMs for modernization and
transformation of legacy code. Practitioners applied FMs

to translate legacy systems into modern languages such as
Java [B769], upgrade to newer language versions [B369], and
migrate to cloud-based infrastructures [B6378]. This process
mostly relies on FMs for code translation, however, Pan et al.
[37] highlight challenges in applying FMs to translate code in
real-world projects. To address these challenges, researchers
should explore methodologies that enhance FM performance
for automating complex system migrations, including the
transformation of entire legacy codebases and architectures.

Research Direction 2: Evaluating code assistants in
software development workflows for tasks other than code
generation. Liang et al. [24] conducted a survey on the
usability of code assistants focusing on the code generation
task. However, industry discussions highlight that code as-
sistants are employed for other tasks such as code under-
standing [B5668], code summarization [B3357], and API
recommendation [B3177] as well. This broader integration,
including their potential role as AI teammates [16], suggests
opportunities for researchers to expand studies on code assis-
tants beyond code generation.

Research Direction 3: Real-world validation of research
on applying FMs in software management, requirements
engineering, and software design. Our analysis of industry
blog posts shows that discussions around FM applications
in these activities are rare (see Table III). Likewise, though
software engineering researchers have explored using FMs
for requirements engineering tasks such as requirements clas-
sification and traceability automation, such studies remain
relatively rare as well [17]. Considering the capabilities of FMs
in handling natural languages and programming languages,
they should be well-suited for these tasks, hence the lower
number of (reported) applications in this area is surprising.
Researchers should aim to bridge the gap by identifying the
barriers to and developing tools that apply FM techniques
in these underreported activities. Such efforts could help
bring research advancements in these areas closer to practical
industry applications, showcasing the value of FM4SE for a
broader range of software engineering activities.

B. Research Directions for SE4FM

Research Direction 4: Researchers should expand re-
search on SE4FM. Our findings in Sections V and VI show
that practitioners discussed SE4FM much more often than
FM4SE, with 997 blog posts focused on SE4FM compared to
155 blog posts on FM4SE. Activities such as model deploy-
ment & operation, system architecture, data management, and
model customization are frequently mentioned by more than
half of the companies (Table IV). Although the lower number
of posts on FM4SE does not necessarily indicate a lack of
interest in these topics, there seems to be a disconnect between
academic research and practitioner activities. The results of
our study highlight the growing importance of adapting SE
practices to support the development lifecycle of FM-based
systems. Researchers should explore these areas to bridge the
gap between industry practices and academic research, thereby
supporting the evolving needs of FM-based systems.

Research Direction 5: Performance engineering for
FM-based systems. Performance optimization of FM-based
systems [15] is a critical area that practitioners frequently
discussed (in several tasks). Techniques such as model com-
pression and model serving & scaling are employed to
reduce the computational resources needed for deploying
FMs [B701,B5463]. Researchers could contribute by for-
malizing and standardizing such techniques, as well as ex-
ploring new methods to reduce the computational overhead
of fine-tuning and deploying FMs. The resource-intensive
nature of FMs introduces challenges related to managing large-
scale parallelism and ensuring memory efficiency, especially
for models with billions of parameters [B5192]. Extending
traditional load testing methods [18] to FM inference pipelines
could help ensure that these models scale effectively and meet
the performance requirements of real-time applications.

Research Direction 6: Investigate the impact of the
shift from full model training to fine-tuning on software
engineering activities such as dependency and asset man-
agement. Industry blog posts highlight the increasing reliance
on libraries for model fine-tuning and model inference, such as
PEFT from Hugging Face [B353] and LLaMA.cpp [B1355].
Researchers should investigate how these emerging tools and
techniques integrate into existing SE workflows and assess
their impact on model quality, performance, and usability.
For example, the reduced set of trainable parameters used by
LoRA can be stored separately as an adapter [B2462], which
introduces new challenges in asset management. Researchers
should investigate how to manage and optimize these adapters
within the context of FM-based systems.

Research Direction 7: Supporting FM workflow or-
chestration and AI agents through software engineer-
ing activities. Practitioners are integrating FMs not as
standalone components but as part of complex workflows
that chain together multiple models, prompts, and exter-
nal APIs [B881,B1357]. Furthermore, AI agents that au-
tonomously manage tasks and orchestrate tools are becoming
prevalent in industry [B414,B1166]. Researchers should
explore design patterns, best practices, and frameworks that
support the development of these FM-based systems.

Research Direction 8: Supporting the evolving data
pipelines in FM-based systems. While traditional data collec-
tion, cleaning, and labelling methods remain essential, industry
practices are increasingly incorporating synthetic data gener-
ation and automated labelling using FMs [B4210,B5181].
Synthetic data generation is used to produce large volumes of
domain-specific data without privacy concerns [B35]. How-
ever, as reliance on synthetic and automatically labeled data
increases, researchers must investigate the trade-offs between
data quality, model performance, and ethical considerations.
Human-in-the-loop approaches, where models assist with but
do not completely replace manual labelling, also offer a
promising area for further exploration [B5181]. Additionally,
the growing use of specialized databases, such as vector
databases for efficient retrieval of unstructured data [B1571],
demands research into how these evolving data management

strategies affect the development lifecycle of FM-based sys-
tems, particularly when integrating multimodal data [B5035].

VIII. THREATS TO VALIDITY

Internal Validity. Industry blogs may not fully represent a
company’s official or comprehensive views, as posts are often
authored by individuals or specific teams. This introduces a
risk of bias since not all companies maintain blogs which
could potentially skew our dataset. In addition, there could
be marketing trends or recent product launches, which could
further skew the dataset. To mitigate this threat, we not only
report the number of blogs mentioning a specific activity, but
also the number of companies discussing those activities in
our analysis. Additionally, we realize that any overview of
discussed topics in fast moving areas such as FM4SE and
SE4FM is only a snapshot of the situation at that time, which
can quickly change. We want to emphasize that our FM-
powered surveying approach is automated and flexible, and
can be rerun easily for different companies, blog posts and
possibly even different areas.

The prompt optimization approach in Section IV is currently
manual. In future work, we plan to explore automated prompt
optimization frameworks, such as dspy [19], [20].

External Validity. The FM/LLM Jury comprises models
of different sizes. If using smaller models, they might lack
emergent abilities [45] found in larger ones which could affect
the accuracy of the labels. Furthermore, our findings are based
on blogs from large companies and may not generalize to
smaller ones which are limited by resource constraints.

IX. CONCLUSION

This study bridges the gap between academic research and
industry practices by analyzing 1,152 industry blog posts
related to FM4SE and SE4FM from leading technology
companies. We used an FM/LLM Jury of multiple FMs to
automatically label and summarize the contents. We uncovered
key activities and trends discussed by industry practitioners in
the intersection of SE and FMs. Our main findings are:

• Although code generation is the most prominently dis-
cussed task in FM4SE blog posts, FMs are used for
many other tasks in the software development process,
including code completion, code understanding, and code
summarization. Software engineering researchers should
investigate how to leverage FMs to support an even
broader range of software engineering activities.

• In SE4FM blog posts, model deployment & operation
and system architecture & orchestration are the most
frequently discussed activities. Software engineering re-
searchers should investigate how these activities can be
further supported through software engineering.

Our findings offer valuable insights into how industry lead-
ers are leveraging FMs and SE. We provide researchers with
eight promising research directions to explore. Additionally,
we demonstrate the potential of using an FM-powered survey-
ing approach for automating grey literature surveys in rapidly
evolving fields like SE and ML.

REFERENCES

[1] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann, “Software Engineering for
Machine Learning: A Case Study,” in IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2019, pp. 291–300.

[2] A. A. Bangash, H. Sahar, S. Chowdhury, A. W. Wong, A. Hindle, and
K. Ali, “What do Developers Know About Machine Learning: A Study
of ML Discussions on StackOverflow,” in IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), 2019, pp. 260–264.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language Models
are Few-Shot Learners,” in Advances in Neural Information Processing
Systems (NeurIPS), vol. 33. Curran Associates, Inc., 2020, pp. 1877–
1901.

[4] G. Butler, Think write grow: how to become a thought leader and build
your business by creating exceptional articles, blogs, speeches, books
and more. John Wiley & Sons, 2012.

[5] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi,
C. Wang, Y. Wang et al., “A Survey on Evaluation of Large Language
Models,” ACM Trans. Intell. Syst. Technol., vol. 15, no. 3, Mar. 2024.

[6] H. Chase, “LangChain,” https://github.com/langchain-ai/langchain, last
visited: Oct 11, Oct. 2022.

[7] C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and J. Jumper,
“Accelerating Large Language Model Decoding with Speculative Sam-
pling,” arXiv preprint arXiv:2302.01318, 2023.

[8] W.-L. Chiang, L. Zheng, Y. Sheng, A. N. Angelopoulos, T. Li, D. Li,
H. Zhang, B. Zhu, M. Jordan, J. E. Gonzalez et al., “Chatbot Arena:
An Open Platform for Evaluating LLMs by Human Preference,” arXiv
preprint arXiv:2403.04132, 2024.

[9] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan et al., “The Llama 3 Herd of
Models,” arXiv preprint arXiv:2407.21783, 2024.

[10] D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody,
S. Truitt, and J. Larson, “From local to global: A graph rag
approach to query-focused summarization,” 2024. [Online]. Available:
https://arxiv.org/abs/2404.16130

[11] K. E. Emam, “Benchmarking Kappa: Interrater Agreement in Software
Process Assessments,” Empirical Software Engineering, vol. 4, no. 2,
pp. 113–133, Jun 1999.

[12] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large Language Models for Software Engineering:
Survey and Open Problems,” in IEEE/ACM International Conference
on Software Engineering: Future of Software Engineering (ICSE-FoSE),
May 2023.

[13] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
S. Yih, L. Zettlemoyer, and M. Lewis, “InCoder: A Generative Model for
Code Infilling and Synthesis,” in The Eleventh International Conference
on Learning Representations (ICLR), 2023.

[14] Google Cloud, “Prompt iteration strategies,” https://cloud.google.com/
vertex-ai/generative-ai/docs/learn/prompts/prompt-iteration, last visited:
Oct 11, 2024.

[15] A. E. Hassan, D. Lin, G. K. Rajbahadur, K. Gallaba, F. R. Cogo,
B. Chen, H. Zhang, K. Thangarajah, G. Oliva, J. J. Lin et al., “Rethink-
ing Software Engineering in the Era of Foundation Models: A Curated
Catalogue of Challenges in the Development of Trustworthy FMware,”
in Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering (FSE), 2024, p. 294–305.

[16] A. E. Hassan, G. A. Oliva, D. Lin, B. Chen, Z. Ming, and Jiang,
“Towards AI-Native software engineering (SE 3.0): A vision and a
challenge roadmap,” arXiv preprint arXiv:2410.06107, 2024.

[17] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large Language Models for Software En-
gineering: A Systematic Literature Review,” ACM Trans. Softw. Eng.
Methodol., Sep. 2024.

[18] Z. M. Jiang and A. E. Hassan, “A Survey on Load Testing of Large-
Scale Software Systems,” IEEE Transactions on Software Engineering,
vol. 41, no. 11, pp. 1091–1118, 2015.

[19] O. Khattab, K. Santhanam, X. L. Li, D. Hall, P. Liang, C. Potts,
and M. Zaharia, “Demonstrate-search-predict: Composing retrieval
and language models for knowledge-intensive NLP,” arXiv preprint
arXiv:2212.14024, 2022.

[20] O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam,
S. Vardhamanan, S. Haq, A. Sharma, T. T. Joshi, H. Moazam, H. Miller,
M. Zaharia, and C. Potts, “Dspy: Compiling declarative language model
calls into self-improving pipelines,” arXiv preprint arXiv:2310.03714,
2023.

[21] T. Kocmi and C. Federmann, “Large Language Models Are State-
of-the-Art Evaluators of Translation Quality,” in Proceedings of the
24th Annual Conference of the European Association for Machine
Translation. European Association for Machine Translation, Jun. 2023,
pp. 193–203.

[22] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
“Retrieval-augmented generation for knowledge-intensive NLP tasks,” in
Proceedings of the 34th International Conference on Neural Information
Processing Systems (NeurIPS). Curran Associates Inc., 2020.

[23] H. Li, C.-P. Bezemer, and A. E. Hassan, “Replication package,” https:
//github.com/SAILResearch/fmse-blogs, 2024.

[24] J. T. Liang, C. Yang, and B. A. Myers, “A Large-Scale Survey on the
Usability of AI Programming Assistants: Successes and Challenges,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering (ICSE), 2024.

[25] S. Lin, J. Hilton, and O. Evans, “Teaching Models to Express Their
Uncertainty in Words,” Transactions on Machine Learning Research,
2022.

[26] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing,” ACM Comput. Surv., vol. 55, no. 9, Jan.
2023.

[27] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, S. Paul, and B. Bossan,
“Peft: State-of-the-art parameter-efficient fine-tuning methods,” https://
github.com/huggingface/peft, last visited: Oct 11, 2022.

[28] S. Martı́nez-Fernández, J. Bogner, X. Franch, M. Oriol, J. Siebert,
A. Trendowicz, A. M. Vollmer, and S. Wagner, “Software Engineering
for AI-Based Systems: A Survey,” ACM Trans. Softw. Eng. Methodol.,
vol. 31, no. 2, apr 2022.

[29] S. Masuda, K. Ono, T. Yasue, and N. Hosokawa, “A Survey of Software
Quality for Machine Learning Applications,” in IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2018, pp. 279–284.

[30] Microsoft, “Prompt flow,” https://github.com/microsoft/promptflow, last
visited: Oct 11, 2024.

[31] S. J. Mielke, A. Szlam, E. Dinan, and Y.-L. Boureau, “Reducing Con-
versational Agents’ Overconfidence Through Linguistic Calibration,”
Transactions of the Association for Computational Linguistics, vol. 10,
pp. 857–872, 2022.

[32] M. M. Morovati, A. Nikanjam, F. Tambon, F. Khomh, and Z. M. J. Jiang,
“Bug characterization in machine learning-based systems,” Empirical
Software Engineering, vol. 29, no. 1, p. 14, Dec 2023.

[33] A. Murphy and M. Schifrin, “Forbes 2024 global 2000 list,” https://
www.forbes.com/lists/global2000/, last visited: Oct 11, 2024.

[34] OpenAI, “GPT-4o mini: advancing cost-efficient intelligence,” https:
//openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence,
last visited: Oct 11, 2024.

[35] ——, “Prompt engineering,” https://platform.openai.com/docs/guides/
prompt-engineering, last visited: Oct 11, 2024.

[36] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” in Advances in
Neural Information Processing Systems (NeurIPS), vol. 35. Curran
Associates, Inc., 2022, pp. 27 730–27 744.

[37] R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi,
M. Merler, B. Sobolev, R. Pavuluri, S. Sinha, and R. Jabbarvand,
“Lost in Translation: A Study of Bugs Introduced by Large Language
Models while Translating Code,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, 2024.

[38] A. Panickssery, S. R. Bowman, and S. Feng, “LLM Evalua-
tors Recognize and Favor Their Own Generations,” arXiv preprint
arXiv:2404.13076, 2024.

[39] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-Resolution Image Synthesis with Latent Diffusion Models,” arXiv
preprint arXiv:2112.10752, 2021.

[40] P. Schmid, O. Sanseviero, A. Bartolome, L. von Werra, D. Vila,
V. Srivastav, M. Sun, and P. Cuenca, “Llama 3.1 – 405B, 70B & 8B with
multilinguality and long context,” https://huggingface.co/blog/llama31#
training-memory-requirements, last visited: Oct 9, 2024.

https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2404.16130
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/prompt-iteration
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/prompt-iteration
https://github.com/SAILResearch/fmse-blogs
https://github.com/SAILResearch/fmse-blogs
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/microsoft/promptflow
https://www.forbes.com/lists/global2000/
https://www.forbes.com/lists/global2000/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://huggingface.co/blog/llama31#training-memory-requirements
https://huggingface.co/blog/llama31#training-memory-requirements

[41] G. Team, P. Georgiev, V. I. Lei, R. Burnell, L. Bai, A. Gulati, G. Tanzer,
D. Vincent, Z. Pan, S. Wang et al., “Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context,” arXiv preprint
arXiv:2403.05530, 2024.

[42] P. Verga, S. Hofstatter, S. Althammer, Y. Su, A. Piktus, A. Arkhang-
orodsky, M. Xu, N. White, and P. Lewis, “Replacing Judges with Juries:
Evaluating LLM Generations with a Panel of Diverse Models,” arXiv
preprint arXiv:2404.18796, 2024.

[43] H. Villamizar, T. Escovedo, and M. Kalinowski, “Requirements En-
gineering for Machine Learning: A Systematic Mapping Study,” in
47th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2021, pp. 29–36.

[44] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
Testing With Large Language Models: Survey, Landscape, and Vision,”
IEEE Transactions on Software Engineering, vol. 50, no. 4, pp. 911–936,
2024.

[45] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler et al., “Emergent Abilities
of Large Language Models,” arXiv preprint arXiv:2206.07682, 2022.

[46] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in

large language models,” in Proceedings of the 36th International Con-
ference on Neural Information Processing Systems (NeurIPS). Curran
Associates Inc., 2022.

[47] A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li,
D. Liu, F. Huang et al., “Qwen2 Technical Report,” arXiv preprint
arXiv:2407.10671, 2024.

[48] P. Yu, H. Xu, X. Hu, and C. Deng, “Leveraging generative AI and large
language models: A comprehensive roadmap for healthcare integration,”
Healthcare, vol. 11, no. 20, 2023.

[49] Y. Zhang, X. Huang, J. Ma, Z. Li, Z. Luo, Y. Xie, Y. Qin, T. Luo, Y. Li,
S. Liu, Y. Guo, and L. Zhang, “Recognize Anything: A Strong Image
Tagging Model,” arXiv preprint arXiv:2306.03514, 2023.

[50] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. P. Xing et al., “Judging LLM-as-a-judge with MT-bench
and Chatbot Arena,” in Proceedings of the 37th International Confer-
ence on Neural Information Processing Systems (NeurIPS). Curran
Associates Inc., 2023.

[51] X. Zhu, J. Li, Y. Liu, C. Ma, and W. Wang, “A Survey on Model Com-
pression for Large Language Models,” arXiv preprint arXiv:2308.07633,
2024.

	I Introduction
	II Background and Related Work
	II-A LLM-as-a-judge
	II-B Related work

	III Using an FM/LLM Jury for Labelling Blog Posts
	III-A Constructing the prompt
	III-B Merging the FM outputs
	III-C Human-in-the-loop
	III-D Selected FMs

	IV Methodology
	IV-A Identifying blogs related to SE and FM from technology companies
	IV-B Identifying the FM4SE and SE4FM area, activities and discussed tasks in the blog posts

	V RQ1: Which FM4SE activities are discussed in industry blog posts?
	V-A Software development
	V-B Software quality assurance
	V-C Software maintenance
	V-D Software management, requirement engineering, and software design
	V-E Comparison with Academic Research

	VI RQ2: Which SE4FM activities are discussed in industry blog posts?
	VI-A Model deployment & operation
	VI-B System architecture & orchestration
	VI-C Data management
	VI-D Model customization
	VI-E Evaluation & quality assurance
	VI-F Prompt construction

	VII Discussion of Future Research Directions
	VII-A Research Directions for FM4SE
	VII-B Research Directions for SE4FM

	VIII Threats to Validity
	IX Conclusion
	References

