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ABSTRACT
Datasets and models are two key artifacts in machine learning
(ML) applications. Although there exist tools to support dataset
and model developers in managing ML artifacts, little is known
about how these datasets and models are integrated into ML ap-
plications. In this paper, we study how datasets and models in ML
applications are managed. In particular, we focus on how these
artifacts are stored and versioned alongside the applications. After
analyzing 93 repositories, we identified the most common storage
location to store datasets andmodels is the file system, which causes
availability issues. Notably, large data and model files, exceeding
approximately 60 MB, are stored exclusively in remote storage and
downloaded as needed. Most of the datasets and models lack proper
integration with the version control system, posing potential trace-
ability and reproducibility issues. Additionally, although datasets
and models are likely to evolve during the application development,
they are rarely updated in application repositories.
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1 INTRODUCTION
In recent years, machine learning (ML) has become an integral part
of solving various real-world problems [21]. A software applica-
tion that uses an ML model to solve a problem is referred to as an
ML application. Other than traditional software artifacts, an ML
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application relies on two additional types of artifacts: dataset and
model. Like the traditional artifacts, the datasets and models evolve
over time during the development of the application [2, 3]. The
dataset can evolve for many reasons like updating the data cleaning
algorithm and the addition of new data etc. As the data evolves,
the model must be updated too. In parallel, the application also
evolves with new features and updates of old features. Therefore,
as with traditional software artifacts, datasets and models require
meticulous management. The management of software artifacts
consists of the systematic process of creating/collecting, storing,
organizing, versioning, distributing and deploying assets connected
to a software project. However, the distinctive aspects of ML appli-
cations, such as data-centricity and model customization and reuse,
make dataset and model management uniquely challenging [2].
Also, the collaboration among the application developers, model de-
velopers and data engineers in the project is a challenge [8, 13, 16].
Systematic management of the datasets and models can facilitate a
better collaboration between these three groups.

There are many systems and platforms to support dataset and
model developers in managing the ML artifacts which are often
referred to as ML Artifact Management Systems (ML AMSs) [24].
Many recent studies have compared these ML AMSs from different
perspectives [9–11, 15, 20, 23–26, 28]. Also, researchers are focusing
on how these systems and platforms are being used in open-source
ML applications [4, 17]. To the best of our knowledge, we are the
first to analyze howML application developers manage the datasets
and models in their application repositories, regardless of whether
they use an ML AMS.

Although dataset and model developers can manage ML artifacts
using ML AMSs, application developers widely use traditional ver-
sion control systems like Git to manage their application artifacts’
history. Therefore, they need to integrate the datasets and models
into their systems to keep working in their current working en-
vironment. However, little is known about how the datasets and
models are integrated into an ML application and how they are
managed. Therefore, in this paper, we study two important aspects
of dataset and model management in ML applications: (1) storage
and (2) versioning. A proper storage location ensures the avail-
ability of the artifacts while versioning facilitates traceability and
reproducibility, and helps maintain the overall artifact quality.

Our goal is to explore the current practices of storing and ver-
sioning datasets and models within ML applications. We manually
analyze the code of 93 randomly selected GitHub ML application
repositories and the 321 data files and 354 model files that the appli-
cations use. We study the following research questions where RQ1
and RQ2 address the storage aspect and RQ3 covers the versioning
aspect of management:
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• RQ1: How are the datasets stored in the studied ML
applications? The datasets’ storage location is important in
the process of maintaining and versioning them. We found 6
types of storage locations for data files, with the file system
being used the most commonly, by 39% of the repositories.
As, in many of the repositories, the data files are stored in
the file system, it is the responsibility of the application
developers to manage their data files’ availability.

• RQ2: How are the models stored in the studied ML ap-
plications? Like the datasets, the models’ storage locations
play an important role in maintaining their availability. We
found 4 types of storage locations for model files and most
(51%) repositories loaded models from the file system.

• RQ3: How are the datasets andmodels versioned in the
application repositories? As applications evolve, models
and datasets change over time. Our study shows that the
application repositories often lack version information for
datasets and models. Most of the data and model files that
are versioned in the version control system (VCS) are rarely
modified during application development. If there were any
changes to the datasets or models, these are not reflected in
the application repositories.

Our study gives an overview of current practices for managing
datasets and models in open-source ML applications. We observe
that there is a lack of dataset and model management in terms of
versioning in most of the studied applications, often because a stor-
age location was chosen that makes versioning difficult. The results
of our study suggest that it could be beneficial for open-source ML
application developers to have an easy integration of ML AMS in
their development ecosystem. Our replication package including
all data, scripts and documents available in a public repository1.
The data was collected between February and April 2023.

The rest of the paper is structured as follows: Section 2 discusses
how we collected and processed our data and the steps of our man-
ual analysis. Sections 3, 4 and 5 discuss the results of our analysis
for RQ1, RQ2 and RQ3 respectively. Section 6 discusses the overall
implications of our study. Section 7 discusses the threats to the
validity of this work and Section 8 summarizes the related work.
Section 9 concludes our work.

2 STUDY SETUP
Our goal is to explore the current practices of dataset and model
management in ML applications from the storage location and
version management points of view. Figure 1 outlines the steps of
our exploratory study. We collected and processed the data in four
steps:

• Step 1. Data collection: Collect a list of ML application
repositories using data from GitHub and Libraries.io

• Step 2. Data filtering: Filter the collected list to ensure its
quality

• Step 3. Data processing: Prepare the data for manual anal-
ysis

• Step 4. Manual analysis: Perform a detailed manual anal-
ysis of the code segments responsible for loading datasets,
and loading and training models

1https://github.com/asgaardlab/dataset-and-model-management

The following sections provide an in-depth explanation of each
step.

2.1 Data collection
We first made an initial list of ML applications. We executed the
following steps to get the list.

Select top three ML libraries. As our study involves the manual
analysis of source code, to facilitate the analysis process, we focused
on ML applications that use at least one of the following popular
ML libraries: TensorFlow [1], PyTorch [18], and Scikit-learn [19].
Gonzalez et al. [7] identified these libraries as some of the most
popular in the field of ML development. During the library selection,
we re-validated their popularity by checking the number of stars
on GitHub.

List ML repositories. We consider a repository as ML repository
if it depends on an ML library. We listed all the ML repositories
by collecting the dependent repositories of the aforementioned
ML libraries from their dependency graph in GitHub. We kept
the repositories with 10 or more stars on GitHub to ensure their
quality [6]. At the end of this step, we found 38,368 dependents of
the 3 libraries.

Remove libraries from ML repositories. Since our focus is on ob-
serving how datasets and models are versioned in ML applications,
we excluded libraries from the list of ML repositories as these may
not include a dataset or model themselves. We got the list of depen-
dent libraries of the three selected libraries from Libraries.io [12]
API2. After excluding the libraries, we are left with 34,742 ML ap-
plications.

2.2 Data filtering
We want to focus on repositories that are well-maintained and not
only intended for learning purposes. Additionally, we exclude the
repositories that are using old versions of the libraries to narrow
down the scope of our analysis and make it more manageable. We
retrieved the details for every repository in the list from GitHub
using the GitHub REST API3. We then filtered the list of application
repositories as follows:

• By number of commits: To make sure we focus on well-
maintained repositories, we included only repositories with
at least 100 commits (resulting in 9,937 repositories).

• By last commit date:We further refined the repository list
by selecting active repositories, that had their most recent
commit made within the last six months (resulting in 6,429
repositories).

• By repository purpose: To filter out repositories used for
learning, like tutorials or courses, we examined each repos-
itory’s name, description, and associated topics. We began
with Gonzalez et al.’s [7] terms and progressively expanded
the list until it became a broad set of terms and topics to
represent learning resources. If a repository’s name or de-
scription included any of these terms, it was considered a
learning repository. Likewise, if the repository’s associated

2https://libraries.io/api
3https://docs.github.com/en/rest
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Figure 1: Overview of the study setup

topics matched any of our listed topics, it was marked as a
learning repository (resulting in 4,023 repositories).

• By library version:We focused on the most popular ver-
sions of the covered ML libraries to keep the manual analysis
manageable. We examined the dependencies of the reposi-
tories to find out the popular library versions. For Python
repositories, one common method of managing dependen-
cies is by listing them, along with their versions, in a require-
ments file, usually named requirements.txt4. We retrieved
these requirements files using the GitHub Search API, query-
ing for files with the name requirements.txt. Then, we
parsed the requirements files and resolved the specifications
following the rules outlined in PEP 4405 to determine the
exact library versions used in the repositories. The resolved
versions distribution among the repositories in Table 1 shows
that while newer versions of the studied ML libraries are
popular, older versions are still utilized in many repositories.
However, very old versions, such as TensorFlow’s 0.∗ and
PyTorch’s 0.∗, are rarely used. Thus, we selected TensorFlow

4https://pip.pypa.io/en/stable/reference/requirements-file-format/
5https://peps.python.org/pep-0440/

2.∗ and 1.∗, PyTorch 2.∗ and 1.∗, and Scikit-learn 1.∗ and 0.∗
for their APIs in our analysis. We also filtered out the appli-
cation repositories that did not use these versions (resulting
in 2,862 repositories).

To identify the dataset and model files from the repositories, we
conducted a manual analysis. To complete our manual analysis in
a manageable time, we selected a subset of repositories with a 95%
confidence level and a 10% error margin that statistically represents
all the repositories (resulting in 93 repositories).

2.3 Data processing for manual analysis
To facilitate our analysis, we automated the search for the relevant
code segments in the application repositories. In this section, we
explain howwe automated the identification of code responsible for
model training with datasets and loading trained models in these
repositories.

List the APIs of the libraries. In an ML application, a developer
can either train a model using a dataset or load a trained model
either from a saved model or the saved weights of the model. We

https://pip.pypa.io/en/stable/reference/requirements-file-format/
https://peps.python.org/pep-0440/
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Table 1: Package version distribution among the application
repositories. The versions in bold are included in our study

Libraries Library Included in
Versions # of Repositories

TensorFlow
2.* 1,049
1.* 342
0.* 18

PyTorch

2.* 977
1.* 1,270
0.* 50

Unresolved 2

Scikit-learn 1.* 1,774
0.* 1,486

All Repositories 4,023

searched the documentation67891011 of every studied ML library
version to identify the APIs that should be used to train or load a
model. Table 2 shows the identified APIs.

Detect candidate code lines for manual analysis. We then gener-
ated the AST of the .py files in the repositories to help us identify
where the methods were called in the application and mark the
identified line as a candidate code line. The code lines are consid-
ered candidates because the exact module of the functions cannot
always be determined due to Python’s dynamic nature. We ver-
ify that the candidate code lines indeed originate from one of the
studied ML libraries during our manual analysis.

2.4 Manual Analysis
We manually analyzed the candidate code lines to extract the
datasets and models as follows:

• Identify dataset(s) From the parameters of the function
calls and instance calls of the training APIs, we identified the
dataset(s) used for training the model and traced the path(s)
of the dataset(s) file(s) from the training code segment. We
call these files data files. A dataset can consist of multiple
data files. For datasets that contain image files, we considered
the directory that contains the image files as a data file as it
contains all the data points.

• Identify model(s) We identified the trained models men-
tioned as function parameters in the model loading APIs and
followed the path(s) in the model loading code segment. If
we found the file within the repository, we noted the path.
Otherwise, if the model is downloaded from a remote system
and then used, we document the download URL(s) as the
path(s) of the model.

6https://www.tensorflow.org/api_docs/python/tf
7https://www.tensorflow.org/versions
8https://pytorch.org/docs/stable/
9https://pytorch.org/docs/versions.html
10https://scikit-learn.org/stable/
11https://scikit-learn.org/dev/versions.html

We also analyzed the Jupyter notebooks in 40 repositories where
model training or loading may occur. To identify these code seg-
ments, we manually reviewed the notebook code.We then extracted
and documented the path of the dataset and model files from these
code segments. In addition, we examined the repository’s README
file to gather information about the paths of the dataset and model
files. It is worth noting that a repository can train multiple models
using the same data file, leading to several code segments in the
repository for the data file. Similarly, a single trained model can be
loaded multiple times in a repository for different purposes, result-
ing in multiple code segments for the same model file. Thus, at the
end of the manual analysis, we found 321 data files in 572 model
training code segments and 354 model files in 543 model loading
code segments.

3 RQ1: HOW ARE THE DATASETS STORED IN
THE STUDIED ML APPLICATIONS?

Motivation: To train a model for an ML application, developers need
a dataset. The storage of the dataset plays a key role in ensuring
its availability for model training. In this research question, we
investigate dataset storage practices in ML applications and identify
how dataset size is correlated with storage decisions.

Approach: We have 321 data files from 93 repositories, which
means, some repositories have more than one data file. Therefore,
we first analyzed the distribution of the files in the repositories to
understand how the data files are scattered across the repositories.
Then, we determined the data files’ storage locations from the
identified data file paths as follows:

• Database: The dataset is loaded from a database
• File system: The dataset is loaded from the developers’ local
file system and is not included in the application repository

• Library: The dataset is loaded using a library API
• Remote storage: The dataset is loaded from remote storage
through URLs

• Repository: The dataset is loaded from the developers’ local
file system and is included in the application repository

• Runtime memory: The dataset is loaded from program-
generated fixed or random values

• Unknown source: The dataset path is unknown
To understand how frequently the developers use each storage

to store the data files, we counted the number of repositories em-
ploying each storage location. As one repository can use multiple
storage locations, the total is not equal to the number of studied
repositories. We also discuss the dataset availability in different
storage types. Additionally, we gathered the file sizes of the data
files to investigate whether dataset size correlates with the choice
of any specific storage location.

Findings: A median repository has one data file. Figure 2
shows that the number of data files in the repositories varies from
0 to 39. 46 of the 93 repositories contain more than 1 data file, and
in 15 of these repositories, all the data files are stored in the same
storage type.

The file system is the most popular choice among appli-
cation developers for storing data files.. From Figure 3, we see
that 36 (39%) of the 93 repositories use the file system to store data
files, making it the most commonly used storage location. The next

https://www.tensorflow.org/api_docs/python/tf
https://www.tensorflow.org/versions
https://pytorch.org/docs/stable/
https://pytorch.org/docs/versions.html
https://scikit-learn.org/stable/
https://scikit-learn.org/dev/versions.html
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Table 2: Methods to train and load models using the selected library versions

Libraries Purposes Methods

TensorFlow Train basic_train_loop(), fit(), fit_generator(), train_on_batch()
Load load(), load_model(), load_v2(), load_weights()

PyTorch Train Create instance of nn.Module or nn.Sequence or their subtypes and call the instance
Load load(), load_state_dict()

Scikit-learn Train fit(), fit_predict(), fit_transform(), partial_fit()
Load load(), loads()

0 5 10 15 20 25 30 35
# of data files per repository

Figure 2: Distribution of data files per repository
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Figure 3: Comparison of usage of the storage locations for
data files per repository. Note that a repository may use mul-
tiple storage locations for different data files.

most commonly used storage location by the repositories is the
repository itself (24%). Repositories also employ remote storage
(18%), libraries (16%), runtime memory (11%), and databases (3%)
for storing data files. We could not trace the data files’ path for 24
repositories. The path cannot be traced for several reasons. For ex-
ample, the dataset passed as a method parameter where the method
has not been called from anywhere in the code, or the path is set at
runtime through a command line argument or configuration file,
or the code was too tangled to identify the data file path.

File system, remote storage and repository data files are stored in
file format, which comprise 242 out of 321 total data files.We found
a wide range of file extensions used to store these data files.
Fifty-three files are stored in a compressed format using zip, gz, or
tgz extensions. Other than that, csv (39), fasta (37) and jpg/jpeg
(17) are the top 3 most used file extensions. Some file extensions
are rarely used, for example, all-data, c2v, file, mna_jl, pgm,
pickle, spickle, tfrecord, utf8, wav and xlsx are found only
once. The remaining 79 of the 321 data files are not in a file format
where 11% of the total are loaded through the third-party libraries’
API, 5% are generated programmatically in runtime memory and
1% are loaded from databases.

The data files available through URLs are dynamic by nature,
that is, they can be updated without any notice by the data engineer.
Additionally, we encountered several issues with URL-based
data access:

• Continuity: Six URLs point to personal storage locations
like Dropbox and Google Drive. Additionally, 28 points to
university domains. These storage locations may not guar-
antee continuous availability.

• Error: We could not download data from 7 URLs due to
errors. For 6 URLs, we cannot find the files (HTTP 404) and
for 1 URL, we do not have permission to access the resource
(HTTP 403).

• Unspecified data file: For 15 data files, we cannot determine
the data file from the URL. The reasons one or more of the
following:
– Ten URLs lead to web pages, such as https://motchallenge.
net/, rather than directly to data files or folders. There is no
instruction on data selection or retrieval on the web page
or the corresponding repository, making it challenging to
identify the needed resources.

– Ten URLs have multiple versions available to download
which leads to confusion of which dataset to download.
Additionally, two URLs provide real-time data such as
https://systems.jhu.edu/research/public-health/ncov. This
real-time data keeps changing over time at regular in-
tervals. Thus the dataset changes with regular intervals
without any versioning of the data.

Not all the data files are available for model training.Most
notably, data files that are stored in the file system are not available
by nature as they are in the application developers’ local file system.
Also, the 7 data files fetched through URLs which had errors are un-
available as well. Moreover, among the 3 databases used for model

https://motchallenge.net/
https://motchallenge.net/
https://systems.jhu.edu/research/public-health/ncov
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Figure 4: Comparison of the available data files’ sizes in dif-
ferent storage locations

training, one is an SQLite file which is stored in the file system of
which the file is unavailable. The other two databases are MySQL
and PostgreSQL. None of the datasets are available as the reposito-
ries do not have any instructions on how to get the databases. In
contrast, datasets loaded from libraries, repositories and runtime
memory are available for model training. It is worth noting that
datasets may be unavailable because of being proprietary, which
one repository explicitly mentioned.

From the available datasets, data loaded from libraries and run-
time memories are loaded directly to the memory without storing
them. Thus we have the size of the datasets loaded from remote
storage and repositories. Developers use remote storage for
larger files, while smaller ones are stored inside the reposi-
tory. Figure 4 shows that the median file size in the repositories is
0.76 MB, while in remote storage, it is 623.5 MB. Additionally, files
larger than 63.4 MB are stored in remote storage only. 44 data files
from remote storage and 4 data files from the file system are stored
as compressed files, which can be attributed to the reduction of the
files’ original sizes.

File systems, utilized by 39% of repositories, represent the
most commonly used storage location, although it causes
unavailability and can eventually lead to reproducibility
issues. Additionally, larger data files are stored only in
remote storage and downloaded when needed.

4 RQ2: HOW ARE THE MODELS STORED IN
THE STUDIED ML APPLICATIONS?

Motivation: The storage of an ML model plays an important role in
maintaining its availability. In this research question, we investigate
the storage practice of ML models in application repositories by
the application developers. Additionally, we explore whether the
storage location is correlated with the size of the model files.

Approach: We have 354 model files from 93 repositories. We first
analyzed the distribution of the files across the repositories. Then
we interpreted the storage location of a model file by examining its
path following the same process we followed for data files. The only
exception is, for the model files having unknown paths, we deduced
their location to the File System as the model loading APIs are meant
for loading local models. Next, we analyzed how frequently the

0 10 20 30 40
# of model files per repository

Figure 5: Distribution of model files per repository

developers used each storage type to store the model files in the
same way we did for data files.

We also classify the trained models based on their source to un-
derstand their availability. Developers can either use a self-trained
model or a pre-trained model in their applications. Thus, we classi-
fied trained models into three following categories:

• Self-trained models: The training code of the models is
found in the same application repository

• Pre-trained models: The models are trained and provided
by others

• Unknown trainer: The models with unknown paths

For both the self-trained and pre-trained models, we got the model
files from the model loading code segments. To mark a model as a
self-trained model, we searched for its information in the reposi-
tory’s README file andwithin the application’s codebase. If we found
relevant details in the README file or located the code responsible
for training and saving the model in the application repository,
we classified it as a self-trained model. Otherwise, the model was
considered a pre-trained model. Then, we compared the number of
model files in each storage type for both the self-trained models and
the pre-trained models to understand if the model storage location
choice differs for the model categories and discuss the availability
of the self-trained and pre-trained model files.

To investigate whether the sizes of the model files are correlated
with where developers choose to store them, we plotted the storage
location types against the file sizes of the model files.

Findings: Amedian repository has one model file. Figure 5 shows
that the number of model files varies from 0 to 47 in the repositories.
41 repositories have more than 1 model file, and in 23 of these
repositories, all the model files are stored in the same storage type.

The file system is the most popular choice among appli-
cation developers for storing model files. From Figure 3, we
see that 47 (51%) of the 93 repositories use the file system to store
data files, making it the most commonly used storage type. Repos-
itories also employ remote storage (18%), repositories (16%) and
runtime memory (1%) for storing data files. However, we did not
find any model file loaded from the database like we found for data
files. Also, we do not have any models from libraries like we have
datasets from libraries because we did not analyze the model load-
ing using third-party libraries except the three selected libraries in
our analysis.
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Figure 7: Distribution of types of trained models and the
distribution of the model storage locations across these types

The studied repositories referred more to pre-trained than
self-trained models. From Figure 7a, we observe that among
the 354 model files, 52% of the models are pre-trained, whereas,
34% of the models are self-trained. For 14% of the model files, the
model’s path remained unknown. This occurred when paths were
set dynamically during code execution, were passed as method
parameters without any method calls, or when the configuration
file was missing from where the path had been set, or the code was
too complicated to understand.

Self-trainedmodels are commonly stored in the file system
and pre-trained models are commonly stored in the appli-
cation’s repository. Figure 7b shows that self-trained model files
are most commonly stored in file system (68), repository (31), and
remote storage (20). The model files that are stored in the repository
and the remote storage are available, however, the 68 self-trained
model files that are stored in the file system, can be available after
training the model from the available training code. On the other
hand, for pre-trained model files, the order of popularity of the
storage is repository (83), remote storage (72), and file system (28).
These model files are considered pre-trained as neither the code-
base for training the model nor any information of the model in the
README was available. Like the self-trained model files, files that
are stored in the repository and the remote storage are available,
however, the 28 pre-trained model files that are stored in the file
system, are not available in any way.

From the 354 model files, The path was unknown for 20 model
files and 40 model files were found from the repositories’ README
file. The remaining 201 models were loaded from weights and
93 were loaded by restoring the saved model.However, it is not
always possible to understand if the loaded file is a weight file or a
savedmodel file from the file’s extension only.We had to understand
this by analyzing the model loading code segments. Also, some of
the files are used as checkpoints to resume training. Table 3 gives us
an overview of how the models are used after loading them in 543
model loading code segments. We observed that 11% of the model
loading code segments are used to resume training. However, it is
not possible to understand from the file extension whether it is a
checkpoint file. Thus, the flexibility of using any file extension to
save files for different purposes like weight files and checkpoint
files, requires additional instruction with the file on how to use
them. From our manual analysis, we also found that developers
sometimes load model files to transform the model. Table 3 shows
that 4% of the model loading code segments load model files either
to reduce the model file size or export the model to a different
format for deployment. This gives us an overall impression that
developers might sometimes encounter challenges in storing model
files because of their data structure.

We encountered similar issues with URLs for model files
as we did for data files.We found 8 model files in personal storage
locations and 25 model files in university storage. We could not
access 3 model files due to HTTP 404 errors. We also found 3 URLs
referring to pages having multiple versions of the models.

Like the datasets, we have the size of the models loaded from
remote storage and repositories. Developers store larger models
in remote storage locations and download the model when
needed. From Figure 8, we can see that although small model files
are stored more in repositories, those larger than 65.72 MB are only
stored remotely. The size of a median file in remote storage is 53.0
MB whereas the size of a median file stored inside a repository is
4.22 MB.
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Table 3: Model load purposes in model loading code segments

Purpose Description # of code %segments

Generate data Infer or generate data for model’s performance evaluation or for problem-solving 377 69%
Resume training Resume/extend an early training or fine-tune a trained model 60 11%
Transform model Export model file to different format for deployment or reduce model file size 21 4%
Unknown purpose Could not find the reason for loading the model 85 16%

Total 543 100%
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Figure 8: Comparison of the model file sizes in different
storage locations

Similar to the datasets, models are typically stored in the
file system, and larger ones are typically hosted in re-
mote systems and downloaded when required. The stud-
ied repositories used pre-trained models more than self-
trained models. 68 self-trained model files stored in the file
system are available after training the model from the avail-
able training code and 28 pre-trained model files stored in
the file system are not available in any way.

5 RQ3: HOW ARE THE DATASETS AND
MODELS VERSIONED IN THE APPLICATION
REPOSITORIES?

Motivation: The models and datasets change as the ML applications
they are used in evolve. Therefore, the changes in the models and
datasets should bemanaged in the application repositories like other
software artifacts. In this research question, we want to understand
how these changes are managed in the application repositories.

Approach: The data and model files are stored in different loca-
tions. We first discuss the versioning of the datasets and models
from all storage locations based on the available data and model
files. For the data and model files that are stored in the file system
without versioning information, we checked if the files were inten-
tionally moved out from the version control systems (VCSs) of the
repositories. Using the git check-ignore command12, we checked
if the files were ignored from the VCS by any of the .gitignore
files.
12https://git-scm.com/docs/git-check-ignore

As developers use traditional VCSs for software artifact version-
ing, we examine how data and model files are versioned in the
VCS. For the data and model files that are versioned in repositories
through VCS, we counted the commits for the files in the applica-
tions’ history. For each repository, we listed the data and model files
from the repository and listed the commits from the application
repository history that changed the files. Then we counted such
commits for the data files and the model files in the repository
separately, and plotted the number of data file-changing commits
and model file-changing commits in the repositories to see how
often they change in the application repositories.

Findings: Data and model files are most often missing ver-
sion information in the application repositories. Among the
databases used for model training, the SQLite file is not versioned
in the VCS. The other two MySQL and PostgreSQL databases are
server-based databases, so cannot be versioned in a VCS. The data
we obtained through library APIs, does not have associated version
information. Data and model files fetched from personal remote
storage or university domains through URLs are changeable with-
out even versioning them. Also, multiple versions are available in
remote storage for 10 data URLs and 3 model URLs, however, there
is no information in the application repository on which version
of data or model to use. In contrast, the data and model loaded
into runtime memory are linked to version information due to the
versioning of the data generation code.

The data and model files that are stored in the file system, are
not traceable from the application repositories. Data and model
files from the file system are sometimes intentionally not
versioned in the VCS. 21 data files and 22 model files were ignored
in 17 repositories through the .gitignore file. Among the 22model
files, 14 model files are self-trained and 8 are pre-trained. If these
ignored data and pre-trained model files update, this will lead to
a traceability challenge for data and model files in the application
repository.

On the other hand, the files that are stored in the repositories
are by nature versioned through the VCSs. However, data and
model files are not often stored in repositories. Among all the data
files, Figure 9 shows that only 26% of the data files are versioned
in the VCS of the application repositories whereas among all the
model files, Figure 10 show that only 32% of the model files are
versioned in the VCS of the application repositories. Additionally,
Figure 7b shows that self-trained models are less likely to be ver-
sioned in the VCS than pre-trained ones. Among the self-trained
model files, 74% of them are not versioned in VCS. Developers may
assume that they can retrain the model using the available code

https://git-scm.com/docs/git-check-ignore
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Figure 10: Comparison of the number of model files in dif-
ferent model storage locations

and dataset in an older revision, however, retraining a large model
can be time-consuming and inefficient when reproducing issues.
Also, the dataset also needs to be versioned with proper updates in
the application history. Thus, the data and model files that are not
versioned can lead to reproducibility issues in older revisions for
bug fixes.

Most of the datasets and models stored in repositories are
rarely updated during the development of the application.
Models are updated more than the datasets in the reposito-
ries. According to Figure 11, although the number of repositories
having versioned datasets is higher than the number of repositories
having versioned models, the number of commits for the models in
a repository is more than the number of commits for the datasets
in the repositories. Repositories have a median of 1.5 commits for
the datasets in the repository and 2 commits for the models in the
repository. This indicates that, in an average repository, a data file
is updated once or never after its initial commit. Similarly, an aver-
age repository updates the model files just once after their initial
commit. Remarkably, one repository stands out with 22 commits
for 46 saved model files in VCS.

0 5 10 15 20
# of commits per repository

Dataset

Model

Figure 11: Commit frequency of the data and model files per
repositories

The application repositories often lack version information
for datasets and models. Most of the data and model files
that are versioned in VCS are rarely modified during ap-
plication development, with model files undergoing more
updates than data files. This may lead to traceability and
reproducibility issues for developers while fixing bugs in
older application versions.

6 IMPLICATIONS
We found that developers typically handle datasets and models
similarly in terms of storage location. Theymostly store the data and
model files on the file system, often not ensuring their availability.
As expected, developers exclusively use remote storage to store
large files. They may choose remote storage for large files to save
space in their local file system, securely store the files for future
use, or share the files with others. However, storing files in remote
storage sometimes hinders the files’ availability. To resolve the
issue, developers can utilize Git Large File Storage (Git LFS) to store
large data and model files to make them available with versioning
within the repository, which also serves all the aforementioned
purposes.

Although traditional VCSs are not well-suited for managing the
large and diverse assets used in machine learning model develop-
ment [22], our study shows that datasets and models are sometimes
versioned in VCS alongside other software artifacts. However, they
are not updated very often (if at all). Also, the datasets and mod-
els that are loaded from remote storage or libraries are not often
labelled with version information. Therefore, application develop-
ers need guidelines and tool support for integrating datasets and
models into their systems while preserving their version informa-
tion and keeping track of their further updates in the application
repositories.

Many systems and platforms support data analysts and model
developers in creating datasets and models, as well as managing
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machine learning artifacts. However, model developers often do not
utilize these ML AMSs to manage the datasets and models. A study
by Barrak et al. [4] identified only 391 GitHub repositories that
use DVC[14], one of the most popular ML AMSs integrated with
Git. In our study, we did not find any application documentation
that mentioned any use of the ML AMSs. Even if model developers
used such tools to manage dataset and model evolution, the updates
of the dataset and model files are not reflected in the VCS of the
application repositories.

7 THREATS TO VALIDITY
Internal Validity: We filter out the learning repositories by their
topic, name and description (Section 2.2). However, this filteringwill
not work for the repositories with empty topics and descriptions,
and unembedded names. After randomly selecting 93 repositories,
we read the documentation of the repositories. We found one repos-
itory used for course management. We replaced the repository with
a new randomly selected repository.

To select repositories by library version (Section 2.2), we parsed
the dependencies of the repositories from their requirements files
only. However, repositories can use other files for their dependency
management. From the 4,023 repositories, we found requirements
files in 3,352 repositories. As we did a manual analysis, we ignored
these 671 repositories in further processing.

To properly understand the purpose of the code during the man-
ual analysis (Section 2.4), we read the code comments, analyze the
identifier names, and navigate all traceable execution paths of the
code. However, because of the dynamicity of Python, we still may
have missed some execution paths or misunderstood some parts of
the code. Also, it is possible that some of the code we included in
our result is code that is not actually used in practice by the project.

Recently, third-party model providers (such as Hugging Face)
have become popular for managing (very large) pre-trained models.
In our study, we focused on models that could be loaded into the
application specifically using TensorFlow, PyTorch and Scikit-learn,
and we did not specifically cover other third-party providers. Future
studies should expand our study to include such providers.

External Validity: One of the external threats to our results is
generalization. Our findings apply to open source repositories from
GitHub only. Hence, future studies are necessary to investigate if
our results hold for other hosting platforms like Bitbucket, GitLab.

8 RELATEDWORK
We group the related work based on their purpose and present them
in the following two sections.

8.1 ML application management studies
Calefato et al. [5] studied the deployment aspect of ML applica-
tions’ management. They gathered an initial understanding of how
MLOps solutions are used to automate task executions to build
and deploy ML projects. They analyzed 397 GitHub Actions work-
flows from 155 GitHub repositories and 38 CML workflows from 29
GitHub repositories. The authors aimed to identify the current state
of MLOps workflows in the GitHub repositories and noted that the
adoption of MLOps workflows in open-source GitHub projects is
currently somewhat limited.

Barrak et al. [4] and Njomou et al. [17] studied how the ML
AMSs are used in open-source ML applications. Barrak et al. [4]
empirically studied the prevalence of ML pipelines in open-source
projects, as well as the amount of maintenance effort involved. They
aimed to address this goal through a high-level empirical study of
391 GitHub projects using the DVC[14] versioning tool, followed by
a more detailed analysis of the 25 most active projects. The authors
found a non-negligible maintenance overhead for developers and
data scientists working onML applications due to the tight coupling
between ML-related artifacts and other software artifacts, such as
build files and infrastructure-as-code files.

Njomou et al. [17] discussed the main challenges that developers
face when adopting and/or migrating existing ML projects to Ma-
chine Learning Life Cycle Management (MLLCM) platforms. They
migrated the platform of 13 ML projects on GitHub to DVC[14] and
MLFlow[29], logged the challenges they faced at each stage of the
migration, and recommended potential solutions to overcome these
challenges. They also propose some steps that developers can take
when building ML projects in order to ease any future migration to
MLLCM platforms.

8.2 Improved Versioning Support for ML
Applications

Tran [27] claimed that tools with versioning support for machine
learning assets are more tailored toward the data scientists’ perspec-
tive and less towards software engineers’ perspective. The tools are
not connected to established version control systems, which would
require software engineers to adapt to a completely different kind
of tooling that they are not used to for the management of machine
learning assets. Therefore, the author developed a query language
that is able to manage machine learning assets with improved ver-
sioning support that is more focused on software engineers. This
addresses the need for a new tool with improved versioning support
for machine-learning-based systems dedicated to software engi-
neers which has been indicated in several studies. The author also
presented a design science approach to creating this tool that is
accessible to both software engineers and data scientists.

9 CONCLUSION
ML applications rely on two key components: datasets and mod-
els, which evolve during application development. Hence, these
components require management like traditional software artifacts.
While several ML Artifact Management Systems exist to support
the management of ML artifacts during model development, the
management of the datasets and models by the ML application
developers in the application repositories remains unexplored. This
paper focuses on the storage and versioning aspects of dataset and
model management within ML applications. A manual analysis of
93 GitHub repositories reveals varying storage and versioning prac-
tices. Many repositories store data files on the file system and load
models from the file system. However, the versioning of data and
model files in application repositories is limited. This study high-
lights the need for more specialized software engineering tools and
practices to support developers in integrating datasets and models
into their applications while preserving version information and
tracking updates in application repositories.
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