
Prioritizing Natural Language Test Cases Based on Highly-Used
Game Features

Markos Viggiato1, Dale Paas2, Cor-Paul Bezemer1
1Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

2Prodigy Education, Toronto, Canada
viggiato@ualberta.ca,dale.paas@prodigygame.com,bezemer@ualberta.ca

ABSTRACT
Software testing is still a manual activity in many industries, such
as the gaming industry. But manually executing tests becomes im-
practical as the system grows and resources are restricted, mainly
in a scenario with short release cycles. Test case prioritization is a
commonly used technique to optimize the test execution. However,
most prioritization approaches do not work for manual test cases
as they require source code information or test execution history,
which is often not available in a manual testing scenario. In this
paper, we propose a prioritization approach for manual test cases
written in natural language based on the tested application features
(in particular, highly-used application features). Our approach con-
sists of (1) identifying the tested features from natural language test
cases (with zero-shot classification techniques) and (2) prioritizing
test cases based on the features that they test. We leveraged the
NSGA-II genetic algorithm for the multi-objective optimization of
the test case ordering to maximize the coverage of highly-used
features while minimizing the cumulative execution time. Our find-
ings show that we can successfully identify the application features
covered by test cases using an ensemble of pre-trained models
with strong zero-shot capabilities (an F-score of 76.1%). Also, our
prioritization approaches can find test case orderings that cover
highly-used application features early in the test execution while
keeping the time required to execute test cases short. QA engineers
can use our approach to focus the test execution on test cases that
cover features that are relevant to users.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
• Software and its engineering→ Software testing and debugging.

KEYWORDS
Test case prioritization, Multi-objective genetic algorithm, Zero-
shot classification, Feature usage

1 INTRODUCTION
Software testing is an essential, yet costly, quality assurance activity
during the software development life cycle [4, 17, 19, 21]. Despite
the recent advances in test automation techniques [31, 41, 42, 52],
manual tests are still widely performed across different indus-
tries [19, 41, 42, 53, 59]. In the gaming industry, for example, game
developers face several challenges to automate tests and, conse-
quently, manual testing is a predominant practice [41, 42, 53–55].

Manually executing tests is a tedious activity and requires a
large amount of human effort as testers need to perform several
steps to achieve the testing goal [54, 55]. As systems grow and the
number of test cases increases, it becomes impractical to execute

all manual test cases, mainly in a scenario with a short release
cycle [19, 21, 22, 27].

Prior work proposed several approaches to optimize the execu-
tion of test cases when resources are restricted, such as prioritizing
test cases during regression testing [15, 16, 21, 34, 39, 40, 43, 49, 57,
65]. However, most proposed approaches do not work for manual
test cases as (1) they depend on test case source code, which does
not exist for manual test cases and (2) the execution history of test
cases, which could be out-of-date or difficult to be accessed [62]
or is generally not meaningful for manual test cases as they tend
to be specified at a higher level. Because of these two limitations
of manual test cases, it is difficult to automatically prioritize their
execution based on a meaningful metric.

In this paper, we propose an approach for prioritizingmanual test
cases that are written in natural language based on the application
feature(s) that they test. In particular, we prioritize test cases that
test highly-used application features, to ensure that the limited
testing resources are used to test features in which bugs will affect
the largest group of users. Our approach performs a multi-objective
optimization with the widely-used NSGA-II genetic algorithm [12]
to find optimal orderings of test cases according to two objectives:
(a) highly-used feature coverage and (b) test case execution time.
For objective (a), we need to identify the link between the test cases
and the application features to identify which features are covered
by test cases. We then collect the feature usage data for each feature.
To identify this link, we leverage the strong zero-shot capabilities
of several pre-trained language models.

We evaluated and optimized our approach for the data of a game
from our industry partner (Prodigy Education).1 Our experiments
were performed with the test cases in the test suite of Prodigy
Education.

The main contributions of our work are as follows:
• We build an automated mapping between natural language
test cases and the game feature(s) that they cover.

• We propose a novel prioritization technique for natural lan-
guage test cases based on the game feature(s) that they cover,
in particular, the highly-used game features.

The source code of our experiments is available online.2 The
remainder of our paper is structured as follows. Section 2 describes
our industrial case subject and Section 3 gives an overview of our
approach for test case prioritization. Section 4 presents the experi-
ments and results to build our zero-shot ensemble model. Sections 5
and 6 present and discuss the prioritization experiments and results.
We discuss practical aspects of our approach in Section 7, related

1https://www.prodigygame.com/main-en/
2https://github.com/asgaardlab/natural-language-test-prioritization

https://www.prodigygame.com/main-en/
https://github.com/asgaardlab/natural-language-test-prioritization

Conference’17, July 2017, Washington, DC, USA Viggiato et al.

work in Section 8 and the threats to validity in Section 9. Finally,
Section 10 concludes the paper.

2 INDUSTRIAL CASE STUDY SUBJECT
In this paper, we applied our approach to the Prodigy Math game
(from Prodigy Education), which is a proprietary, online, RPG-style
educational math game with more than 100 million users around
the world. The game contains over 50,000 math questions spanning
Grade 1-8. The players play the role of a character (a wizard) in
the Prodigy world and can go to several world zones available in
the game. As the players answer math questions, their wizards
can evolve, learn new spells, and acquire new equipment and in-
game items. We use the test cases designed by Prodigy Education
developers, the usage data generated by the players and the features
of the Prodigy Math game as input for our approach.
Dataset characteristics. Our case study subject has 1,146 test
cases that are written in natural language. Each test case contains
the following fields:

• a test case name.
• an objective with the main goal of the test case.
• the time required to execute the test case, as provided by
developers and QA engineers.

• one or more steps that the tester must perform.
The total combined execution time of the test cases is 133 hours.

In total, the test cases cover 110 features of the Prodigy Math game.
Every test case covers at least one feature, and a feature may be
covered by more than one test case. For example, the “login” feature
is covered by 27 test cases. In our data, a test case covers a median
of 2 game features.

3 OVERVIEW OF OUR APPROACH FOR TEST
CASE PRIORITIZATION

Our approach for prioritizing natural language test cases consists of
two steps: (1) automatically identifying the tested game feature(s)
from natural language test case descriptions and (2) prioritizing test
cases based on the highly-used game features covered by test cases.
Our approach finds the orderings of test cases that maximize the
number of highly-used features covered early in the test execution
and minimize the execution time. Figure 1 presents an overview of
our approach.

3.1 Input
Our approach takes as inputs (1) manual test cases specified in
natural language, (2) a pre-defined set of features of the application
under test, and (3) the data generated from the interaction of users
with the system (e.g., an execution log).

3.2 Extracting test case information
Our approach starts by extracting the execution time and textual
descriptions from test cases. We use the concatenation of the test
case name and objective as the textual description of the test case.
We then use several techniques with strong zero-shot capabilities
to identify the game features tested by test cases as we do not have
a mapping between test cases and the game feature(s) that they
cover. Since a test case might cover more than one feature, our

Test cases

Pre-defined set
of game
features

Test case
execution time

Test case textual
description

Game
execution log

Optimal test
case ordering

Identify game
features from natural
language test cases

Extracting test case information

Extract test case
execution time

Extract test case
textual description

Analyzing game features

Optimizing test case execution

Input

Compute game
feature usage metrics

Game features
ordered by usage

Multi-objective
prioritization of natural

language test cases

Figure 1: Overview of our approach for prioritizing natural
language test cases.

Name Co-op: Joining a team

Objective Verify the functionality of joining another
player’s team

Test steps

1. Log into the game
2. Try to join the team of another player
3. Verify that the student joined the other
player’s team

Exec. time 1 (minute)
Cov. features co-op, co-op join
Table 1: Test case example with the covered features.

approach performs a multi-label classification of test cases with
those techniques. We chose the zero-shot approach because we do
not have labeled data to train a classifier from scratch or even to
fine-tune pre-trained models, as they require large amounts of data.
Manually labeling data to train a classifier is not feasible because
we have more than a hundred labels. Also, a manual classification
of all the data is error-prone and infeasible due to the large number
of test cases.

Table 1 shows an example test case with the corresponding cov-
ered features as identified by our zero-shot classification techniques.
The test case named “Co-op: Joining a team” verifies whether play-
ers can join another player’s team during a cooperative battle, and
therefore, covers the cooperative battles feature (named “co-op”)
and, more specifically, the feature that allows players to join an-
other player’s team in a cooperative battle (named “co-op join”).
We store the features identified by the zero-shot techniques in a
feature coverage vector, which is [co-op, co-op join] in our example.
And after this stage, every test case has a corresponding feature
coverage vector.

3.3 Analyzing game features
Our approach uses game feature usage data to prioritize test cases
that test highly-used features. We collect the total number of uses

Prioritizing Natural Language Test Cases Based on Highly-Used Game Features
Conference’17, July 2017, Washington, DC, USA

for each feature of the game for a specific period of time from the
execution logs (in our case, the events that are stored in Prodigy’s
data warehouse). As the feature usage metric in our experiments,
we used the average number of feature uses per week for an entire
school year (September 2021 to June 2022).

3.4 Optimizing test case execution
Finally, our approach performs a multi-objective optimization with
the test case descriptions (with the corresponding feature coverage
vector), the feature usage metric (total number of uses), and the
test case execution time. Our approach optimizes the test case
order based on a maximization of the number of highly-used game
features covered by test cases and a minimization of the cumulative
test execution time.

4 IDENTIFYING GAME FEATURES FROM
NATURAL LANGUAGE TEST CASES

In our work, we leverage techniques with strong zero-shot ca-
pabilities to identify the link between the manual test cases and
the features that they cover. Recently proposed pre-trained lan-
guage models (such as BART [28]) have strong zero-shot capabili-
ties, which means that their knowledge (obtained from very large
amounts of data used during pre-training) can be transferred to a
new domain which has no labeled data [7, 14, 28]. As a result, we
can apply these pre-trained models to new data and classes. Prior
work has demonstrated the success of zero-shot learning in differ-
ent fields, such as computer vision, speech, and natural language
processing [9, 10, 13, 44, 52, 61].

4.1 Experiment setup
We did experiments to evaluate the performance of each individual
zero-shot classification technique in our dataset. In addition, to
have a more robust zero-shot classification, we experimented with
different ensembles of the individual zero-shot techniques, as we
explain below. For all the experiments, we used the 1,146 test cases
of the Prodigy Math game and a list of 110 features that was defined
by the game developers.

Techniques for zero-shot classification. We used three tech-
niques that have strong zero-shot capabilities as demonstrated by
prior work [13, 60, 61, 64]:

4.1.1 BartLargeMNLI. facebook/bart-large-mnli [28] is a model
trained on the Multi-Genre Natural Language Inference (MNLI)
dataset which has been shown to have strong zero-shot capabilities
for text classification [64].

4.1.2 CrossEncoderNLI. cross-encoder/nli-distilroberta-base3 is
a model trained with a cross-encoder architecture to learn sen-
tence embeddings [45] using the MNLI and the Stanford Natu-
ral Language Inference (SNLI) datasets, which also has zero-shot
capabilities for text classification. For both BartLargeMNLI and
CrossEncoderNLI models, we provide the textual description of a
test case and a list of all the game features of the Prodigy Math game.
The models output the game features sorted by their probability of
being related to the test case.
3https://huggingface.co/cross-encoder/nli-distilroberta-base

Top-20k
words

(Word2Vec)

SBERT

Word2Vec

Linear
regression

Transfer
matrix

Least-squares linear regression

Test case 1
textual

description

Pre-defined set
of game features

SBERT
Transfer
matrix

dim=[20,000 , 768]

cosine

dim=[20,000 , 300]

dim=[1 , 768]

dim=[1 , 768] dim=[1 , 300]

dim=[1 , 300]

Game feature Similarity

Login 0.95

Co-op 0.58

Battle 0.53

dim=[768 , 300]

Figure 2: Overview of our LatentEmb technique for test case 1.

4.1.3 LatentEmb. This is an unsupervised, similarity-based tech-
nique that uses text embedding methods to embed sentences (to be
classified) and the candidate labels and uses a similarity metric (e.g.,
cosine) to find the labels that are similar to the sentence [13, 60, 61].
The sentence is then classified into the most similar labels (i.e., la-
bels that are close to the sentence in the embedding space). We need
to use a sentence embedding model to embed sentences and a word
embedding models to embed labels (which are usually single words).
In our work, we use the popular Sentence-BERT (SBERT)model [45]
to embed test case textual descriptions (i.e., sentences), with the
sentence-t5-large pre-trained checkpoint, and the Word2Vec embed-
ding model [37] to embed the game features (i.e., labels). However,
we cannot compute the cosine similarity directly between the em-
bedding vectors from SBERT and Word2Vec since they have differ-
ent scales (SBERT vectors are 768-dimensional, while Word2Vec
vectors are 300-dimensional). To compare the embeddings, we need
to have the embeddings from test case description and game fea-
tures in the same space. Therefore, we performed a least-squares
linear regression to learn a mapping between the SBERT and the
Word2Vec spaces.4 In practice, the mapping is a “transfer” matrix
that can be used to transfer embeddings from one space to the other.
We can then embed test case descriptions and game features with
SBERT, use the matrix to transfer all embeddings to the Word2Vec
space, and compute the consine similarity in the Word2Vec space.
Figure 2 shows how we used LatentEmb to identify the game fea-
tures covered by a test case example (test case 1).

To build the mapping, we need to embed the same set of words
with both SBERT and Word2Vec and then perform a linear regres-
sion with those embedding vectors. We used the top-20k most
frequent words from Word2Vec for the linear regression. With the
computed matrix, we can embed the description of a test case and
the game features with the SBERT model and used the matrix to
transfer the embeddings to the 300-dimensional Word2Vec embed-
ding space, where we can compute the cosine metric between the
test case embedding and the game feature embeddings. We per-
formed a preliminary analysis to evaluate other word embedding
models (Glove and Fasttext), but using Word2Vec with the top-20k
words achieved the best performance. We also used the preliminary
analysis to determine the optimal classification threshold to be used
for the cosine similarity in the LatentEmb approach and for the
two pre-trained models (as their outputs contain the game features
4https://joeddav.github.io/blog/2020/05/29/ZSL.html

https://huggingface.co/cross-encoder/nli-distilroberta-base
https://joeddav.github.io/blog/2020/05/29/ZSL.html

Conference’17, July 2017, Washington, DC, USA Viggiato et al.

Test case name True feat. cov. vector Predicted feat. cov. vector Ground truth binary vector
[battle, login, co-op]

Predicted binary vector
[battle, login, co-op]

Login on mobile device login co-op [0, 1, 0] [0, 0, 1]
Start co-op battle battle, co-op login, co-op [1, 0, 1] [0, 1, 1]
Check animations in battle battle battle [1, 0, 0] [1, 0, 0]

Table 2: Example of multi-label classification of test cases. Binary vectors for the “battle” feature are highlighted in green
(ground truth) and orange (predicted).

along with their probabilities). We used the best thresholds found
in our analysis: 0.9 for BartLargeMNLI, 0.6 CrossEncoderNLI, and
0.2 for LatentEmb (we give more details on how we could evaluate
the models in Section 4.2 below).

Ensembles of techniques for zero-shot classification. We also
experimented with different ways of aggregating the classifications
from each individual zero-shot technique to build an ensemble. Be-
low, we explain the different aggregation methods that we explored.

4.1.1 Ensemble with majority voting (EnsMajorVoting). Our ini-
tial idea is to use a majority voting approach to obtain the final
classifications. This ensemble uses the sets of labels obtained from
each individual zero-shot model and selects the labels provided by
at least two models.

4.1.2 Ensemble with full intersection (EnsFullInters). Aiming
at having more robust and high-confidence classifications, this
ensemble uses only the labels that were provided by all the three
models.

4.1.3 Ensemble with back-off using top-2 models (EnsBackOffTwo).
The ensemble above (EnsFullInters) might be too strict some-
times, so we evaluated an ensemble that first obtained the labels
that were provided by all the three models and, if that results in an
empty set, this ensemble backs-off to the intersection of the two
best individual models. Note that this is different from majority
voting, which uses the labels provided by a minimum of any two
models (not only the top-2 best models).

4.1.4 Ensemble with back-off using all models (EnsBackOffComplete).
If the intersection of all three models is empty, our approach backs-
off and inspects the intersection of the two best individual models.
Then, if the top-2 intersection is still an empty set, the approach
backs-off again and inspect the intersection of the best and third
best model. At last, if that also results in an empty set, we use the
intersection between the second and third best models. Note that
for all the ensembles, if the final result set is empty, we do not
assign any labels to the test case.

Baseline. To have a “sanity check”, we use a keyword search ap-
proach as baseline. We search the feature name in the test descrip-
tion to find if that feature is covered by that test case.

4.2 Evaluation
To evaluate our proposed approaches, we manually labeled a subset
of the test cases in the test suite of Prodigy Education. Please note
that we only labeled the data to be able to evaluate the zero-shot and
ensemble models. To use our approach in practice, no manual data

labeling is necessary. To label the test cases, the first author, who
has an extensive knowledge of the Prodigy Math game, randomly
selected test cases until there was at least one labeled example for
each label. In total, we labeled 211 test cases and there are, on aver-
age, 3 examples for each label. Using the labeled data, we computed
the precision, recall, and F-score for all the evaluated approaches.
As the F-score metric penalizes both the false positives and false
negatives, we focus the discussions on that metric. To compute the
evaluation metrics for our multi-label classification task, we used
the scikit-learn package, which computes the metrics for each
individual label and obtains the average. We used a weighted aver-
age because our labels are imbalanced (i.e., the number of labeled
examples for each label is different). To clarify how we computed
the F-score for our multi-label classification, Table 2 shows exam-
ples of three test cases, their true feature coverage vector, and the
feature coverage vector predicted by a model. We used the Mul-
tiLabelBinarizer from scikit-learn to obtain the binary vectors
from the feature coverage vectors. The binary vectors follow a fixed
order of the features, such as [battle, login, co-op] in our example,
and contain ‘1’ in case that feature is present and ‘0’ otherwise. We
then compute the evaluation metrics (e.g., F-score) for each label
individually (i.e., for each game feature) and average the per-label
metrics. For example, for the “battle” feature, we use the binary
elements that correspond to the position of “battle” in the ground
truth binary vectors (i.e., the first elements, which are highlighted
in green), which gives [0, 1, 1]. We do the same for the predicted
binary vectors (elements highlighted in orange) and obtain [0,0,1].
We then compute the F-score between those two vectors, which
gives an F-score of 0.67. We do the same procedure for all game
features and compute their average weighted by the number of
times each game features appears in the ground truth (e.g., “battle”
appears two times, in the second and third test cases, while “login”
appears once, in the first test case).

4.3 Results
Table 3 presents the results of our experiments with the zero-shot
models. All the ensemble approaches perform better than the indi-
vidual models and the baseline. The EnsBackOffComplete approach
has the best performance, with an F-score of 76.1, followed closely
by the EnsBackOffTwo approach, with an F-score of 76.0. The best
individual model is the LatentEmb, with an F-score of 72.3, while
the BartLargeMNLI and the CrossEncoderNLI achieved F-scores of
70.5 and 69.9, respectively. Based on these results, we used the
EnsBackOffComplete approach to classify all the test cases in our
dataset.

Prioritizing Natural Language Test Cases Based on Highly-Used Game Features
Conference’17, July 2017, Washington, DC, USA

Zero-shot approach F-score Precision Recall
Baseline (keyword search) 59.8 65.5 60.0
BartLargeMNLI 70.5 69.9 79.9
CrossEncoderNLI 69.9 73.5 75.3
LatentEmb 72.3 71.5 80.9
EnsMajorVoting 74.1 71.5 84.4
EnsFullInters 74.7 74.2 83.1
EnsBackOffTwo 76.0 78.3 78.9
EnsBackOffComplete 76.1 78.0 79.2

Table 3: Results of experiments with the zero-shot models.

5 MULTI-OBJECTIVE PRIORITIZATION OF
NATURAL LANGUAGE TEST CASES

To optimize the execution of manual test cases, our approach per-
forms a multi-objective optimization using a genetic algorithm. Be-
low, we explain how we applied the non-dominated sorted genetic
algorithm (NSGA-II) genetic algorithm [12] to test case prioritiza-
tion, the performed experiments and the obtained results.

5.1 Multi-Objective Genetic Algorithms
A genetic algorithm is a search-based heuristic that uses the con-
cept of natural evolution to find the best solutions from a large
number of possible solutions [11]. In our case, a possible solution is
a specific test case ordering that is searched among all possible test
case orderings (i.e., all the permutations of orderings). We apply
the NSGA-II algorithm [12] because it has been widely used for
multi-objective optimization for different purposes in the software
engineering field [29, 48, 50, 57]. At each iteration, the algorithm
uses an objective function (i.e., fitness function) to evaluate the
candidate solutions that we generated. Differently from a single-
objective optimization, in which the candidates are evaluated using
a single objective, in a multi-objective scenario, there is a trade-
off between the multiple objectives. NSGA-II uses the concept of
dominance [11, 26] to determine the best solutions. A solution s1
dominates solution s2 (s1 ⪯ s2) if s1 is no worse than s2 for all the
objectives and s1 is strictly better than s2 for at least one objective.
In the end, the algorithm outputs a set of non-dominated solutions,
which are called the Pareto front [26].

5.2 Test Case Prioritization Using NSGA-II
For our work, a Pareto front consists of a set of test case orderings
with the optimal trade-off between the objectives. To use NSGA-
II, we need to define the solution encoding (i.e., how a solution is
represented). In our case, as a solution corresponds to a specific
test case ordering, we assign a unique integer to identify each test
case. Therefore, a solution is represented by an ordered sequence
of integers [1, 2, · · · , 𝑛], where n is the total number of test cases
in our test suite. We initialize NSGA-II by randomly sampling a
subset of all the possible test case orderings. For the required genetic
operators, we use the default operators provided by the Python
package that we used (pymoo [5]) for permutation problems: binary
tournament for the selection operator, order-based crossover for
the crossover operator (order-based is a crossover operator proper

for permutation encoded chromosomes, such as our case), and
inversion mutation for the mutation operator.

5.3 Objective functions for NSGA-II
We defined three objective functions that are used during the opti-
mization process in our experiments. Similarly to prior work [49,
50], we use normalized metrics as the objective functions to avoid
bias of the model towards functions with larger values. In addition,
normalized objective functions are inherently more interpretable.

As we mentioned in Section 3, the goal of our prioritization ap-
proach is to search for test case orderings such that (1) highly-used
features are covered early in the test execution and (2) test cases
with shorter durations are executed early in the testing. During
our experiments, for comparison purposes, as we explain in Sec-
tion 5.5, we also performed an optimization such that (3) a large
number of features (not necessarily the highly-used features) are
covered early in the test execution and (2) test cases with shorter
durations are executed early in the testing. To capture these three
criteria during the test case prioritization, we defined the following
objective functions.

5.3.1 Feature ranking similarity (featRankSim). This metric mea-
sures the similarity between two rankings: the feature usage rank-
ing (in which the features are sorted by their total number of uses)
and the feature testing ranking (in which the features are sorted ac-
cording to the order in which they are covered when executing the
ordered test cases). Ideally, the feature testing ranking is the same
as the feature usage ranking. To measure the ranking similarity,
we used the normalized discounted cumulative gain (NDCG) met-
ric [25, 58]. NDCG is commonly used to compute ranking quality in
Information Retrieval-based systems [36] and uses a graded-scale
relevance for documents, where the usefulness of a document is
measured based on its position in the ranking (highly-relevant doc-
uments should be at the top of the ranking). The cumulative gain
score is computed as we move from top to bottom in the ranking.
The lower the position of a document in the ranking, the lower
the gain that it provides to the final score. Because of this, NDCG
gives greater importance to documents in the top of the ranking.
For example, differences in the top of the ranking have a larger
impact on the score than differences in the bottom of the ranking.
We used the scikit-learn implementation of NDCG, which lies
in the range [0,1], with 1 indicating a perfect match between the
obtained ranking and the ideal ranking. In our case, a document is
a game feature and we use the total number of uses of the feature
as its relevance score. The ideal ranking is obtained by sorting the
features by their usage (feature usage ranking). Finally, we want
to maximize the featRankSim objective to have the feature testing
ranking as similar to the feature usage ranking as possible (which
means that highly-used features are tested early in the test case
ordering).

5.3.2 Cumulative execution time (cumExecTime). This metric cap-
tures how the cumulative execution time of test cases changes as
test cases are executed in a specific order. For each executed test
case, its execution time is added to the partial cumulative execution
time. Since we want cumExecTime to increase as slow as possible
as we execute the ordered test cases, we use the AUC obtained as

Conference’17, July 2017, Washington, DC, USA Viggiato et al.

1 2 3 4 5
Test case ID (ordered sequence)

0

50

100

Cu
m

. f
ea

t.
co

ve
ra

ge

AUCFeat = 0.84

(a) Ordering w/ high 𝐴𝑈𝐶𝐹𝑒𝑎𝑡

1 2 3 4 5
Test case ID (ordered sequence)

0

50

100

Cu
m

. f
ea

t.
co

ve
ra

ge

AUCFeat = 0.50

(b) Ordering w/ low 𝐴𝑈𝐶𝐹𝑒𝑎𝑡

Figure 3: Examples to demonstrate our objective function.

we move along the sequence of ordered test cases as the objective
function (𝐴𝑈𝐶𝑇𝑖𝑚𝑒). We normalize 𝐴𝑈𝐶𝑇𝑖𝑚𝑒 with regard to the
maximum area (which is the test case ordering in which the first test
case has an execution time that corresponds to the total execution
time of the test suite).

5.3.3 Cumulative feature coverage (cumFeatCov). This metric cap-
tures how the number of covered features increases as test cases
are executed in a specific order. Since one feature might be tested
in multiple test cases, we need to define a minimum number of test
cases necessary to consider that a feature has been covered. We
defined a threshold for the percentage of test cases that is sufficient
to consider that a feature was indeed tested and can be counted as
covered (which we call per-feature coverage threshold). For example,
if the per-feature coverage threshold is 0.8, we only consider feature
“A” covered after executing 4 out of 5 test cases that cover that
feature. To obtain the cumFeatCov metric, we get the set of features
associated with the test cases as they are executed one at a time and
compute how many features are covered. A feature is considered
covered if its per-feature coverage threshold is met. Since we want
cumFeatCov to increase as quick as possible as we execute the or-
dered test cases, we use the area under the curve (AUC) obtained as
we move along the sequence of ordered test cases as the objective
function (𝐴𝑈𝐶𝐹𝑒𝑎𝑡). We normalize 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 similarly as we do for
𝐴𝑈𝐶𝑇𝑖𝑚𝑒

Figure 3 presents examples of different test case orderings that
achieve different𝐴𝑈𝐶𝐹𝑒𝑎𝑡 and helps to clarify our goal of maximiz-
ing 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 . Figure 3a shows a test case ordering in which a large
number of features is covered early in the sequence (which yields a
large 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 of 0.84), while Figure 3b shows that the number of
covered features increases slower than in Figure 3a (which yields
a smaller 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 of 0.50). Since we want the number of covered
features to increase as quick as possible, the ordering with the larger
𝐴𝑈𝐶𝐹𝑒𝑎𝑡 is preferable.

5.4 Stopping Criteria for NSGA-II
Lastly, we need to define the stopping criteria for NSGA-II so that
the algorithm can be stopped when no progress is made in the
search for the optimal solutions. Similarly to prior work [50], and
to have a systematic way of deciding when to stop the algorithm
execution, we defined two stopping criteria that we used in our
experiments.
T-test: for the non-dominated solutions 𝑠𝑖 of each new generation
𝑔𝑖 during NSGA-II execution, we run a t-test [56] for each objective
to compare the non-dominated solutions of the new generationwith
the solutions 𝑠𝑖−1 of the previous generation 𝑔𝑖−1. For example, if

generation 𝑔𝑖 has 10 solutions, there are 10 non-dominated test case
orderings, i.e., 10 values for each objective:𝐴𝑈𝐶𝐹𝑒𝑎𝑡 ,𝐴𝑈𝐶𝑇𝑖𝑚𝑒 , and
featRankSim. When the t-tests for all the objectives show that the
difference between the two generations is insignificant (p-value >
0.05) for five consecutive generations, the algorithm execution is
stopped.
Mutual Dominance Rate (MDR): we also use the set of non-
dominated solutions for two consecutive generations 𝑔𝑖−1 and 𝑔𝑖
to compute the mutual dominance rate (MDR) indicator [18, 35].
Consider a function Δ(𝑔𝑖−1, 𝑔𝑖) that returns the set of solutions in
𝑔𝑖−1 that are dominated by at least one solution in 𝑔𝑖 . We can then
formulate the MDR as:

𝑀𝐷𝑅 =
|Δ(𝑔𝑖−1, 𝑔𝑖) |

|𝑔𝑖−1 |
− |Δ(𝑔𝑖 , 𝑔𝑖−1) |

|𝑔𝑖 |
where |𝑔| is the number of elements in g.

The MDR indicator ranges from -1 to +1, in which an MDR
of -1 indicates that the solutions of the current generation are
not better than the solutions of the previous generation, while
an MDR of +1 indicates that the current solutions are completely
better than the previous solutions. An MDR of zero means that no
significant progress has been made [35]. Since the MDR can have
alternated signs due to the randomness of genetic algorithms, we
consider that the algorithm can be stopped when MDR lies within
a pre-defined range [-a, a] (as done in prior work [50]) for five
consecutive generations (which is stricter than prior work [50]).
We experimented with different MDR ranges, as we explain below.

5.5 Experiment setup
In this section, we describe the experiments that we performed
to assess how our approach works in different scenarios and with
different parameters. For all experiments, we used our dataset of
1,146 test cases, with a total execution time of 133 hours and 110
game features covered by test cases. Similarly to prior work [1, 20,
49, 50], we used random-based search approaches as the baselines
with which we compare our approaches. We randomly selected 50
test case orderings, named 𝑅𝑎𝑛𝑑𝑜𝑚50, and 100 test case orderings,
named 𝑅𝑎𝑛𝑑𝑜𝑚100. The random orderings were selected without
replacement from the entire population of test case orderings. Also,
following the literature guidelines [2, 49], we used a population of
100 in all our experiments. We executed NSGA-II 50 times during
the experiments to mitigate the randomness involved in genetic
algorithms and we report the results from all 50 runs.
Experiment 1: number of covered game features versus test
execution time (without feature usage). In this experiment, we
performed a bi-objective optimization for different combinations of
per-feature coverage threshold and stopping criteria. We performed
the test case prioritization only with the 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 and 𝐴𝑈𝐶𝑇𝑖𝑚𝑒

objective functions. Our goal is to understand the trade-off between
game feature coverage and execution time when no feature usage
information is included. We evaluated four per-feature coverage
thresholds: 50%, 75%, 90%, and 100%. We consider that 50% is the
minimum acceptable threshold to consider that a feature is cov-
ered. For each per-feature coverage threshold, we evaluated three
approaches with different intervals for MDR in the stopping criteria:
𝑆𝑡𝑜𝑝0.25, 𝑆𝑡𝑜𝑝0.10, and 𝑆𝑡𝑜𝑝0.05, with the following ranges: [-0.25,
0.25], [-0.10, 0.10], and [-0.05, 0.05]. For the stopping criteria, both

Prioritizing Natural Language Test Cases Based on Highly-Used Game Features
Conference’17, July 2017, Washington, DC, USA

the t-test (p-value > 0.05) and the MDR criteria must be satisfied
for five consecutive generations.
Experiment 2: number of covered highly-used game features
versus test execution time (with feature usage). In this experi-
ment, we used the game feature usage in the optimization through
the featRankSim objective function instead of only the number of
covered game features. Our goal is to find test case orderings that
test highly-used features early in the test execution in the shortest
amount of time. We evaluated the same stopping criteria as in ex-
periment 1, i.e., the [-0.25, 0.25], [-0.10, 0.10], and [-0.05, 0.05] MDR
ranges together with the t-test. For experiment 2, as we included
feature usage, we named the approaches as follows: 𝑆𝑡𝑜𝑝0.25_𝑢𝑠𝑎𝑔𝑒 ,
𝑆𝑡𝑜𝑝0.10_𝑢𝑠𝑎𝑔𝑒 , and 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 .

5.6 Evaluation of test case prioritization
approaches

For each approach, we report the number of non-dominated solu-
tions obtained, the number of fitness evaluations of NSGA-II, and
the execution time until the algorithm was stopped. In all cases, we
report the median obtained from the 50 runs. The number of fitness
evaluations corresponds to the number of test case orderings that
were inspected during the optimization and represents the speed
with which our approaches converge and their practical applica-
bility. We also report the median of the 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 and 𝐴𝑈𝐶𝑇𝑖𝑚𝑒

objective functions for experiment 1, and of the featRankSim and
𝐴𝑈𝐶𝑇𝑖𝑚𝑒 objective functions for experiment 2. Following the liter-
ature recommendations [1], we used the Mann-Whitney U-test [33]
and Cliff’s delta d effect size [30, 46] to statistically compare our
approaches. We adopt the thresholds for d as provided by Hess and
Kromrey [23]: negligible if |𝑑 | ≤ 0.147, small if 0.147 < |𝑑 | ≤ 0.33,
medium if 0.33 < |𝑑 | ≤ 0.474, and large if 0.474 < |𝑑 | ≤ 1.

5.7 Results
In this section we present the results of the two experiments that
we performed. We report the results from all the 50 executions of
the NSGA-II algorithm.
Experiment 1: number of covered game features versus test
execution time (without feature usage). Figure 4 shows the
non-dominated solutions found by 50 runs of NSGA-II for our
approaches across different per-feature coverage thresholds. The
𝑆𝑡𝑜𝑝0.05 approach found a median of 56.5 non-dominated solutions
across all per-feature coverage thresholds, while the 𝑆𝑡𝑜𝑝0.10 and
𝑆𝑡𝑜𝑝0.25 approaches found amedian of 34.0 and 18.0 non-dominated
solutions. In terms of fitness evaluations (i.e., the number of test
case orderings that were inspected until the algorithmwas stopped),
the 𝑆𝑡𝑜𝑝0.05 approach had a median of 37,950 fitness evaluations
across all per-feature coverage thresholds, while 𝑆𝑡𝑜𝑝0.10 and 𝑆𝑡𝑜𝑝0.25
had a median of 15,300 and 3,600 evaluations, respectively. As ex-
pected, the number of fitness evaluations for the 𝑆𝑡𝑜𝑝0.05 approach
was higher since the stopping criteria is stricter. The 𝑆𝑡𝑜𝑝0.05 ap-
proach took a median of 85.98 seconds to execute, while 𝑆𝑡𝑜𝑝0.10
and 𝑆𝑡𝑜𝑝0.25 took a median of 32.11 seconds and 8.06 seconds, re-
spectively.

Figure 4 shows that all our proposed approaches achieve better
solutions than random search for all per-feature coverage threshold

values. The 𝑆𝑡𝑜𝑝0.25, 𝑆𝑡𝑜𝑝0.10, and 𝑆𝑡𝑜𝑝0.05 approaches found solu-
tions with a better trade-off between the objective functions, i.e.,
with lower 𝐴𝑈𝐶𝑇𝑖𝑚𝑒 and larger 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 . For a per-feature cover-
age threshold of 50%, presented in Figure 4a, the 𝑆𝑡𝑜𝑝0.05 approach
has a median 𝐴𝑈𝐶𝑇𝑖𝑚𝑒 of 0.29, while the 𝑆𝑡𝑜𝑝0.10 and 𝑆𝑡𝑜𝑝0.25
approaches have larger median 𝐴𝑈𝐶𝑇𝑖𝑚𝑒 : 0.32 and 0.38, respec-
tively. The 𝑅𝑎𝑛𝑑𝑜𝑚50 and 𝑅𝑎𝑛𝑑𝑜𝑚100 approaches have a median
𝐴𝑈𝐶𝑇𝑖𝑚𝑒 of 0.49 and 0.50, respectively. Regarding the 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 ,
𝑆𝑡𝑜𝑝0.05 has a median of 0.80, while 𝑆𝑡𝑜𝑝0.10 and 𝑆𝑡𝑜𝑝0.25 have me-
dians of 0.77 and 0.69. The 𝑅𝑎𝑛𝑑𝑜𝑚50 and 𝑅𝑎𝑛𝑑𝑜𝑚100 approaches
have a median 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 of 0.58 and 0.57, respectively. Among our
proposed approaches, 𝑆𝑡𝑜𝑝0.05 found the best solutions since it has
the best trade-off between the 𝐴𝑈𝐶𝑇𝑖𝑚𝑒 and 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 . All the pro-
posed approaches are significantly better than both random search
approaches (p-value less than 0.05) and the Cliff’s delta shows
large effect sizes for both objective functions. Pairwise comparisons
between the three approaches also show statistically significant
differences with large effect sizes.

A similar behavior is observed for the per-feature coverage thresh-
olds of 75%, 90%, and 100%, in Figures 4b, 4c, and 4d. In all these
cases, the 𝑆𝑡𝑜𝑝0.05 found the best solutions. However, the range in
which the 𝐴𝑈𝐶𝐹𝑒𝑎𝑡 lies gets smaller as we increase the per-feature
coverage threshold. This happens because a higher threshold means
that we need to execute more test cases to consider a feature as
covered, so the number of covered features increases more slowly as
we execute the ordered test cases, which yields a smaller 𝐴𝑈𝐶𝐹𝑒𝑎𝑡

(as we explained in Section 5.3, in Figure 3).
Experiment 2: number of covered highly-used game features
versus test execution time (with feature usage). Figure 5 shows
the non-dominated solutions found by 50 runs of NSGA-II for our
approaches. For this experiment, we did not use the per-feature cov-
erage threshold since we did not use the𝐴𝑈𝐶𝐹𝑒𝑎𝑡 objective function.
The 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 approach found a median of 42.5 non-dominated
solutions for all 50 runs, while the 𝑆𝑡𝑜𝑝0.10_𝑢𝑠𝑎𝑔𝑒 and 𝑆𝑡𝑜𝑝0.25_𝑢𝑠𝑎𝑔𝑒
approaches found a median of 29.0 and 18.0 non-dominated solu-
tions. In terms of fitness evaluations, the 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 approach
had a median of 47,850 fitness evaluations, while 𝑆𝑡𝑜𝑝0.10_𝑢𝑠𝑎𝑔𝑒
and 𝑆𝑡𝑜𝑝0.25_𝑢𝑠𝑎𝑔𝑒 had a median of 12,800 and 3,650 evaluations,
respectively. As expected, the number of fitness evaluations for
the 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 approach was higher since the stopping crite-
ria is stricter. Also as expected, the 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 approach took
longer to execute until the stopping criteria were satisfied, with
a median of 100.16 seconds. The 𝑆𝑡𝑜𝑝0.10_𝑢𝑠𝑎𝑔𝑒 and 𝑆𝑡𝑜𝑝0.25_𝑢𝑠𝑎𝑔𝑒
approaches took a median of 26.36 seconds and 7.47 seconds, re-
spectively. We can see that our best approach (𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒) is
feasible to be used in practice as it can find the best solutions in
less than 2 minutes.

Figure 5 shows that all our proposed approaches achieve better
solutions than random search since our approaches present better
trade-offs between the objective functions (i.e., lower 𝐴𝑈𝐶𝑇𝑖𝑚𝑒

and larger featRankSim). The 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 approach has a median
𝐴𝑈𝐶𝑇𝑖𝑚𝑒 of 0.29, while the 𝑆𝑡𝑜𝑝0.10_𝑢𝑠𝑎𝑔𝑒 and 𝑆𝑡𝑜𝑝0.25_𝑢𝑠𝑎𝑔𝑒 ap-
proaches have larger median 𝐴𝑈𝐶𝑇𝑖𝑚𝑒 : 0.33 and 0.38, respectively.
The𝑅𝑎𝑛𝑑𝑜𝑚50 and𝑅𝑎𝑛𝑑𝑜𝑚100 approaches have amedian𝐴𝑈𝐶𝑇𝑖𝑚𝑒

of 0.49 and 0.50, respectively. Regarding featRankSim, 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒
has the largest median, with a value of 0.96, while 𝑆𝑡𝑜𝑝0.10_𝑢𝑠𝑎𝑔𝑒

Conference’17, July 2017, Washington, DC, USA Viggiato et al.

0.30 0.35 0.40 0.45 0.50 0.55 0.60
AUCTime

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AU
C F

ea
t

Per-feature coverage threshold: 50%

Approach
Stop0.05
Stop0.10
Stop0.25

Random50
Random100

(a)

0.30 0.35 0.40 0.45 0.50 0.55 0.60
AUCTime

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AU
C F

ea
t

Per-feature coverage threshold: 75%

Approach
Stop0.05
Stop0.10
Stop0.25

Random50
Random100

(b)

0.30 0.35 0.40 0.45 0.50 0.55 0.60
AUCTime

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AU
C F

ea
t

Per-feature coverage threshold: 90%
Approach

Stop0.05
Stop0.10
Stop0.25

Random50
Random100

(c)

0.30 0.35 0.40 0.45 0.50 0.55 0.60
AUCTime

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AU
C F

ea
t

Per-feature coverage threshold: 100%
Approach

Stop0.05
Stop0.10
Stop0.25

Random50
Random100

(d)

Figure 4: Experiment 1: Trade-off between𝐴𝑈𝐶𝑇𝑖𝑚𝑒 and𝐴𝑈𝐶𝐹𝑒𝑎𝑡 for different per-feature coverage thresholds across our different
approaches (without feature usage).

0.25 0.30 0.35 0.40 0.45 0.50 0.55
AUCTime

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fe
at

Ra
nk

Si
m

(N
D

CG
)

Approach
Stop0.05_usage

Stop0.10_usage

Stop0.25_usage

Random50
Random100

Figure 5: Experiment 2: Trade-off between 𝐴𝑈𝐶𝑇𝑖𝑚𝑒 and
featRankSim across our approaches (with feature usage).

and 𝑆𝑡𝑜𝑝0.25_𝑢𝑠𝑎𝑔𝑒 have medians of 0.90 and 0.82. The 𝑅𝑎𝑛𝑑𝑜𝑚50
and 𝑅𝑎𝑛𝑑𝑜𝑚100 approaches have a median featRankSim of 0.56 and
0.55, respectively. Among our proposed approaches, 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒
found the best solutions since it has the best trade-off between the

𝐴𝑈𝐶𝑇𝑖𝑚𝑒 and featRankSim. This demonstrates that our 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒
approach can find test case orderings that cover highly-used game
features early in the test execution (with a high featRankSim of 0.96)
while keeping the cumulative test execution time small. All the pro-
posed approaches are significantly better than the random search
approaches (p-value less than 0.05) and the Cliff’s delta shows
large effect sizes for both objective functions. Pairwise comparisons
between the three approaches also show statistically significant
differences with large effect sizes.

6 DISCUSSION
In this section, we compare the results obtained with our experi-
ments for prioritization with and without feature usage. Figure 6
shows the distribution of the featRankSim objective for our ran-
dom approaches and for the non-dominated solutions obtained
with our proposed approaches. In experiment 1, without feature
usage, all the approaches (using a per-feature coverage threshold
of 50%) achieve a similar median featRankSim: 0.55, 0.52, and 0.53
for 𝑆𝑡𝑜𝑝0.25, 𝑆𝑡𝑜𝑝0.10, and 𝑆𝑡𝑜𝑝0.05, respectively. The random ap-
proaches achieve similar median values of featRankSim: 0.56 and
0.55 for 𝑅𝑎𝑛𝑑𝑜𝑚50 and 𝑅𝑎𝑛𝑑𝑜𝑚100, respectively. In contrast, the

Prioritizing Natural Language Test Cases Based on Highly-Used Game Features
Conference’17, July 2017, Washington, DC, USA

Random50

Random100
Stop0.25

Stop0.10
Stop0.05

Stop0.25_usage

Stop0.10_usage

Stop0.05_usage

0.4

0.6

0.8

1.0

fe
at

Ra
nk

Si
m

 (N
DC

G) Random Exp. 1 Exp. 2

Figure 6: Distributions of featRankSim (NDCG) for our dif-
ferent approaches.

approaches in experiment 2 achieve larger median featRankSim
values: 0.82, 0.90, and 0.96 for 𝑆𝑡𝑜𝑝0.25_𝑢𝑠𝑎𝑔𝑒 , 𝑆𝑡𝑜𝑝0.10_𝑢𝑠𝑎𝑔𝑒 , and
𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 , respectively. The larger featRankSim obtained by
our approaches in experiment 2 shows that those approaches, in
particular 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 , can successfully obtain test case orderings
that cover highly-used game features early in the test execution.

Often during regression testing, the main constraint is the time
available to execute test cases. Therefore, we discuss below how
(1) the percentage of covered game features and (2) the percentage of
coverage of the top-k most used game features change for different
test execution times. For this analysis, we used the solutions found
by our best approaches in experiments 1 and 2 (𝑆𝑡𝑜𝑝0.05, with a
per-feature coverage threshold of 50%, and 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒).

Figure 7 shows how the percentage of covered game features
changes for different execution times. A large amount of testing
time is necessary to achieve large game feature coverage. For exam-
ple, to achieve 100% coverage, a median of 55 hours for the 𝑆𝑡𝑜𝑝0.05
approach and 70 hours for the 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 approach are neces-
sary. Even for lower coverage, a large amount of time is necessary.
For example, to achieve 90% of coverage, 𝑆𝑡𝑜𝑝0.05 requires 35 hours
and 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 requires 40 hours. We also observe that the last
10% of feat coverage requires an extremely large amount of time
(approximately 30 hours additional testing time).

Achieving a high percentage of game feature coverage is not
feasible in practice due to the large amount of time necessary, even
for the 𝑆𝑡𝑜𝑝0.05 approach that was optimized to achieve a large
game feature coverage in the shortest time possible. If we analyze a
more feasible scenario, with an available testing time of 5 hours, for
example, 𝑆𝑡𝑜𝑝0.05 covers a median of 40% of game features, while
𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 covers a median of 32% of game features. However,
despite achieving a slightly smaller coverage for the same amount of
time available, the test case orderings obtained with 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒
cover highly-used features earlier in the test execution compared
to the solutions obtained with 𝑆𝑡𝑜𝑝0.05. For example, if we analyze
the coverage of the top-20% of the most used features (which gives
the top-16 most used features) in 5 hours, 𝑆𝑡𝑜𝑝0.05 covers only
68% of those features, while 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 covers 93%. With one
additional hour, 𝑆𝑡𝑜𝑝0.05_𝑢𝑠𝑎𝑔𝑒 covers all the top-20% most used
features, while 𝑆𝑡𝑜𝑝0.05 covers 75%. Therefore, with a feature usage-
based test prioritization, we can find test case orderings that cover
most of the highly-used features early in the test execution, which
helps to avoid bugs that would affect a large number of users. Finally,

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Test execution time (hours)

40

60

80

100

Fe
at

ur
e

co
ve

ra
ge

 (%
)

Approach
Stop0.05
Stop0.05_usage

Figure 7: Comparison of game feature coverage for our best
approaches in experiments 1 and 2.

QA engineers can achieve a higher coverage of game features and
highly-used game features by parallelizing the test execution. For
example, two QA engineers can execute independent test cases in
parallel to achieve higher coverages within 5 hours.

7 USING OUR PRIORITIZATION APPROACH
IN PRACTICE

We implemented an internal web application prototype of our ap-
proach to collect initial feedback on the outcome of our approach.
We are now integrating the application into our industry partner’s
cloud infrastructure. Our approach can be used by QA engineers in
an environment where resources (e.g., time) are restricted to obtain
a set of test case orderings with the best trade-off between multiple
objectives. Because of how we performed the optimization, in a
situation of an early-stop of test execution, our approach ensures
that the highest number of highly-used features are covered with
the shortest time possible. The tester may also choose one particu-
lar test case ordering among the optimal orderings that maximizes
one specific objective of interest to the detriment of the other. For
example, an ordering that maximizes only the highly-used features
may not have the shortest cumulative test execution time. Another
practical aspect concerns a small subset of features that are critical
to the Prodigy Math game of Prodigy Education (such as the “game
membership purchase” feature). These features must be frequently
tested during regression regardless of their usage. Therefore, we al-
low the users of our application to identify the critical features and
retrieve the associated test cases before executing the optimization.
Those test cases are then removed from the set of test cases that
we use in the optimization (as they will always be executed before
the optimized ordering).

8 RELATEDWORK
Optimizing the execution of test cases in a manual testing scenario
is of extreme importance [19, 21, 22]. However, only a few works in-
vestigated prioritization techniques for manual test cases which are
described only in natural language (i.e., no source code is associated
with them) [21, 27]. Hemmati et al. [21] investigated approaches to
prioritize manual test cases using test execution history and Latent
Dirichlet Allocation (LDA) [6] to find the topics related to test cases.

Conference’17, July 2017, Washington, DC, USA Viggiato et al.

Our approach uses a pre-defined list of the application features
to find the features being tested and leverages zero-shot models
for that purpose, which does not require any manual analysis to
further understand which features are covered by test cases (as
LDA requires). Furthermore, our approach does not require the
test execution history, which could be difficult to be accessed or
not meaningful for manual test cases [62]. Lachmann et al. [27]
investigated a supervised approach for prioritization of manual test
cases using textual descriptions, test execution history, and the link
between test cases and requirements. Their approach requires an
expert to manually label test cases as (un)important to build the
training set. In contrast, our approach does not require any manual
data labeling nor the test execution history. Furthermore, none of
the above mentioned works take into consideration the impact that
bugs might have on users. We include the coverage of highly-used
features in our approach, which helps to test those features more
often and avoid impacting a large number of users.

Several works proposed prioritization techniques for test cases
with associated source code [3, 8, 24, 32, 34, 38–40, 47, 51, 57, 63].
For instance, Marchetto et al. [34] performed test case prioritization
with NSGA-II. However, differently from our work, they used code
coverage and the link between requirements and source code in
their approach. Instead, we do not have source code test cases and
we used the link between natural language test cases and the cov-
ered features. We also include the coverage of highly-used features
in our approach. Wang et al. [57] proposed to use multi-objective
search algorithms for a resource-aware test case prioritization using
four objectives. Their goal was to achieve a test case ordering for a
limited time budget while maximizing the usage of the available test
resources. In contrast, we focus on prioritizing manual test cases
to maximize the coverage of the game features and the coverage of
highly-used features.

9 THREATS TO VALIDITY
A threat to the external validity concerns the generalizability of
our zero-shot methods and prioritization techniques. Using appli-
cations from other domains might yield different results. Another
threat regards the used techniques. Using different classification
models and optimization algorithms might achieve different results.
Future studies should investigate if our approaches can be improved
with other techniques.

A threat to the internal validity concerns the percentage of
test cases that we consider sufficient to count a feature as covered.
To mitigate this threat, we experimented with different percentages
(from 50% up to 100%), but using other values will achieve differ-
ent results. Also, companies that already have the link between
test cases and covered features might use a different percentage.
Another threat is related to the feature usage metric that we use
(total number of uses). Other metrics can also capture feature usage,
such as using the number of unique users who used a feature, which
might achieve different orderings of features based on usage. Fi-
nally, using different conditions to stop the optimization algorithm
(e.g., other p-value thresholds or other MDR ranges) might result
in different non-dominated test case orderings.

10 CONCLUSION
In this paper, we propose a novel approach to prioritize natural
language test cases. Our approach leverages zero-shot classification
techniques to identify the features covered by the test cases of
a game and uses this information to optimize the execution of
test cases. In particular, we prioritize test cases that cover highly-
used game features, in which bugs would affect a large group of
players. Our findings show that we can successfully identify the
game features covered by test cases with an ensemble of zero-shot
models (an F-score of 76.1%). Also, our prioritization approaches can
find test case orderings that cover highly-used game features early
in the test execution while keeping the time required to execute
test cases short. In practice, QA engineers and developers can use
our approach to focus the test execution on test cases that cover
game features that are relevant to players.

REFERENCES
[1] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests

for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250.

[2] Andrea Arcuri and Gordon Fraser. 2011. On parameter tuning in search based
software engineering. In International Symposium on Search Based Software Engi-
neering. Springer, 33–47.

[3] Mojtaba Bagherzadeh, Nafiseh Kahani, and Lionel Briand. 2021. Reinforcement
learning for test case prioritization. IEEE Transactions on Software Engineering
(2021).

[4] Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE’07). IEEE, 85–103.

[5] J. Blank and K. Deb. 2020. pymoo: Multi-Objective Optimization in Python. IEEE
Access 8 (2020), 89497–89509.

[6] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993–1022.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[8] Benjamin Busjaeger and Tao Xie. 2016. Learning for test prioritization: an
industrial case study. In Proceedings of the 2016 24th ACM SIGSOFT International
symposium on foundations of software engineering. 975–980.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[10] Nan Cui, Yuze Jiang, Xiaodong Gu, and Beijun Shen. 2022. Zero-Shot Program
Representation Learning. In 2022 IEEE/ACM 30th International Conference on
Program Comprehension (ICPC). 60–70. https://doi.org/10.1145/3524610.3527888

[11] Kalyanmoy Deb. 2011. Multi-objective optimisation using evolutionary algo-
rithms: an introduction. In Multi-objective evolutionary optimisation for product
design and manufacturing. Springer, 3–34.

[12] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[13] Peter Devine and Kelly Blincoe. 2022. Unsupervised Extreme Multi Label Classi-
fication of Stack Overflow Posts. (2022).

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[15] Jackson Antonio do Prado Lima and Silvia Regina Vergilio. 2020. A multi-armed
bandit approach for test case prioritization in continuous integration environ-
ments. IEEE Transactions on Software Engineering (2020).

[16] Michael G Epitropakis, Shin Yoo, Mark Harman, and Edmund K Burke. 2015.
Empirical evaluation of pareto efficient multi-objective regression test case pri-
oritisation. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis. 234–245.

[17] Vahid Garousi and Junji Zhi. 2013. A survey of software testing practices in
Canada. Journal of Systems and Software 86, 5 (2013), 1354–1376.

[18] José L Guerrero, Jesús García, Luis Martí, José Manuel Molina, and Antonio
Berlanga. 2009. A stopping criterion based on Kalman estimation techniques
with several progress indicators. In Proceedings of the 11th Annual conference on
Genetic and Evolutionary Computation. 587–594.

[19] Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven
Apel. 2021. How can manual testing processes be optimized? Developer survey,

https://doi.org/10.1145/3524610.3527888

Prioritizing Natural Language Test Cases Based on Highly-Used Game Features
Conference’17, July 2017, Washington, DC, USA

optimization guidelines, and case studies. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1281–1291.

[20] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
software engineering: Trends, techniques and applications. ACM Computing
Surveys (CSUR) 45, 1 (2012), 1–61.

[21] Hadi Hemmati, Zhihan Fang, and Mika V Mantyla. 2015. Prioritizing manual
test cases in traditional and rapid release environments. In Proceedings of the 8th
Int’l Conference on Software Testing, Verification and Validation (ICST). 1–10.

[22] Hadi Hemmati and Fatemeh Sharifi. 2018. Investigating NLP-based approaches
for predicting manual test case failure. In 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 309–319.

[23] Melinda RHess and JeffreyDKromrey. 2004. Robust confidence intervals for effect
sizes: A comparative study of Cohen’s d and Cliff’s delta under non-normality
and heterogeneous variances. In annual meeting of the American Educational
Research Association, Vol. 1. Citeseer.

[24] Rubing Huang, Dave Towey, Yinyin Xu, Yunan Zhou, and Ning Yang. 2022.
Dissimilarity-based test case prioritization through data fusion. Software: Practice
and Experience 52, 6 (2022), 1352–1377.

[25] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[26] Joshua D Knowles and David W Corne. 2000. Approximating the nondominated
front using the Pareto archived evolution strategy. Evolutionary computation 8, 2
(2000), 149–172.

[27] Remo Lachmann, Sandro Schulze, Manuel Nieke, Christoph Seidl, and Ina Schae-
fer. 2016. System-level test case prioritization using machine learning. In 2016
15th IEEE International Conference on Machine Learning and Applications (ICMLA).
IEEE, 361–368.

[28] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461 (2019).

[29] Zheng Li, Yi Bian, Ruilian Zhao, and Jun Cheng. 2013. A fine-grained parallel
multi-objective test case prioritization on GPU. In International Symposium on
Search Based Software Engineering. Springer, 111–125.

[30] Jeffrey D Long, Du Feng, and Norman Cliff. 2003. Ordinal analysis of behavioral
data. (2003).

[31] Finlay Macklon, Mohammad Reza Taesiri, Markos Viggiato, Stefan Antoszko,
Natalia Romanova, Dale Paas, and Cor-Paul Bezemer. 2022. Automatically Detect-
ing Visual Bugs in HTML5 Canvas Games. In 2022 37th IEEE/ACM International
Conference on Automated Software Engineering (ASE).

[32] Mostafa Mahdieh, Seyed-Hassan Mirian-Hosseinabadi, and Mohsen Mahdieh.
2022. Test case prioritization using test case diversification and fault-proneness
estimations. Automated Software Engineering 29, 2 (2022), 1–43.

[33] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[34] Alessandro Marchetto, Md Mahfuzul Islam, Waseem Asghar, Angelo Susi, and
Giuseppe Scanniello. 2015. A multi-objective technique to prioritize test cases.
IEEE Transactions on Software Engineering 42, 10 (2015), 918–940.

[35] Luis Martí, Jesús García, Antonio Berlanga, and JoséMMolina. 2009. An approach
to stopping criteria for multi-objective optimization evolutionary algorithms:
The MGBM criterion. In 2009 IEEE congress on evolutionary computation. IEEE,
1263–1270.

[36] Frank McSherry and Marc Najork. 2008. Computing information retrieval perfor-
mance measures efficiently in the presence of tied scores. In European conference
on information retrieval. Springer, 414–421.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[38] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino.
2018. FAST approaches to scalable similarity-based test case prioritization. In
2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 222–232.

[39] Tanzeem Bin Noor and Hadi Hemmati. 2015. A similarity-based approach for test
case prioritization using historical failure data. In 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 58–68.

[40] Safa Omri and Carsten Sinz. 2022. Learning to Rank for Test Case Prioritization.
In 2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing
(SBST). IEEE, 16–24.

[41] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli.
2018. How is video game development different from software development
in open source?. In Proceedings of the 15th Int’l Conference on Mining Software
Repositories (MSR). 392–402.

[42] Cristiano Politowski, Fabio Petrillo, and Yann-Gäel Guéhéneuc. 2021. A Survey
of Video Game Testing. arXiv preprint arXiv:2103.06431 (2021).

[43] Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, and Marius Liaaen. 2018.
CBGA-ES+: A cluster-based genetic algorithm with non-dominated elitist se-
lection for supporting multi-objective test optimization. IEEE Transactions on
Software Engineering 47, 1 (2018), 86–107.

[44] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning. PMLR, 8748–8763.

[45] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

[46] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, and Linda
Devine. 2006. Exploring methods for evaluating group differences on the NSSE
and other surveys: Are the t-test and Cohen’s d indices the most appropriate
choices. In annual meeting of the Southern Association for Institutional Research.
Citeseer, 1–51.

[47] Ripon K Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E Perry. 2015.
An information retrieval approach for regression test prioritization based on pro-
gram changes. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. IEEE, 268–279.

[48] Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. 2013. On the value of
user preferences in search-based software engineering: A case study in software
product lines. In 2013 35Th international conference on software engineering (ICSE).
IEEE, 492–501.

[49] Seung Yeob Shin, Shiva Nejati, Mehrdad Sabetzadeh, Lionel C Briand, and Frank
Zimmer. 2018. Test case prioritization for acceptance testing of cyber physical
systems: a multi-objective search-based approach. In Proceedings of the 27th acm
sigsoft international symposium on software testing and analysis. 49–60.

[50] Ravjot Singh, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E Hassan. 2016. Op-
timizing the performance-related configurations of object-relational mapping
frameworks using a multi-objective genetic algorithm. In Proceedings of the 7th
ACM/SPEC on International Conference on Performance Engineering. 309–320.

[51] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement learning for automatic test case prioritization and selection in continu-
ous integration. In Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 12–22.

[52] Mohammad Reza Taesiri, Finlay Macklon, and Cor-Paul Bezemer. 2022. CLIP
meets GamePhysics: Towards bug identification in gameplay videos using zero-
shot transfer learning. In 2022 IEEE/ACM 19th International Conference on Mining
Software Repositories (MSR). IEEE, 46–57.

[53] Simon Varvaressos, Kim Lavoie, Sébastien Gaboury, and Sylvain Hallé. 2017.
Automated bug finding in video games: A case study for runtime monitoring.
Computers in Entertainment (CIE) 15, 1 (2017), 1–28.

[54] Markos Viggiato, Dale Paas, Chris Buzon, and Cor-Paul Bezemer. 2022. Identifying
similar test cases that are specified in natural language. IEEE Transactions on
Software Engineering (2022).

[55] Markos Viggiato, Dale Paas, Chris Buzon, and Cor-Paul Bezemer. 2022. Using
natural language processing techniques to improve manual test case descrip-
tions. In International Conference on Software Engineering-Software Engineering
in Practice (ICSE-SEIP) Track.(May 8, 2022).

[56] Tobias Wagner, Heike Trautmann, and Luis Martí. 2011. A taxonomy of online
stopping criteria for multi-objective evolutionary algorithms. In International
Conference on Evolutionary Multi-Criterion Optimization. Springer, 16–30.

[57] Shuai Wang, Shaukat Ali, Tao Yue, Øyvind Bakkeli, and Marius Liaaen. 2016.
Enhancing test case prioritization in an industrial setting with resource awareness
and multi-objective search. In Proceedings of the 38th International Conference on
Software Engineering Companion. 182–191.

[58] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. 2013. A
theoretical analysis of NDCG ranking measures. In Proceedings of the 26th annual
conference on learning theory (COLT 2013), Vol. 8. 6.

[59] Kristian Wiklund, Sigrid Eldh, Daniel Sundmark, and Kristina Lundqvist. 2017.
Impediments for software test automation: A systematic literature review. Soft-
ware Testing, Verification and Reliability 27, 8 (2017), e1639.

[60] Yongqin Xian, ZeynepAkata, Gaurav Sharma, QuynhNguyen,Matthias Hein, and
Bernt Schiele. 2016. Latent embeddings for zero-shot classification. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 69–77.

[61] Huang Xie and Tuomas Virtanen. 2021. Zero-shot audio classification via se-
mantic embeddings. IEEE/ACM Transactions on Audio, Speech, and Language
Processing 29 (2021), 1233–1242.

[62] Yilin Yang, Xinhai Huang, Xuefei Hao, Zicong Liu, and Zhenyu Chen. 2017. An
industrial study of natural language processing based test case prioritization. In
2017 IEEE International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 548–549.

[63] Ahmadreza Saboor Yaraghi, Mojtaba Bagherzadeh, Nafiseh Kahani, and Lionel
Briand. 2022. Scalable and Accurate Test Case Prioritization in Continuous
Integration Contexts. IEEE Transactions on Software Engineering (2022).

[64] Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Benchmarking zero-shot text
classification: Datasets, evaluation and entailment approach. arXiv preprint

https://arxiv.org/abs/1908.10084

Conference’17, July 2017, Washington, DC, USA Viggiato et al.

arXiv:1909.00161 (2019).
[65] Zhi Quan Zhou, Chen Liu, Tsong Yueh Chen, TH Tse, and Willy Susilo. 2020.

Beating random test case prioritization. IEEE Transactions on Reliability 70, 2

(2020), 654–675.

	Abstract
	1 Introduction
	2 Industrial case study subject
	3 Overview of our approach for test case prioritization
	3.1 Input
	3.2 Extracting test case information
	3.3 Analyzing game features
	3.4 Optimizing test case execution

	4 Identifying game features from natural language test cases
	4.1 Experiment setup
	4.2 Evaluation
	4.3 Results

	5 Multi-objective prioritization of natural language test cases
	5.1 Multi-Objective Genetic Algorithms
	5.2 Test Case Prioritization Using NSGA-II
	5.3 Objective functions for NSGA-II
	5.4 Stopping Criteria for NSGA-II
	5.5 Experiment setup
	5.6 Evaluation of test case prioritization approaches
	5.7 Results

	6 Discussion
	7 Using our prioritization approach in practice
	8 Related work
	9 Threats to validity
	10 Conclusion
	References

