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ABSTRACT
The HTML5 <canvas> is used to display high quality graphics in
web applications such as web games (i.e., <canvas> games). How-
ever, automatically testing <canvas> games is not possible with
existing web testing techniques and tools, and manual testing is
laborious. Many widely used web testing tools rely on the Docu-
ment Object Model (DOM) to drive web test automation, but the
contents of the <canvas> are not represented in the DOM. The
main alternative approach, snapshot testing, involves comparing
oracle snapshot images with test-time snapshot images using an im-
age similarity metric to catch visual bugs, i.e., bugs in the graphics
of the web application. However, creating and maintaining ora-
cle snapshot images for <canvas> games is onerous, defeating the
purpose of test automation. In this paper, we present a novel ap-
proach to automatically detect visual bugs in <canvas> games. By
leveraging an internal representation of objects on the <canvas>,
we decompose snapshot images into a set of object images, each
of which is compared with a respective oracle asset (e.g., a sprite)
using four similarity metrics: percentage overlap, mean squared
error, structural similarity, and embedding similarity. We evaluate
our approach by injecting 24 visual bugs into a custom <canvas>
game, and find that our approach achieves an accuracy of 100%,
compared to an accuracy of 44.6% with traditional snapshot testing.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
visual bugs, test automation, HTML canvas, web games

1 INTRODUCTION
The HTML <canvas> is used to display high-quality graphics in
web applications, and is particularly useful for web games (i.e.,
<canvas> games) [13, 18, 30, 31, 50]. HTML5 <canvas> games are
receiving growing attention from industry [26, 33], but it is challeng-
ing to automatically test <canvas> games, as widely used web test-
ing techniques and tools do not work for the <canvas> [23]. Many

(a) Screenshot of our test <canvas> game

<!DOCTYPE html>
<html>
<head>

<style > body { margin: 0; display: flex; } </style >
<script src="main.js"></script >

</head>
<body>

<canvas width="1280px" height="720px"></canvas >
</body>
</html>

(b) HTML code for our test <canvas> game

Figure 1: The graphics of a <canvas> game are represented as
a bitmap, and not in the DOM, while the game’s source code
resides in the script main.js.

commonly used web testing techniques leverage the Document
Object Model (DOM) to drive test automation, but as demonstrated
in Figure 1, the contents of the <canvas> are not represented in
the DOM.

To overcome this challenge, snapshot testing has become the
industry standard approach to visual testing for <canvas> applica-
tions, as it does not rely on the DOM, but instead relies on screen-
shots of the web application. Snapshot testing targets visual bugs,
i.e., bugs that are related to the graphics of the application, by auto-
matically comparing oracle screenshots with screenshots that are
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recorded during the execution of a test case. However, as we discuss
in Section 2.2 and show in Figure 2, snapshot testing cannot deal
with the dynamic nature of <canvas> games, as this dynamism
causes variation between the screenshots that is hard to account
for automatically.

Because of the technical challenges of <canvas> testing, and
the inherent difficulties of testing games [16, 19, 28, 32, 34, 39],
<canvas> games are mostly tested manually. Manual testing re-
quires large amounts of manual time and effort, limiting the amount
of bugs that quality assurance (QA) analysts can realistically dis-
cover and report.

Therefore, we propose an automated approach for the visual
testing of <canvas> games. Rather than (manually) curating oracle
screenshots, we use game assets (see Section 2.1) to automatically
generate visual test oracles during the test, and automatically com-
pare these oracle assets with individual objects on a screenshot
of the <canvas>. Our approach leverages the game’s internal rep-
resentation of objects on the <canvas>, i.e., the <canvas> objects
representation (COR), to decompose screenshots of the <canvas>
into individual object images.

We evaluated our approach by injecting 24 unique visual bugs
from 4 different bug types (state, appearance, layout, rendering) as
defined by Macklon et al. [23] into a custom <canvas> test game.
Our approach performed automated visual comparisons of the
oracle assets and the rendered objects using four similarity metrics:
percentage overlap, mean squared error, structural similarity, and
embedding similarity. We compared our approach with a baseline
approach that is the industry standard, i.e., snapshot testing. We
found that when using mean squared error, structural similarity,
or embedding similarity as the similarity metric, our approach
achieves an accuracy of 100% for the 24 injected bugs in our test
game, compared to an accuracy of 44.6% with the baseline approach.

The main contributions of our paper are as follows:

• We designed 24 synthetic visual bugs to evaluate automated
testing approaches for <canvas> games, and we confirmed
with an industrial partner that these bugs were representa-
tive of the bugs found in real <canvas> games.

• We created a testbed for evaluating visual testing tech-
niques for <canvas> games, i.e., a test <canvas> game,
which includes a non-buggy version and a buggy version
of the game containing the 24 synthetic bugs.

• We extensively evaluated combinations of four widely-used
similarity metrics for automatically detecting visual bugs
in <canvas> games.

• For reproducibility, we open-sourced our testbed and vi-
sual bugs dataset at the following link: https://github.com/
asgaardlab/canvas-visual-bugs-testbed.

• A live version of our test <canvas> game is available at the
following link: https://asgaardlab.github.io/canvas-visual-
bugs-testbed/game.

The remainder of our paper is structured as follows. Section 2
discusses background information. Section 3 discusses related work.
Section 4 presents our approach. Section 5 details our experiment
setup. Section 6 presents our results. Section 7 contains threats to
validity. Section 8 is the conclusion to our paper.

2 BACKGROUND
In this section, we give background information about HTML5
<canvas> games and snapshot testing.

2.1 HTML5 <canvas> games
By combining the high-quality graphics of the <canvas> with
browser events, such as mouse clicks, game developers can cre-
ate complete games that run in a web browser.

Open-source frameworks. It is difficult to integrate the <canvas>
with other parts of a web application [23], and so <canvas> frame-
works are used to ease the development of <canvas> games. There
exist several free and open-source (FOSS) <canvas> frameworks
that are widely-used to develop <canvas> games. For example,
PixiJS and Phaser receive much attention from game developers,
as indicated by the high number of forum posts related to each
framework on the HTML5 Game Devs [10] and Stack Overflow [1]
forums. Such <canvas> frameworks typically provide a custom
internal representation of objects on the <canvas>, i.e., a <canvas>
objects representation (COR), which can be manipulated by devel-
opers to easily create animations on the <canvas>. For example, in
PixiJS, the COR is termed scene graph, and has a tree structure.

Assets. A common way to integrate graphics into a video game is
using source images (assets) that are used to display objects in the
game. For <canvas> games, assets are loaded by theweb application
client from some file server through web requests, like any other
image in a web application. However, assets are not rendered as
image (<img>) elements on a web page, but instead are used as
source bitmaps that are displayed on the <canvas> bitmap.

2.2 Snapshot testing
Snapshot testing, e.g., using Percy, is the industry standard for
visually testing web applications [36]. Visual testing is used to tar-
get visual bugs; visual bugs are mismatches between actual and
expected visual properties in the graphics of a software applica-
tion [15]. Traditional snapshot testing typically involves comparing
screenshots of the web application from the same test across dif-
ferent runs, after some change(s) to the source code (e.g., a pull
request). To perform traditional snapshot testing, first a set of oracle
screenshots that have been collected during a test run must be man-
ually verified, and then new test screenshots can be automatically
collected and compared at a later time using an image compari-
son algorithm. If a screenshot does not pass the image comparison
check, that screenshot (or test case) is flagged for manual review.

Figure 2 shows how most of the visual differences between the
oracle and test screenshots occur due to random elements of the
<canvas> game, which are desired functionality, rather than the
injected visual bug. It is difficult to distinguish between visual
bugs and intended functionality for <canvas> games when using
snapshot testing. This problem can lead to many false positives,
increasing the manual workload (due to oracle re-verification) and
reducing the benefit of using snapshot testing as an automated
testing approach. Therefore, the industry-standard approach for
snapshot testing is far from ideal for testing many <canvas> appli-
cations, particularly <canvas> games.

https://github.com/asgaardlab/canvas-visual-bugs-testbed
https://github.com/asgaardlab/canvas-visual-bugs-testbed
https://asgaardlab.github.io/canvas-visual-bugs-testbed/game
https://asgaardlab.github.io/canvas-visual-bugs-testbed/game
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(a) Oracle screenshot (b) Test screenshot (c) Image difference (in pink)

Figure 2: Two screenshots from our test game. In the test screenshot, the viking character is missing a log on his shoulders
(injected visual bug S4 in Table 3, viking animation not updating). However, as observed in the third screenshot, the in-game
randomness causes a larger difference between the screenshots than the bug itself.

3 RELATEDWORK
In this section, we discuss related work on <canvas> testing, visual
web and GUI testing, and visual game testing.

3.1 <canvas> testing
Macklon et al. [23] analyzed open source projects on GitHub that
utilize the <canvas>, and proposed a taxonomy of <canvas> bugs.
They showed that the most frequently reported bugs in the open
source projects are visual bugs, i.e., bugs that are related to the
graphics of an application. Their findings emphasize that research
on <canvas> testing is at an early stage and hasmany opportunities,
and that visual bugs are a primary concern for <canvas> testing.

Only one prior study has investigated testing methods for the
<canvas>. Bajammal and Mesbah propose an approach to enable
DOM-based testing of the <canvas> by leveraging traditional com-
puter vision techniques to detect objects on the <canvas>, and
subsequently augment the DOM with a representation of those
objects [4]. They report high accuracy in detecting objects on the
<canvas> that should not be present (similar to visual bug S6 in
Table 3), however any other type of overlapping visual bug on the
<canvas> would pose challenges for their visual inference algo-
rithm. In contrast, we evaluate our approach on 24 unique bugs
from 4 visual bugs types, and find that our approach shows strong
performance for catching a wide variety of visual bugs that are
representative of bugs found in real-world <canvas> games.

3.2 Visual web and GUI testing
As previously outlined, existing automated web testing techniques
and tools do not work for the <canvas>, but prior research has also
indicated that <canvas> bugs overlap with visual bugs found in
graphical user interfaces (GUIs) and generic web applications [23].
We refer to the survey of computer vision applications in software
engineering by Bajammal et al. [5] and the grey literature review
of AI-based test automation techniques by Ricca et al. [36] for
an overview of visual testing for GUIs and web apps. Here, we
only discuss related work that was not covered in the survey by
Bajammal et al. [5].

Several prior studies have proposed the use of visual analysis to
assist in automated testing methods for web applications. Yandra-
pally and Mesbah [48] proposed a method to automatically detect
near-duplicate states in web applications by comparing fragments

of a web page instead of entire screenshots. They decomposed the
DOM along with screenshots and performed automatic structural
and visual comparisons between automatically inferred web page
states. Bajammal and Mesbah [3] automatically inferred the se-
mantic role of regions in a web page and automated the testing of
web accessibility requirements. In another work by Bajammal and
Mesbah [2], they combined visual analysis with DOM attributes
to improve automated web page segmentation, which can assist
with bug localization. These works focus on segmenting and testing
the structure of web pages, i.e., what is represented in the DOM,
but as previously explained, the contents of the <canvas> are not
represented in the DOM, meaning these approaches cannot be used
to automatically catch visual bugs in <canvas> games.

Several prior studies proposed the use of computer vision to
leverage the visual aspect of a software application in an auto-
mated testing process. Mazinanian et al. [25] automatically pre-
dicted actionable elements on a web page through a supervised
deep learning approach. White et al. [46] proposed a supervised
deep learning approach and automatically identified GUI compo-
nents to improve the coverage of random testing. Xue et al. [47]
proposed a supervised deep learning approach to assist in perform-
ing record-and-replay GUI testing in a mobile or web application.
Mozgovoy and Pyshkin [27] used template matching to recognize
objects and GUI elements in a screenshot of a mobile game, which
allow test assertions to be made against the visual content of the
game. Ye et al. [49] proposed a similar GUI widget detection ap-
proach for mobile games, in which they instrumented the source
code of a mobile game to automatically extract samples of GUI wid-
gets, and subsequently trained a supervised deep learning model
for GUI widget detection. Visual bugs would interfere with the
GUI element identification methods in the aforementioned works,
while our approach instead targets visual bugs in <canvas> games
without training any new models.

Zhao et al. proposed the use of unsupervised deep learning meth-
ods to detect anomalous GUI animations, which requires only sev-
eral ground truth samples of a correct GUI animation to detect the
anomalous animations [52]. Given the dynamic nature of <canvas>
games, it would be extremely challenging to collect ground truth
samples of all correct animations in a <canvas> game, which does
not solve the problems posed by snapshot testing. We avoid this
problem in our approach by automatically generating visual test
oracles during the test.
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3.3 Visual game testing
Given that the <canvas> is often used to build web games, we
provide an overview of visual testing in video games.

Automated methods for graphics glitch detection in video games
have been proposed in prior work. Nantes et al. propose a semi-
automated approach to detect shadow glitches in a video game
using traditional computer vision techniques [29]. However, in our
work we propose a fully automated approach to detect a wider
range of visual bugs that are relevant to <canvas> games.

Other studies have utilized relatively recent advancements in
deep learning to detect graphics glitches in video games [7, 9, 20]
or to leverage the visual aspect of video games for sprite and event
extraction [17, 21, 22, 38, 41]. However, these methods all require
either significant manual effort to prepare the data or in-house
machine learning expertise to train and fine-tune the models, or
they target only a limited set of visual bugs (when compared to
the four types evaluated in our paper). As our approach utilizes
a pre-trained model, it requires only very basic applied machine
learning knowledge, and it does not require much data preparation.

4 OUR APPROACH
In this section, we present our approach for automatically detecting
visual bugs in <canvas> games. Figure 3 shows an overview of the
steps of our approach.

4.1 Collecting data
We begin by automatically instrumenting the rendering loop of
the <canvas> game with our custom code to collect snapshots and
assets. Each snapshot contains a screenshot of the <canvas> and a
respective <canvas> objects representation (COR) from the same
point in time.

For each snapshot, we automatically collect a screenshot and
its respective COR. Figure 4 illustrates what a COR contains in
our approach. A COR is used by a <canvas> game to determine
how to render game objects to the <canvas>, such as the player
character, background layers, and projectiles. Each object in the
COR has properties such as position, size, and rotation.

While performing a snapshot, we prevent new animation frames
from being rendered, and save a frozen copy of the COR along
with a synchronized screenshot of the current animation frame
(as rendered to the <canvas>). Although our snapshot operation
briefly prevents the rendering of a few new frames, it does not
necessarily interrupt the main game loop (depending upon how a
game is implemented).

As described in Section 2.1 of our paper, assets in <canvas>
games are served through web requests, and so we created a custom
crawler to collect assets based on the resource URLs of objects in a
<canvas> game. As can be seen in Figure 4, game objects are linked
to their respective assets in the COR, meaning associating a game
object with its respective asset is straightforward.

4.2 Preprocessing images
For each snapshot, we leverage the COR to automatically generate
oracle assets and extract object images for comparison. Figure 5
shows our automated image processing pipeline. Below, we detail
our preprocessing steps for oracle assets and object images.

Collecting data

Assets

Detecting  
visual bugs

Preprocessing
images

Object image

Calculate
similarities

Preprocess
objects

Collect  
assets

Collect
snapshots

Screenshot

Game

Oracle asset

Preprocess
assets

COR Detect visual
bugs

Execute  
test case

Similarity
scores

Figure 3: Overview of our approach (shown with visual bug
L4 in Table 3, Viking has wrong rotation).

We automatically preprocess game assets to generate oracle
assets during the execution of a test using the following process:

(1) Apply transformations to the asset as specified in the COR.
For example, crop, scale, tile, and/or rotate the asset.

(2) Paste the asset onto a blank image that is the same size
as the <canvas>. The paste location is determined by the
COR, and will match the location of the game object in the
screenshot if no bugs are present.

(3) Generate an image mask from the pasted asset (i.e., the
result from the previous step) and save for later masking
operations.

(4) For any overlapping objects, apply their saved masks over
top of the pasted asset. Figure 6 shows an example of what
this might look like.

(5) Crop the pasted asset.
We automatically decompose screenshots into a set of individual

object images according to the following process:
(1) Apply the background mask, i.e., the mask generated from

the object’s respective asset.
(2) Apply the foreground masks, i.e., the masks that were gen-

erated from assets belonging to overlapping objects.
(3) Crop the object image out of the screenshot.

After preprocessing, we have a set of image pairs, with each pair
containing an oracle asset and object image, which should be exactly
the same if no visual bugs are present.

4.3 Detecting visual bugs
For each pair of oracle asset and object image, we use an image
similarity metric to automatically perform a visual comparison of
the images. Our approach relies on a threshold for this similarity
metric to decide if a visual test case should pass or fail. This thresh-
old should be defined empirically and for each game, as different
games may have different levels of in-game randomness that could
affect the similarity metric.
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Figure 4: Unified modeling language (UML) class diagram for a <canvas> objects representation (COR).

Assets Oracle assetTransformed asset
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Apply
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Figure 5: Automated image preprocessing pipeline (shown with visual bug S1, player-character is invisible).

(a) Input screenshot (b) The background mask (c) One of the foreground masks (d) Output object image

Figure 6: A background mask and all overlaying foreground masks are applied to isolate object images in our approach.
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5 EXPERIMENT SETUP
In this section, we describe our experiment setup for evaluating
the performance of our approach and the baseline approach for
automatically detecting visual bugs. We selected snapshot testing
as the baseline approach for comparison with our approach, as
snapshot testing is the industry standard approach for detecting
visual bugs in <canvas> applications.

5.1 The test game
To evaluate our approach, we created a custom <canvas> game
using the PixiJS1 library and a freely available asset pack2. PixiJS
is a popular free and open-source <canvas> rendering library for
creating 2D animations with the <canvas>. Figure 8 shows the
state machine diagram for our test game. Our test game is a so-
called catching game, i.e., a game in which projectiles are randomly
thrown for the player to catch. The test game contains a variety
of animations, including animated sprites, rotating sprites, and
background tiling sprites. The test game was designed to be played
at a resolution of 720p, with a maximum frame rate of 60 FPS.

5.2 The test case
We wrote an automated test case for our <canvas> game. In our
test case, the game was automatically opened in a browser window
with size 1280𝑝𝑥 × 720𝑝𝑥 . Next, the game was started through an
automated user click, and then the player-character was moved
back and forth across the screen with automated mouse movements
until the player lost a life (after which, the test case ended). During
each test case execution, 10 snapshots were taken.

5.3 Injected visual bugs
We evaluated the performance of the approaches by injecting visual
bugs into our test game. To target bugs that are relevant to <canvas>
games, we used the taxonomy of <canvas> bugs constructed by
Macklon et al. [23], and verified with an industrial partner that
our injected bugs were relevant to industrial <canvas> games. In
Table 1, we provide each visual bug type and an example description
of a bug of that type as defined in the taxonomy of <canvas> bugs.

For each of the four visual bug types defined in the taxonomy of
<canvas> bugs, we injected six different bugs, with some primarily
affecting foreground objects, and others primarily affecting back-
ground objects. In total, we injected 24 visual bugs. Figure 7 shows
four example instances of visual bugs we injected into the test game,
while Table 3 provides detailed descriptions of each injected bug.

We injected most of the visual bugs by altering an asset during
test execution, and then replaced it with the non-bugged (original)
asset at the preprocessing stage of our approach. We injected most
of the visual bugs this way because real visual bugs can be very
complex and difficult to reproduce [23]. Some of our visual bugs
were injected through modifications in the test game’s source code,
for example, for rendering bug R1 (objects are distorted) we in-
jected rounding errors in the image scaling. Although our injected
visual bugs had a different root cause than real visual bugs on the
<canvas>, we confirmed with an industrial partner that the visual
effects were similar to visual bugs found in real <canvas> games,
1https://pixijs.com/
2https://raventale.itch.io/parallax-background

Table 1: Visual bug types found in <canvas> applications [23].

Type Example Description

State Object visible but should be invisible.
Appearance Object has incorrect colour.
Layout Object has incorrect position, size, layer, etc.
Rendering Object is distorted, blurry, or contains artifacts.

(a) Rendering bug R3 in Table 3.
Viking and logs are blurred.

(b) Layout bug L5 in Table 3.
Trees are in the wrong layer.

(c) State bug S5 in Table 3. Fallen
log animation is not updating.

(d) Appearance bug A4 in Ta-
ble 3. Logs are a different colour.

Figure 7: Sample instances of our injected visual bugs.

meaning our injected visual bugs were suitable for evaluating our
approach.

5.4 Similarity metrics
In our experiments we used four similarity metrics to compare
images.

Percentage overlap (PCT). We selected percentage overlap as a simi-
larity metric because it is the simplest method for calculating the
similarity of two images, and is used in industry-standard tools
such as Percy. We calculated the PCT for a pair of images by cal-
culating the percentage of pixels that exactly match between the
two images.

Mean squared error (MSE). We selected mean squared error as a
similarity metric because it is widely used in image processing as an
image quality index [11, 44], i.e., to measure degradation between
original and reconstructed images. The MSE actually captures the
amount of difference (i.e., lower is better) instead of similarity (i.e.,
higher is better). We calculated the mean squared error for a pair
of images using the scikit-image3 library.

Structural similarity (SSIM). We selected structural similarity as a
similarity metric because it is intended to be complementary to
mean squared error as an image quality index [45]. We used the
scikit-image library to calculate structural similarity for each
pair of images.
3https://scikit-image.org/

https://pixijs.com/
https://raventale.itch.io/parallax-background
https://scikit-image.org/
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Figure 8: Finite state machine diagram for our test <canvas> game.

Embedding similarity (ESIM). Our fourth and final metric, embed-
ding similarity, was the similarity of two images when represented
as embeddings of an image classification model, i.e., a deep learn-
ing vision model. Embeddings are the vision model’s inner-layer
representation(s) of an image, i.e., the feature representations of the
image before the classification layer. We implemented embedding
similarity in our experiments by encoding the images as the em-
beddings of the final convolutional layer of the ResNet-50 model
pre-trained on the ImageNet dataset [14]. These image embeddings
had a feature volume of (2048, 7, 7). We selected the pre-trained
ResNet-50 model as the ResNet architecture is widely used for
transfer learning applications [6, 22, 35]. We extracted the embed-
dings of the final convolutional layer of the ResNet-50 model, as
is done in prior work [12, 40]. To calculate the similarity of the
embeddings, we selected cosine similarity, a widely used similarity
metric [41, 42, 43, 51].

We used the pre-trained model in inference mode, meaning we
did not have to perform any data labelling, training, or fine-tuning,
i.e., we used the model out-of-the-box. We performed inference
with the pre-trained ResNet-50 model on an NVIDIA Titan RTX
graphics card. We loaded the model from the torchvision4 library
and used the PyTorch5 library to calculate cosine similarity.

5.5 Empirical threshold selection
We empirically selected a single threshold for each similarity metric
used in each approach to decide whether a test case is buggy. To
empirically determine the thresholds, we calculated the similarities
of all image pairs for 10 repetitions of test data with no bugs injected
(i.e., with non-buggy snapshots), and took the overall lowest (or
highest for MSE) similarity score for each metric as our thresholds.
Hence, we chose the thresholds to yield zero false positives, as
false positives result in a wasted effort from the game developer’s
perspective (as they need to investigate the false positive).

5.6 Evaluating the experiments
Here we describe the methods we used to evaluate our experiments.

4https://pytorch.org/vision/stable/index.html
5https://pytorch.org/

Statistical significance and effect sizes. We used the Mann-Whitney
U test [24] to determine if the populations of similarity scores were
statistically significantly different. The Mann-Whitney U test is a
non-parametric test that compares two distributions of unrelated
populations to determine how much the populations statistically
overlap, with some probability 𝑝 . Generally, a 𝑝 value of less than
0.05 indicates that the populations display a statistically significant
difference, as a very low 𝑝 value indicates it is very unlikely that
two populations are statistically similar.

To better understand the results of the Mann-Whitney U test,
we also calculated Cliff’s delta [8] to determine the extent to which
the populations of buggy and non-buggy similarity scores were
different per metric. To interpret the Cliff’s delta values (𝑑), we
used the thresholds provided by Romano et al. [37] to determine
the effect sizes, as done in prior work [16]. The thresholds used
were as follows:

Effect size =


negligible if |𝑑 | ≤ 0.147
small if 0.147 < |𝑑 | ≤ 0.33
medium if 0.33 < |𝑑 | ≤ 0.474
large if 0.474 < |𝑑 | ≤ 1

Accuracy. Our choice of threshold selection (Section 5.5) meant
that it was only possible for there to be true positive (TP) and false
negative (FN) cases in our results for visual bug detection. There-
fore, the best choice of evaluation metric was accuracy, which was
calculated as follows: accuracy =

(# true positives)
(# true positives) + (# false negatives) .

6 RESULTS
In this section, we present our experimental results for automat-
ically detecting visual bugs with our approach and the baseline
approach. When using MSE, SSIM, or ESIM as the similarity metric,
we find that our approach achieves an accuracy of 100% for our
24 injected visual bugs, compared to an accuracy of 44.6% with
the baseline approach (with PCT as the similarity metric). Our
results show that our approach is much more effective for automat-
ically detecting visual bugs in <canvas>-based applications than
the baseline approach (traditional snapshot testing).

https://pytorch.org/vision/stable/index.html
https://pytorch.org/
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Table 2: Mann-Whitney U test and Cliff’s delta results.

Mann-Whitney U test Cliff’s delta
Metric Significant difference Effect size

Snapshot PCT yes small
Testing MSE yes medium

SSIM yes small

Our PCT yes medium
Approach MSE yes medium

SSIM yes medium
ESIM yes large

6.1 Similarity scores
Figure 9 shows the distributions of the similarity scores for each
of the evaluated similarity metrics, with the minimum similarity
for normal snapshots providing the thresholds for bug detection,
as described in Section 5.5. For each distribution, scores above
the set threshold (within the greyed-out areas) would be accepted
as within the normal range, whereas scores below the threshold
would indicate a visual bug is present. While the distributions
are significantly different for all similarity metrics, the effect sizes
show that there is a lot of overlap between the metrics when using
the snapshot testing approach. As a result, a threshold is much
harder to select for snapshot testing, and there will always be a
trade-off between precision and recall. For our approach, the effect
size (Table 2) is much larger indicating there is far less overlap
between the distributions, allowing us to choose better-performing
thresholds (which can also be observed from Figure 9). Clearly,
there is much more overlap between normal and buggy cases when
using snapshot testing than when using our approach with any of
the similarity metrics.

6.2 Bug detection
Table 3 shows the results for bug detection with each evaluated
approach and similarity metric. Our approach achieves a consid-
erably higher accuracy (with any of our four evaluated similarity
metrics) than snapshot testing. In particular, our approach shows
exciting potential for detecting visual bugs when MSE, SSIM, or
ESIM is used as the similarity metric. Our results indicate that only
a single similarity metric is needed for our approach – combining
several metrics does not improve our overall results.

6.3 Execution duration
To better understand the performance of our approach, we timed
the executions of our approach and the baseline approach. Our
approach took considerably longer (3 additional seconds per snap-
shot) to run than the baseline approach. However, the accuracy of
the baseline approach indicates that it is not a very useful one in
practice. The bulk of time in our approach is spent preprocessing
the images, whereas calculating the similarities is relatively quick,
with the exception of SSIM. In practice, we would not have to com-
pute SSIM, because MSE, SSIM, and ESIM provide similar accuracy
in our experiments.

7 THREATS TO VALIDITY
Construct validity. Our results may be biased towards the set of
visual bugs that we injected in our experiments. However, our in-
jected visual bugs covered all four visual bug types that are relevant
to the <canvas>, as defined in prior work [23]. While the visual
bugs we injected may not have the same cause as real visual bugs
found in <canvas> applications, the visual effects are the same;
each injected visual bug was designed to resemble a real world
example. To mitigate the threat of injecting unrealistic bugs we also
confirmed with an industrial partner that our injected bugs were
representative of real visual bugs in industrial <canvas> games.

There are different possible choices of image comparison metrics
for snapshot testing, the baseline approach used in our experiments.
We selected PCT as an image comparison metric because Percy,
a widely used snapshot testing tool, uses a threshold-based image
comparison metric that is similar to PCT. We also empirically eval-
uated MSE and SSIM for snapshot testing, and determined that
neither were better than PCT for snapshot testing.

Internal validity. In our approach, we utilized the <canvas> objects
representation (COR) combined with the game assets to automati-
cally generate visual test oracles (i.e., oracle assets). Our approach
therefore assumes that no bugs originate in these parts of the game.
It is fair to assume that the assets provide accurate baselines for
comparison with the rendered game objects on the <canvas>. In
addition, it is fair to assume that the COR can be used to generate
test oracles for detecting visual bugs, as any bug present in the COR
would not be a visual bug.

A threat to internal validity is our choice of background fill
colour when applying masks during image preprocessing in our
experiments. A fill colour must be selected to fill the blank space
that results from the masking operations. To address this threat, we
ran our experiments with three different fill colours in 8-bit RGBA
format: (0, 0, 0, 255), (255, 255, 255, 255), and (255, 0, 0, 255). We em-
pirically determined that for our test game, changing the fill colour
for masking only affected our results with embedding similarity
(ESIM), indicating that our use of ESIM may not be appropriate due
to our extensive preprocessing.

A threat to internal validity is related to how we handle assets
that have partial transparency in our experiments. In our experi-
ments, we chose to remove all partial transparency (i.e., make it
fully transparent), as we empirically determined that this choice
provided the best performance. However, this means that we may
miss some visual bugs that (primarily) affect the partially trans-
parent areas of an object on the <canvas>. More work is required
to better handle assets with partial transparency when generating
masks.

External validity. Our approach has only been evaluated with a
single <canvas> game. Thresholds for detecting visual bugs with
our approach will most likely differ on a per-game basis, and not
all games may have as clear similarity thresholds as those found
for our test game. Therefore, automatically setting the thresholds
to detect visual bugs may not be as effective for other <canvas>
games, meaning manual adjustment may be required. We designed
our test game with the randomness and a variety of animations that
were inspired by the visual styles and effects of industrial <canvas>
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Figure 9: Boxplots of similarity scores for each evaluated similarity metric in each approach. Our selected thresholds are
indicated by the grey dotted lines. Similarity scores in the greyed-out ranges are classified as non-buggy by each approach.

Table 3: Number of repetitions (out of 10) each visual bug was detected for each approach with each similarity metric. As
detailed in Section 5.4, we use the following similarity metrics: percentage overlap (PCT), mean squared error (MSE), structural
similarity (SSIM), and embedding similarity (ESIM).

Snapshot Testing Our Approach
Type Key Bug Description PCT MSE SSIM PCT MSE SSIM ESIM

St
at
e

S1 Viking is invisible. 1 0 0 10 10 10 10
S2 A background hill is invisible. 8 4 6 0 10 10 10
S3 Ship is invisible. 10 10 10 10 10 10 10
S4 Viking animation is not updating. 1 0 2 10 10 10 10
S5 Fallen log animation is not updating. 7 3 5 10 10 10 10
S6 Button should be hidden. 5 10 8 0 10 10 10

A
pp

ea
ra
nc
e A1 Viking has the wrong beard colour. 1 4 4 10 10 10 10

A2 Entire viking has the wrong colour. 2 7 3 10 10 10 10
A3 Viking and logs are grey-scaled. 3 0 3 10 10 10 10
A4 Logs have the wrong colour. 3 1 4 10 10 10 10
A5 The ship’s sail has the wrong colour. 9 3 7 10 10 10 10
A6 A background bunny has the wrong colour. 3 3 5 0 10 10 10

La
yo

ut

L1 Ship is in the wrong location. 10 10 10 10 10 10 10
L2 Viking is in the wrong location. 2 2 2 10 10 10 10
L3 Background clouds are in the wrong location. 10 5 3 10 10 10 10
L4 Viking has the wrong rotation. 2 0 2 10 10 10 10
L5 Background trees are in the wrong layer. 8 7 10 10 10 10 10
L6 Logs have the wrong rotation. 2 1 1 10 10 10 10

Re
nd

er
in
g

R1 Viking and logs are very distorted. 2 1 2 10 10 10 10
R2 Viking and logs are slightly distorted. 2 1 3 10 10 10 10
R3 Viking and logs are blurred. 2 0 0 10 10 10 10
R4 Background trees covered in patches. 7 8 8 0 10 10 10
R5 Background bushes have artifacts. 2 0 2 0 10 10 10
R6 Background beach has tearing. 5 0 7 0 10 10 10

Accuracy 44.6% 33.3% 44.6% 75.0% 100.0% 100.0% 100.0%
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games. However, future studies should investigate further how
different styles of games impact the performance of our approach.

Our approach is evaluated only a 2D <canvas> game that was
built with the PixiJS <canvas> rendering framework. More work
is required to understand howwell our approach works for other 2D
<canvas> games, 3D <canvas> games, and non-<canvas> games.

In our experiments we leverage an existing <canvas> objects
representation (COR) provided by PixiJS. If a COR is not avail-
able in a <canvas> game, our approach would not work for that
game. Similarly, in our experiments we leverage existing <canvas>
game assets to generate visual test oracles during the test, but if a
<canvas> game does not use assets for its graphics rendering, then
our approach would not work for that game.

Some types of graphics (e.g., skeletal animations, particle effects)
are not in our test game, and are therefore not accounted for in
the implementation of our approach. More work is required to
understand how our method performs when implemented for other
types of graphics that are common in 2D <canvas> games.

8 CONCLUSION
In this paper, we present a novel approach for automatically detect-
ing visual bugs in <canvas> games. By leveraging the <canvas>
objects representation (COR), we are able to automatically gen-
erate oracle assets for comparison with isolated object images
(as rendered to the <canvas>) and detect a wide variety of visual
bugs in <canvas> games. We found that our approach far outper-
forms the current industry standard approach (traditional snap-
shot testing) for automatically detecting visual bugs in <canvas>
games. We evaluated four similarity metrics with our approach,
and found that mean squared error (MSE), structural similarity
(SSIM), and embedding similarity (ESIM) each provided an accu-
racy of 100% for our 24 injected visual bugs. An implementation
of our approach and our testbed is available at the following link:
https://github.com/asgaardlab/canvas-visual-bugs-testbed.
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