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Abstract

With video games now generating the highest revenues in the entertainment indus-
try, optimizing game development workflows has become essential for the sector’s
sustained growth. Recent advancements in Vision-Language Models (VLMs) offer
considerable potential to automate and enhance various aspects of game develop-
ment, particularly Quality Assurance (QA), which remains one of the industry’s
most labor-intensive processes with limited automation options. To accurately
evaluate the performance of VLMs in video game QA tasks and determine their
effectiveness in handling real-world scenarios, there is a clear need for standardized
benchmarks, as existing benchmarks are insufficient to address the specific require-
ments of this domain. To bridge this gap, we introduce VideoGameQA-Bench,
a comprehensive benchmark that covers a wide array of game QA activities, includ-
ing visual unit testing, visual regression testing, needle-in-a-haystack tasks, glitch
detection, and bug report generation for both images and videos of various games.
Code and data are available at: https://asgaardlab.github.io/videogameqa-bench/.

1 Introduction

The global video game industry continues to expand rapidly, with its market value projected to
reach $257 billion by 2028 [11]. Alongside this substantial growth, the process of developing high-
quality video games remains inherently complex and demanding. A critical challenge within game
development is to ensure visual quality and consistency through a rigorous visual testing and quality
assurance (QA) process. Automation of visual QA tasks remains particularly challenging [6, 22, 24,
28, 30, 36, 38, 42–44, 46, 53, 65] and currently, most visual QA relies heavily on manual inspection,
making the process time-consuming, costly, labor-intensive, and prone to human error [34, 35].

The visual QA process for video games can generally be abstracted into three main types of tasks:
(1) verifying scene integrity by comparing the visual representation of scenes against intended
configurations and known reference states, such as an oracle (Fig. 1-a) or previously rendered versions
of the same scenes (Fig. 1-b); (2) detecting glitches through open-ended exploration—these glitches
are unintended gameplay (Fig. 1-e) or visual artifacts (Fig. 1-h) without specific reference points,
requiring testers to rely on common sense and general knowledge for detection; and (3) systematically
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Title:
Body Mesh Disappears
Affected Item: 
Player Model
Description: 
Torso and nearby limb 
sections fail to render, 
leaving visible gaps

Pose: Side profile
Head direction: Turned ~90° 
left; only one lens visible.
Eye lens: 
Almond-shaped
Lighting:
Nighttime

1 2 3

(a) Validating scene against an oracle (e) Accurately detecting visual glitches in glitch-affected images and videos

(b) Detecting unacceptable changes (f) Accurately confirming the glitch-free status of normal images and videos

(c) Parsing visual data from the user interface (g) Robust detection of clipping glitches in controlled settings

(d) Automatic bug report generation (h) Needle in a video haystack: locating glitch events in long-form content

1 2 3

Figure 1: Sample tasks from VideoGameQA-Bench. (a) A unit test where the model should
verify small details in the image, such as the character’s posture and the eye lenses. (b) A visual
regression test where the model should detect unacceptable changes between two versions of the
same scene. (c) A UI unit test in which the model must visually verify user interface components,
such as a chemistry graph between players. (d) A bug report generation task where the model needs
to generate a bug report for a glitch. (e) Two glitch detection tasks, where the model must identify
visual anomalies, such as unnatural body configuration (left) or object clipping (right, fingers clipping
the apple). (f) Two glitch detection tasks, where the model is required to verify the glitch-free status
of images with intentional object clipping and high scene complexity. (g) A parametric test that
evaluates whether the model can detect clipping at various object proximities. (h) A needle-in-a-
haystack task, which requires the model to identify the first frame in which a glitch occurs.

reporting and documenting all identified glitches (Fig. 1-d) , ensuring developers receive clear and
actionable information to address problems effectively during game development.

Recent advancements in vision-language models (VLMs) [3, 9, 15, 31, 66] present promising
opportunities to automate and significantly enhance the efficiency of video game QA. However,
progress in applying VLMs to game QA has been limited by the lack of standardized benchmarks.
Current multimodal benchmarks tend to focus heavily on complex mathematical or textual reasoning
tasks [26, 59, 60], overlooking essential visual comprehension tasks fundamental to video game QA.
Similarly, existing game-specific benchmarks [5, 44–46] often represent only narrow aspects of QA
tasks, thus inadequately evaluating and tracking VLM performance across diverse QA scenarios.

In this paper, we introduce VideoGameQA-Bench, a benchmark designed to fill the gap in evaluat-
ing VLMs for video game QA. Our key findings and contributions are as follows:

1. We present VideoGameQA-Bench featuring 9 distinct tasks and 4,786 questions designed
considering real-world video game development scenarios, such as visual unit testing,
regression testing, UI validation, video needle-in-a-haystack, and glitch detection.
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2. While VLMs show promising performance on various multimodal benchmarks and can
function as OCR systems, they perform poorly at detecting fine details required for accurate
scene understanding and parsing complex UI elements. (Sec. 4.1)

3. Frontier VLMs show good performance on the glitch detection task using images (up to
82.8%) and videos (up to 78.1%); however, all struggle when it comes to glitches related to
body configuration, intricate object clipping, and common-sense reasoning. (Sec. 4.2)

4. Visual regression testing remains one of the most challenging tasks for VLMs. (Sec. 4.3)
5. Locating specific glitch moments in videos remains a challenge, both in detecting and

accurately pinpointing the glitch. (Sec. 4.4)
6. Frontier VLMs can generate useful bug reports for up to 50% of real-world glitches, provid-

ing accurate and descriptive summaries of the glitches. (Sec. 4.5)

2 VideoGameQA-Bench

We designed VideoGameQA-Bench ’s tasks by simulating realistic QA scenarios encountered
during actual video game development. However, to make the benchmark more relevant for future QA
automation tasks, we also included tasks that may challenge current software engineering practices
while also remaining highly relevant. Tab. 1 gives an overview of the contents of each task. In
summary, VideoGameQA-Bench contains 2,236 image-based samples and 1,200 video-based
samples from more than 800 games and 9 synthetic game scenes.

2.1 Tasks

Image-Based Tasks

1. Visual unit testing: Visual unit tests verify visual attributes including presence, placement,
positioning, colors, conditions, and other relevant properties of various image elements.

2. UI unit testing: UI (visual) unit tests verify in-game UI elements such as menus, subtitles,
heads-up displays (HUDs), and interface components like graphs and charts. We simulate
the (UI) unit testing tasks by asking the VLM questions about game screenshots.

3. Visual regression testing: Visual regression tests check for unintended visual changes
after a change to the game. A simple pixel-by-pixel comparison of two screenshots is not
sufficient, as some variations (e.g., because of character customization or weather conditions
in the game) may be acceptable. Visual regressions may occur in cinematic parts of the
game, such as cutscenes that have a defined sequence flow. We simulate this task by asking
the VLM to compare whether two screenshots are similar, taking into account the specified
(un)acceptable variations.

4. Glitch detection: Glitch detection is the process of identifying unintended visual errors,
such as rendering issues, clipping, or physics/logical bugs that express themselves visually.
We simulate this task by asking the VLM whether glitch and glitch-free images contain a
glitch.

5. Parametric clipping detection: Given the common occurrence of clipping in games, our
benchmark includes a dedicated task to evaluate a model’s ability to detect such glitches. In
this task, images feature an object (e.g., a cube, sphere, or character) positioned at varying
distances from a human character – from far apart to fully overlapping/clipping. The VLM
is asked whether it detects clipping across each of these distances.

6. Bug report generation: In addition to testing/detection tasks, a potential application of
VLMs is to assist QA engineers with writing reports for detected bugs. We simulate this task
by asking the VLM to write a description of a glitch image that can be used in a bug report.

Video-Based Tasks

1. Glitch detection: Glitch detection in videos can be done to verify (autonomous) gameplay
sessions from bots. Detecting glitches in videos is significantly more complex due to
challenges such as analyzing motion (patterns), and may require identifying transient
glitches that appear only briefly in a few frames. We simulate this task by asking the VLM
whether it detects a glitch in a video.
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Table 1: Overview of tasks, their data sources, and expected format/contents of the responses to the
questions in VideoGameQA-Bench. All responses must be formatted in JSON.
Type Task N Source Diversity Annotation Expected Response Samples

Im
ag

e

Visual unit 100 92 games , Object properties Appendix F.1

UI unit 100 94 games , UI properties Appendix F.2

Visual regression 250 9 scenes , Pass/fail Appendix F.3

Glitch detection 1,000 507 games Detected/not detected Appendix F.4

Parametric clipping det. 686 9 scenes, 4 games Clipping/not clipping Appendix F.5

Bug-report generation 100 61 games Free-format description Appendix F.6

V
id

eo Glitch detection 1,000 778 games Detected/not detected Appendix F.7

NIAH 100 9 scenes Detected/not detected
+ frame number Appendix F.8

Bug-report generation 100 70 games Free-format description Appendix F.9

2. Needle-in-a-haystack (NIAH): NIAH is a more challenging long-context retrieval [51, 64]
version of the glitch detection task. We simulate this task by asking the VLM whether it
detects a glitch in a video, and in which frame the glitch occurs for the first time.

3. Bug report generation: In this task, the VLM is asked to provide a description of a glitch
video that can be used in a bug report.

2.2 Data Collection

We constructed VideoGameQA-Bench using real-world and synthetic sources to ensure diversity,
realism, and controlled conditions. We next detail the composition and collection processes for each
data type. It should be noted that the data collection process was solely carried out by researchers
from the University of Alberta.

Real-world samples: We sourced real-world data for the visual & UI unit testing, glitch detection and
bug report generation tasks. For image-based tasks, we gathered diverse screenshots from the Steam
Community ( ) image gallery. To find images with possible glitches, we used keyword search to
find recent images tagged with the word “bug”. For the video-based glitch detection task, we utilized
gameplay videos from the GamePhysics ( ) dataset [44]. To complement this set with glitch-free
videos, we randomly extracted 15-second gameplay videos—matching the median duration of videos
in the GamePhysics dataset—from gameplay walkthroughs available on YouTube ( ). We also
randomly selected 100 images and 100 videos from these sets for the bug report generation task.

Synthetic samples: We used the Unity ( ) game engine to create synthetic samples for tasks requir-
ing controlled settings. For the clipping detection task, we systematically varied the spatial proximity
between 3D objects within Unity scenes. A human character model is positioned centrally, and we
incrementally moved other objects—including a cube, sphere, 2D plane, and another character—from
an initial distance of 15 units towards the central character. This movement continued progressively
until the objects fully clipped into and became embedded within the character model.

For the NIAH task, we created 50-second gameplay clips in Unity and intentionally injected glitches
as the “needle” at known timestamps. For this set, we used four types of glitches: (1) flickering, which
causes parts of a game object to flicker rapidly; (2) sudden disappearance, where an object suddenly
vanishes; (3) object jump, where a game object is rapidly thrown into the air; and (4) missing texture,
where the texture of a game object is missing.

Mix of real-world and synthetic samples: For the visual regression testing task, we combine
Unity-generated content with cutscene glitches sourced from YouTube videos. We selected nine
distinct scenes from the Unity Asset Store, generating modified versions by randomly removing
specific objects. We then paired captured images from these modified scenes with images from their
unaltered reference versions. We further augmented this set with 70 glitch instances from cutscenes
in various games on YouTube. Here, frames from glitched cutscene recordings were matched with
corresponding frames from the glitch-free cutscenes, creating a dataset of paired frames.
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2.3 Data Annotation and Label Verification

Manual annotation and verification: We ( ) manually reviewed the collected images and videos,
labeling them as either glitch or glitch-free. For bug report generation, we include a brief description
of the glitch.

We followed a multi-step verification process, regardless of existing labels or annotations. All images
and videos underwent a sequential review involving three authors to validate their quality and confirm
accurate labeling. This process helped prevent the propagation of incorrect annotations from previous
datasets into VideoGameQA-Bench.

VLM and human in the loop: Visual unit tests and UI unit tests require constructing both the
question and the answer. For these tasks, we used Gemini-2.5-Pro ( ) to initially draft a set of
questions based on comprehensive instructions (Appendix B). We then analyzed the drafted questions,
merged and refined them, and fixed the ground truth to create a final question based on the initial
samples provided by Gemini-2.5-Pro.

Automated annotation: For synthetic data generated via Unity, we exported annotations directly
from the Unity game engine. This ensured exact alignment between the annotations and the visual
state of the images or videos, precisely indicating the presence or absence of glitches. For example,
for the NIAH samples, a dedicated C# script systematically starts the recording, injects a glitch at a
random timeframe, and exports both the videos and timestamps.

JSON structure: To facilitate interoperability and automation, we explicitly enforce that all ground
truth labels (and therefore, each expected model output) in our dataset are valid JSON objects. To
guide the models toward the desired JSON schema, each question includes an empty JSON template,
and we instruct the model to return its final response in that format.

To avoid suppression of chain-of-thought (CoT) [52], we include a Reasoning field in the JSON
response, allowing the model to use the allocated space to “think” [2] before returning the response
for tasks that require heavy reasoning. All tasks, except for visual (UI) unit tests, contain this field.

3 Experiments

VLMs: We evaluated a total of 11 proprietary and 5 open-weight models on VideoGameQA-Bench.
Our evaluation includes both standard models and those designed for extended reasoning [1, 8, 41, 56].

Prompting videos: Only the Gemini family accepts video as a native input format; other models
process videos as sequences of frames. To evaluate non-Gemini models, we sample one frame per
second for all video-based tasks. For open-weight models, we reduce the sampling rate to ensure they
can handle the images (see Appendix A for details).

Valid JSON output: All benchmark questions explicitly require models to output responses in a
valid JSON format. Any responses not in JSON or containing malformed JSON structures will be
disregarded, even if the model’s output is only slightly different from the ground truth label.

LLM-as-a-judge: Both bug-reporting tasks require models to generate descriptive bug reports
based on provided glitchy images or videos. Evaluating these reports poses challenges due to their
open-ended nature, making human verification or an LLM-based judge necessary. Following recent
literature [16], we use an LLM-based judge, specifically the OpenAI o3 model, to assess the accuracy
of the generated reports by comparing them to textual ground truth references detailing the glitches.
Details about prompt construction are available in Appendix D.

Model ranking: We ranked models by averaging accuracies across image and video tasks. Task-wise
accuracies were first averaged within each type, then combined for the final score.

Additional details regarding model inference are provided in Appendices A and C.

4 Results

Tab. 2 summarizes results across all benchmark tasks; we highlight key findings and examine model
strengths and limitations in the remainder of this section.
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Table 2: Accuracy (%) scores of models on VideoGameQA-Bench. VU: Visual unit testing; UI:
UI unit testing; VR: Visual regression testing; IGD: Image-based glitch detection; PCD: Parametric
clipping detection; IBR: Image-based bug report generation; VGD: Video-based glitch detection;
NIAH: Needle-in-a-haystack; VBR: Video-based bug report generation. Numbers highlighted with
† indicate that the score for the NIAH task was set to 0. The Total column shows the mean of the
average scores from the image and video tasks.

Image Video Average

VU UI VR IGD PCD IBR VGD NIAH VBR Img. Vid. Total

Model / # Samples 100 100 250 1,000 686 100 100 1,000 100 2,236 1,200 3,436

GPT-4.1 43.0 28.0 28.8 81.3 87.8 51.0 75.8 19.0 51.0 53.3 48.6 51.0
GPT-4.1-mini 42.0 30.0 20.4 76.8 66.9 46.0 71.8 10.0 26.0 47.0 35.9 41.5
GPT-4.1-nano 9.0 14.0 19.2 57.0 66.9 16.0 49.1 4.0 14.0 30.4 22.4 26.4
GPT-4o 39.0 23.0 31.6 82.8 82.5 54.0 57.0 1.0 52.0 52.2 36.7 44.4
o4-mini 50.0 35.0 45.2 76.4 65.0 38.0 70.0 18.0 28.0 51.6 38.7 45.1
o3 43.0 28.0 39.6 73.7 80.5 53.0 76.8 13.0 45.0 53.0 44.9 48.9
Gemini-2.5-Pro 53.0 40.0 30.8 75.4 72.2 33.0 78.1 34.0 36.0 50.7 49.4 50.0
Gemini-2.5-Flash 47.0 24.0 26.4 66.3 72.2 24.0 64.7 35.0 23.0 43.3 40.9 42.1
Gemini-2.0-Flash 44.0 28.0 12.0 68.1 78.0 20.0 54.5 36.0 26.0 41.7 38.8 40.3
Sonnet-3.7 23.0 22.0 24.0 65.1 76.4 29.0 66.9 31.0 22.0 39.9 40.0 39.9
Sonnet-3.5 23.0 29.0 14.0 70.1 72.9 33.0 61.2 27.0 26.0 40.3 38.1 39.2

Llama-4-Scout 32.0 23.0 13.6 55.8 71.6 8.0 58.6 – 5.0 34.0 21.2† 27.6†

Llama-4-Maverick 21.0 22.0 18.4 53.2 65.7 7.0 56.6 – 15.0 31.2 23.9† 27.5†

Gemma-3 (27B) 12.0 12.0 12.8 46.7 69.7 10.0 51.3 – 9.0 27.2 20.1† 23.6†

Mistral-Small-3.1 (24B) 15.0 17.0 25.6 59.7 62.5 9.0 61.4 – 14.0 31.5 25.1† 28.3†

Qwen-2.5-VL (72B) 38.0 27.0 21.2 70.0 76.0 19.0 47.9 – 17.0 41.9 21.6† 31.7†

4.1 VLMs Mostly Fail to Detect, Translate, and Represent Intricate Scene Details

Why does this matter: In software engineering, unit tests are assertions that verify an isolated piece
of code behaves as intended. Applying the same discipline to rendered frames is equally valuable:
visual unit tests can assert that the appearance and on-screen text of visual elements (including the
UI) meet a specification. VLMs could make this practical: when prompted with a specific image, they
can describe fine-grained visual details (e.g., a character’s attire or pose) and read textual elements.
This capability would allow tests to compare these outputs against reference descriptions, flagging
mismatches early in the pipeline.

Results: Our experiments show that VLMs consistently struggle with fine-grained details, particularly
when tasked with translating specific details and properties of objects, as well as reading charts, text,
and other information in the scene. On both the visual and UI unit testing tasks, all models perform
poorly, with Gemini-2.5-Pro being the best model (53.0% on visual and 40.0% on UI unit testing).

VLMs often struggle with fine-grained scene understanding, especially when it comes to interpreting
object configuration, spatial relationships, and subtle visual cues [18]. They frequently misinterpret
character posture (e.g., number of visible eyes, hand position, or orientation), object placement (e.g.,
whether an object is inside or outside a room), and the state of elements like whether a car door is
open or closed (Fig. A12). These errors are more pronounced when properties are small or visually
ambiguous, though failures also occur in clearer scenarios. Even seemingly simple tasks—like
determining the direction an object is facing or counting elements—often lead to inconsistent results,
highlighting limitations in current model capabilities for detailed visual reasoning.

Despite the promising performance of VLMs for OCR tasks [29, 40], accurately extracting structured
information from complex game UI elements remains a significant challenge. While VLMs handle
plain text and simple interfaces like basic game menus reasonably well, their performance declines
with layouts involving large tables, progress bars, and elements such as minimaps. Interpreting charts
and graphs with interconnected nodes and edges is also unreliable, as models consistently struggle to
follow edges in the graph and understand the information presented in this format (Fig. A13).

Our findings align with prior studies highlighting the limitations of VLMs in fine-grained perception
and spatial reasoning [37, 48]. Improvements in spatial reasoning and localization are essential before
VLMs can be reliably used in detail-sensitive tasks like visual (UI) unit testing.
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1 2 3
(a) Spatial reasoning (d) Body configuration (images and videos)

(b) Complex UI (items in the grid) (e) Detecting changes

(c) Common-sense (f) Temporal analysis (object movement/shaking)

1 2 3

Figure 2: Samples from challenging cases that most VLMs consistently struggle with. (a) Failure to
understand spatial reasoning, such as object orientation (whether an airplane is facing toward the
camera or away). (b) Failure to read UIs with complex layouts and objects arranged in grids. (c)
Failure to detect common-sense inconsistencies, such as a missing gun in the hand. (d) Failure to
detect unnatural body configurations. (e) Failure to detect missing foreground objects (candles).
(f) Failure to detect and analyze object movement such as shaking or bouncing.

4.2 VLMs Can Detect Many Visual Glitches, But Struggle with Certain Types

Why does this matter: Glitch detection is a core component of game QA, often requiring extensive
manual review due to the complexity and variety of visual errors that can arise during gameplay [19].
Leveraging VLMs for glitch detection could greatly reduce the need for manual review.

Results: VLMs, especially proprietary ones, demonstrate good performance in identifying visual
glitches (e.g., with GPT-4o achieving an accuracy of 82.8%). This shows a step forward in glitch
detection capability: prior work showed that the best-performing model could reach a glitch detection
accuracy of only 57.2% [46]. The best-performing open-weight model, Qwen-2.5-VL, achieves an
accuracy of 70.0% matching the performance of Sonnet-3.5. In contrast, Gemma-3 labels nearly
all samples as “glitch,” resulting in 100% recall but less than 2% specificity. Conversely, Llama-4-
Maverick and Llama-4-Scout label almost all samples as “clean,” exhibiting recall at or below 14%
and specificity exceeding 95%. Further details on performance metrics are provided in Appendix E.3.

In the video-based setting, Gemini-2.5-Pro achieves the highest performance at 78.1%. Compared to
image-based tasks, proprietary models generally perform slightly worse on this task: GPT-4.1 (–5.5),
o4-mini (–6.4), with the exception of o3 (+3.1) and Gemini-2.5-Pro (+2.7).

A major limitation observed across models in video-based glitch detection is that they process
individual frames rather than entire videos natively, resulting in the loss of temporal context and
audio signals (Fig. 2-f). Additionally, some models, such as GPT-4o, frequently refuse to generate
valid responses to video-based queries.

During our manual analysis, we observed that certain types of visual glitches remain particularly
challenging for even the best-performing model, in both image- and video-based settings:
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1. Unusual body configuration: Characters appear with highly unnatural joint alignments or
distorted poses, typically resulting from ragdoll physics simulations or incorrect animation
states (e.g. an unusual position of hands or arms in Fig. 1-e and Fig. 2-d).

2. Intricate object clipping: Two or more objects intersect slightly, for example, characters
rendered in overlapping positions, props penetrating hands, or limbs passing through solid
geometry (e.g. an apple clipping with a hand in Fig. 1-e).

3. Semantic glitches: Contextual inconsistencies that require common-sense reasoning to
interpret. For instance, a character may appear to be holding a weapon based on their
posture, but the weapon is either missing or fails to render properly (Fig. 2-c).

We used o3 to identify common patterns among false-positive cases produced by the top-performing
models. Specifically, we prompt o3 to summarize the reasoning field from the JSON outputs of
GPT-4o, GPT-4.1, and Gemini-2.5-Pro. The most common false-positive patterns stem from model
hallucinations about clipping glitches that do not actually exist (Appendices E.5 and E.7). To further
stress-test the models for clipping glitches, we conducted parametric clipping detection to analyze
model behavior across various distances and complexities.

Our parametric test shows that while models can generally detect clipping glitches, they lack robust-
ness. In particular, on borderline cases (i.e. where two objects only slightly overlap), models usually
fail to recognize clipping issues. For example, although GPT-4.1 —achieving 87.8%—is the most
robust model, it still consistently fails to detect such boundary cases (Appendix E.10).

Despite the improvements in glitch detection performance, fully autonomous glitch detection using
only VLMs might not yet be feasible for real-world use. High false-positive rates (see Appendix E.3
for details) continue to pose a significant issue, potentially overwhelming human testers with unnec-
essary reviews, especially given that most frames in real-world gameplay are glitch-free. Additional
considerations for real-world applicability are discussed in Appendix E.4.

4.3 VLMs Are Bad at Visual Regression Testing

Why does this matter: Verifying an image against a previously approved reference is a highly
desirable form of testing in computer graphics and video games [13, 47, 49]. This need is especially
acute in video games, where recurring sequences often include customizable elements, such as
character appearances, or dynamic environmental changes like day/night cycles and weather variations.
Recent advancements in image comparison capabilities of VLMs [3, 20, 61, 66] show that VLMs
may be well-suited to this task because, through carefully designed prompts and in-context examples,
we should be able to effectively program them to ignore permissible variations, such as changes in
weather or lighting, while still verifying all other critical aspects of the image.

Results: Our results indicate that visual regression testing with VLMs does not yet perform well:
o4-mini, the best-performing model, achieves an accuracy of 45.2%. Qualitative analysis further
shows that all models consistently fail to detect a range of changes, whether subtle, like an object in
the background (Fig. A32), or pronounced, close to the camera (Fig. 2-e).

A notable trend is that reasoning variants consistently outperform their non-reasoning counterparts
within the same model family—for example, o3 versus GPT-4o (39.6% vs. 31.6%) and Sonnet-3.7
versus Sonnet-3.5 (24.0% vs. 14.0%). This trend does not appear in the glitch detection task. A
plausible explanation is that a reasoning model can iteratively examine multiple aspects and objects
in the two images before reaching a final decision; nevertheless, overall performance remains poor.

4.4 VLMs Can Detect Glitches in Gameplay Videos, but Struggle to Pinpoint Their Onset

Why does this matter: One of the goals in video game QA is to augment game-playing bots (e.g.
using reinforcement learning [4]) with automatic glitch detection systems. Game-playing bots can
interact with the game and generate many lengthy video recordings. A valuable capability in this
context would be a system that can efficiently localize glitches in such videos.

Results: The results from the NIAH tasks indicate that most models struggle significantly with this
task. Gemini-2.0-Flash and Gemini-2.5-Flash are the best-performing models, yet they achieve only
36.0% and 35.0% accuracy in locating the faulty frame within a 5-second error margin. This relatively
low performance primarily stems from two factors: (1) the model completely fails to detect the glitch
in the video, or (2) it detects that there is a glitch but fails to correctly locate the corresponding frames.
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For instance, GPT-4.1 detects glitches in 72 out of 100 videos (72% detection rate), but among these,
it accurately locates the faulty frame in only 19 cases (26.5%)(see Appendix E.9).

4.5 VLMs Can Correctly Describe Glitches in Bug Reports for More Than Half of the Cases

Why does this matter: VLMs should be able to assist in the accurate documentation of glitches
by generating bug reports of detected glitches, saving QA engineers a considerable amount of time.
Results: VLMs can generate accurate descriptions of more than half of the glitches in images and
videos. In both settings, GPT-4o performs best, achieving 54.0% and 52.0% accuracy for images and
videos, despite its poor glitch detection performance in videos (57.0%) due the high rate of request
rejections. Nevertheless, these numbers suggest that for most models there is a 20–25% gap between
their detection performance and ability to create accurate descriptions of glitches.

We reviewed bug reports that judges rejected as incorrect and identified four common patterns:
(1) reporting non-existent glitches (hallucinations) or irrelevant objects; (2) failing to report all
glitches in scenes with multiple glitches; (3) incorrectly concluding no glitch is present and (4) the
model identifies the correct location/region of the glitch but fails to provide an accurate description.

We estimate that approximately 5% of judging outcomes are errors. In this task, we used the LLM-as-
a-judge setting, which can introduce inaccuracies when calculating final model performance. After
manually analyzing responses from several models, we found that these errors often occur when the
judge is overly strict about exact wording and incorrectly rejects outputs that reference the glitch but
differ slightly from the ground truth (Appendix E.13).

5 Related Work

Recent benchmarks show VLMs matching or exceeding human performance on various tasks (e.g. [7,
25, 26, 39, 58–60, 62, 63]). However, these benchmarks primarily test broad, curriculum-based
worldly knowledge, providing limited insight into commonsense reasoning about physical interactions
in visual media. Consequently, they inadequately assess understanding of physical and commonsense
violations, such as video game glitches, highlighting the need for a new benchmark. PhysBench is the
only recent study evaluating similar shortcomings by testing a broad range of physical concepts [10].
In contrast, our benchmark specifically addresses video game quality assurance, where question types
and reasoning differ significantly due to game-specific characteristics. Identifying game glitches
poses unique challenges that have received limited attention, except in GlitchBench [46], which our
study supersedes through tailored evaluation tasks detailed in Sec. 2.

Video games sometimes exhibit distorted human anatomy due to physics failures, leading to unnatural
poses from misaligned meshes and textures. Clipping is a common issue in which objects or limbs
pass through each other. Previous game bug detection methods are not VLM-based and have limited
ability to identify such glitches [12, 23, 28, 33]. While VLM-based image quality assessment
methods [17, 21, 50, 54, 55, 57] use prompts to detect distortions, they struggle with semantic and
structural anomalies [14]. A recent study proposed detecting such anomalies in generated images [27],
focusing primarily on hallucinations in text-to-image models. In contrast, our work targets visual
anomalies in video games that violate anatomical correctness, physical plausibility and commonsense.

6 Discussion, Limitations, and Conclusion

In this paper, we introduce VideoGameQA-Bench, a novel dataset for measuring and tracking the
performance of vision-language models on video game quality assurance tasks. This dataset includes
various real-world-related tasks that are directly useful for existing systems (e.g., glitch detection),
video game testing pipelines, and potential future use cases (e.g., visual regression testing). Our
results show that while VLMs generally perform well on other multimodal benchmarks, they are still
not ready to be deployed for many video game QA tasks.

The samples in our benchmark primarily focus on glitches occurring after the game’s release, as exact
replication of glitches happening during development isn’t possible since testing processes vary by
company and game, and proprietary data is unavailable.
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While inference-time scaling has been shown to improve performance in domains such as multimodal
reasoning [32], longer test durations may render it impractical for our video game QA use cases.
Nevertheless, we reported results on such models to illustrate the performance ceiling of current-
generation models, even if they are not immediately deployable.
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[4] Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme,
S., Hesse, C., et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680,
2019. 8

[5] Cao, M., Tang, H., Zhao, H., Guo, H., Liu, J., Zhang, G., Liu, R., Sun, Q., Reid, I., and Liang, X. Physgame:
Uncovering physical commonsense violations in gameplay videos. arXiv preprint arXiv:2412.01800, 2024.
2

[6] Chen, K., Li, Y., Chen, Y., Fan, C., Hu, Z., and Yang, W. Glib: towards automated test oracle for
graphically-rich applications. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1093–1104,
2021. 1

[7] Chen, L., Li, J., Dong, X., Zhang, P., Zang, Y., Chen, Z., Duan, H., Wang, J., Qiao, Y., Lin, D., et al. Are
we on the right way for evaluating large vision-language models? arXiv:2403.20330, 2024. 9

[8] Chen, Y., Pan, X., Li, Y., Ding, B., and Zhou, J. Simple and provable scaling laws for the test-time compute
of large language models. arXiv preprint arXiv:2411.19477, 2025. URL https://arxiv.org/abs/
2411.19477. 5

[9] Chen, Y.-C., Li, L., Yu, L., El Kholy, A., Ahmed, F., Gan, Z., Cheng, Y., and Liu, J. Vision-language
pre-training: Basics, recent advances, and future trends. Foundations and Trends in Computer Graphics
and Vision, 14(3-4):163–352, 2022. doi: 10.1561/0600000095. 2

[10] Chow, W., Mao, J., Li, B., Seita, D., Guizilini, V. C., and Wang, Y. Physbench: Benchmarking and
enhancing vision-language models for physical world understanding. In International Conference on
Learning Representations, 2025. 9

[11] Company, B. . Global video game revenue to reach $257 billion by 2028, outpac-
ing combined revenues of other media types, finds bain & company, 2024. URL
https://www.bain.com/about/media-center/press-releases/2024/
global-video-game-revenue-to-reach-$257-billion-by-2028-outpacing-combined-revenues-of-other-media-types-finds-bain--company/.
Press release, August 28, 2024. 1

[12] Coppola, R., Fulcini, T., and Strada, F. Know your bugs: A survey of issues in automated game testing
literature. In 2024 IEEE Gaming, Entertainment, and Media Conference (GEM), pp. 1–6. IEEE, 2024. 9

[13] Epic Games. Screenshot comparison tool, 2025. URL https:
//dev.epicgames.com/documentation/en-us/unreal-engine/
screenshot-comparison-tool-in-unreal-engine. Unreal Engine 5.5 documenta-
tion page. 8

[14] Ghildyal, A., Chen, Y., Zadtootaghaj, S., Barman, N., and Bovik, A. C. Quality prediction of ai generated
images and videos: Emerging trends and opportunities. arXiv:2410.08534, 2024. 9

[15] Google. Gemini 2.5 pro: Our most intelligent ai model. https://blog.google/technology/
google-deepmind/gemini-model-thinking-updates-march-2025/, 2025. Accessed:
2025-04-21. 2

[16] Gu, J., Jiang, X., Shi, Z., Tan, H., Zhai, X., Xu, C., Li, W., Shen, Y., Ma, S., Liu, H., et al. A survey on
llm-as-a-judge. arXiv preprint arXiv:2411.15594, 2024. 5

10

https://www.anthropic.com/engineering/claude-think-tool
https://www.anthropic.com/engineering/claude-think-tool
https://arxiv.org/abs/2411.19477
https://arxiv.org/abs/2411.19477
https://www.bain.com/about/media-center/press-releases/2024/global-video-game-revenue-to-reach-$257-billion-by-2028-outpacing-combined-revenues-of-other-media-types-finds-bain--company/
https://www.bain.com/about/media-center/press-releases/2024/global-video-game-revenue-to-reach-$257-billion-by-2028-outpacing-combined-revenues-of-other-media-types-finds-bain--company/
https://dev.epicgames.com/documentation/en-us/unreal-engine/screenshot-comparison-tool-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/screenshot-comparison-tool-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/screenshot-comparison-tool-in-unreal-engine
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/


[17] Hessel, J., Holtzman, A., Forbes, M., Le Bras, R., and Choi, Y. Clipscore: A reference-free evaluation
metric for image captioning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 7514–7528, 2021. 9

[18] Kamath, A., Hessel, J., and Chang, K.-W. What’s" up" with vision-language models? investigating their
struggle with spatial reasoning. arXiv preprint arXiv:2310.19785, 2023. 6

[19] Lewis, C. and Whitehead, J. Repairing games at runtime or, how we learned to stop worrying and love
emergence. In Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG), pp.
1–8. IEEE, 2011. doi: 10.1109/CIG.2011.6031987. 7

[20] Li, F., Zhang, R., Zhang, H., Zhang, Y., Li, B., Li, W., Ma, Z., and Li, C. Llava-interleave: Tackling multi-
image, video, and 3d in large multimodal models. In Proceedings of the 13th International Conference
on Learning Representations (ICLR 2025), 2025. URL https://openreview.net/forum?id=
oSQiao9GqB. 8

[21] Li, J., Li, D., Xiong, C., and Hoi, S. Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In International Conference on Machine Learning, pp.
12888–12900, 2022. 9

[22] Ling, C., Tollmar, K., and Gisslén, L. Using deep convolutional neural networks to detect rendered glitches
in video games. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 16, pp. 66–73, 2020. 1

[23] Liu, G., Cai, M., Zhao, L., Qin, T., Brown, A., Bischoff, J., and Liu, T.-Y. Inspector: Pixel-based automated
game testing via exploration, detection, and investigation. In 2022 IEEE Conference on Games (CoG), pp.
237–244. IEEE, 2022. 9

[24] Liu, R., Tang, H., Liu, H., Ge, Y., Shan, Y., Li, C., and Yang, J. Ppllava: Varied video sequence
understanding with prompt guidance. arXiv preprint arXiv:2411.02327, 2024. 1

[25] Lu, P., Mishra, S., Xia, T., Qiu, L., Chang, K.-W., Zhu, S.-C., Tafjord, O., Clark, P., and Kalyan, A. Learn to
explain: Multimodal reasoning via thought chains for science question answering. In The 36th Conference
on Neural Information Processing Systems (NeurIPS), 2022. 9

[26] Lu, P., Bansal, H., Xia, T., Liu, J., Li, C., Hajishirzi, H., Cheng, H., Chang, K.-W., Galley, M., and Gao, J.
Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. In International
Conference on Learning Representations (ICLR), 2024. 2, 9

[27] Ma, L., Cao, K., Liang, H., Lin, J., Li, Z., Liu, Y., Zhang, J., Zhang, W., and Cui, B. Evaluating and
predicting distorted human body parts for generated images. arXiv:2503.00811, 2025. 9

[28] Macklon, F., Taesiri, M. R., Viggiato, M., Antoszko, S., Romanova, N., Paas, D., and Bezemer, C.-P.
Automatically detecting visual bugs in html5 canvas games. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1–11, 2022. 1, 9

[29] Mistral AI Team. Mistral ocr: Introducing the world’s best document understanding api. https:
//mistral.ai/news/mistral-ocr, 2025. 6

[30] Nantes, A., Brown, R., and Maire, F. A framework for the semi-automatic testing of video games. In
Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
volume 4, pp. 197–202, 2008. 1

[31] OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed: 2025-
04-21. 2

[32] OpenAI. Thinking with images, 2025. URL https://openai.com/index/
thinking-with-images/. Accessed: 2025-05-03. 10

[33] Paduraru, C., Paduraru, M., and Stefanescu, A. Rivergame-a game testing tool using artificial intelligence.
In 2022 IEEE Conference on Software Testing, Verification and Validation (ICST), pp. 422–432. IEEE,
2022. 9

[34] Politowski, C., Petrillo, F., and Guéhéneuc, Y.-G. A survey of video game testing. In 2021 IEEE/ACM
International Conference on Automation of Software Test (AST), pp. 90–99. IEEE, 2021. 1

[35] Politowski, C., Guéhéneuc, Y.-G., and Petrillo, F. Towards automated video game testing: still a long
way to go. In Proceedings of the 6th international ICSE workshop on games and software engineering:
engineering fun, inspiration, and motivation, pp. 37–43, 2022. 1

11

https://openreview.net/forum?id=oSQiao9GqB
https://openreview.net/forum?id=oSQiao9GqB
https://mistral.ai/news/mistral-ocr
https://mistral.ai/news/mistral-ocr
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/thinking-with-images/
https://openai.com/index/thinking-with-images/


[36] Rahman, F. Weak supervision for label efficient visual bug detection. arXiv preprint arXiv:2309.11077,
2023. 1

[37] Rahmanzadehgervi, P., Bolton, L., Taesiri, M. R., and Nguyen, A. T. Vision language models are blind. In
Proceedings of the Asian Conference on Computer Vision, pp. 18–34, 2024. 6

[38] Rani, G., Pandey, U., Wagde, A. A., and Dhaka, V. S. A deep reinforcement learning technique for bug
detection in video games. International Journal of Information Technology, 15(1):355–367, 2023. 1

[39] Roberts, J., Taesiri, M. R., Sharma, A., Gupta, A., Roberts, S., Croitoru, I., Bogolin, S.-V., Tang, J., Langer,
F., Raina, V., et al. Zerobench: An impossible visual benchmark for contemporary large multimodal
models. arXiv:2502.09696, 2025. 9

[40] Shi, Y., Peng, D., Liao, W., Lin, Z., Chen, X., Liu, C., Zhang, Y., and Jin, L. Exploring ocr capabilities of
gpt-4v (ision): A quantitative and in-depth evaluation. arXiv preprint arXiv:2310.16809, 2023. 6

[41] Snell, C. V., Lee, J., Xu, K., and Kumar, A. Scaling llm test-time compute optimally can be more effective
than scaling parameters for reasoning. In Proc. International Conference on Learning Representations
(ICLR), 2025. URL https://arxiv.org/abs/2408.03314. arXiv:2408.03314. 5

[42] Taesiri, M. R. and Bezemer, C.-P. Videogamebunny: Towards vision assistants for video games. In 2025
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1403–1413. IEEE, 2025. 1

[43] Taesiri, M. R., Habibi, M., and Fazli, M. A. A video game testing method utilizing deep learning. Iran
Journal of Computer Science, 17(2), 2020.

[44] Taesiri, M. R., Macklon, F., and Bezemer, C.-P. Clip meets gamephysics: Towards bug identification in
gameplay videos using zero-shot transfer learning. In Proceedings of the 19th International Conference on
Mining Software Repositories, pp. 270–281, 2022. 1, 2, 4, 80

[45] Taesiri, M. R., Macklon, F., Wang, Y., Shen, H., and Bezemer, C.-P. Large language models are pretty
good zero-shot video game bug detectors. arXiv preprint arXiv:2210.02506, 2022.

[46] Taesiri, M. R., Feng, T., Bezemer, C.-P., and Nguyen, A. Glitchbench: Can large multimodal models
detect video game glitches? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 22444–22455, 2024. 1, 2, 7, 9

[47] Team modl.ai. 5 winning automated game testing tactics from “sea of thieves”. modl.ai Blog, December
2024. URL https://modl.ai/automated-game-testing-lessons/. 8

[48] Tong, S., Liu, Z., Zhai, Y., Ma, Y., LeCun, Y., and Xie, S. Eyes wide shut? exploring the visual
shortcomings of multimodal llms. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9568–9578, 2024. 6

[49] About the Graphics Test Framework. Unity Technologies, 2018. URL https://docs.unity3d.
com/Packages/com.unity.testframework.graphics@7.2/manual/index.html.
Package version 7.2.3-preview. Unity documentation page. 8

[50] Wang, J., Chan, K. C., and Loy, C. C. Exploring CLIP for assessing the look and feel of images. In
Proceedings of the AAAI conference on Artificial Intelligence, volume 37, pp. 2555–2563, 2023. 9

[51] Wang, W., Zhang, S., Ren, Y., Duan, Y., Li, T., Liu, S., Hu, M., Chen, Z., Zhang, K., Lu, L., Zhu, X.,
Luo, P., Qiao, Y., Dai, J., Shao, W., and Wang, W. Needle in a multimodal haystack. In Proceedings
of the 13th International Conference on Learning Representations (ICLR 2025), 2025. URL https:
//openreview.net/forum?id=U2pNwSuQqD. 4

[52] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems,
35:24824–24837, 2022. 5

[53] Wilkins, B. and Stathis, K. Learning to identify perceptual bugs in 3d video games. arXiv preprint
arXiv:2202.12884, 2022. 1

[54] Wu, H., Zhang, Z., Zhang, E., Chen, C., Liao, L., Wang, A., Li, C., Sun, W., Yan, Q., Zhai, G., and Lin,
W. Q-bench: A benchmark for general-purpose foundation models on low-level vision. In International
Conference on Learning Representations, 2024. 9

[55] Wu, X., Sun, K., Zhu, F., Zhao, R., and Li, H. Human preference score: Better aligning text-to-image
models with human preference. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 2096–2105, 2023. 9

12

https://arxiv.org/abs/2408.03314
https://modl.ai/automated-game-testing-lessons/
https://docs.unity3d.com/Packages/com.unity.testframework.graphics@7.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.testframework.graphics@7.2/manual/index.html
https://openreview.net/forum?id=U2pNwSuQqD
https://openreview.net/forum?id=U2pNwSuQqD


[56] Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. Inference scaling laws: An empirical analysis of
compute-optimal inference for problem-solving with language models. arXiv preprint arXiv:2408.00724,
2025. URL https://arxiv.org/abs/2408.00724. 5

[57] Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang, J., and Dong, Y. Imagereward: Learning and
evaluating human preferences for text-to-image generation. Advances in Neural Information Processing
Systems, 36:15903–15935, 2023. 9

[58] Yang, Z., Li, L., Wang, J., Lin, K., Azarnasab, E., Ahmed, F., Liu, Z., Liu, C., Zeng, M., and Wang, L.
Mm-react: Prompting chatgpt for multimodal reasoning and action. arXiv preprint arXiv:2303.11381,
2023. 9

[59] Yue, X., Ni, Y., Zhang, K., Zheng, T., Liu, R., Zhang, G., Stevens, S., Jiang, D., Ren, W., Sun, Y., et al.
Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9556–9567,
2024. 2

[60] Yue, X., Zheng, T., Ni, Y., Wang, Y., Zhang, K., Tong, S., Sun, Y., Yu, B., Zhang, G., Sun, H., et al.
Mmmu-pro: A more robust multi-discipline multimodal understanding benchmark. arXiv preprint
arXiv:2409.02813, 2024. 2, 9

[61] Zhang, H., Gao, M., Gan, Z., Dufter, P., Wenzel, N., Huang, F., Shah, D., Du, X., Zhang, B., Li, Y.,
Dodge, S., You, K., Yang, Z., Timofeev, A., Xu, M., Chen, H.-Y., Fauconnier, J.-P., Lai, Z., You, H.,
Wang, Z., et al. Mm1.5: Methods, analysis & insights from multimodal llm fine-tuning. In Proceedings
of the 13th International Conference on Learning Representations (ICLR 2025), 2025. URL https:
//openreview.net/forum?id=HVtu26XDAA. 8

[62] Zhang, R., Jiang, D., Zhang, Y., Lin, H., Guo, Z., Qiu, P., Zhou, A., Lu, P., Chang, K.-W., Qiao, Y., et al.
Mathverse: Does your multi-modal llm truly see the diagrams in visual math problems? In European
Conference on Computer Vision, pp. 169–186, 2024. 9

[63] Zhang, Y.-F., Zhang, H., Tian, H., Fu, C., Zhang, S., Wu, J., Li, F., Wang, K., Wen, Q., Zhang, Z.,
et al. Mme-realworld: Could your multimodal llm challenge high-resolution real-world scenarios that are
difficult for humans? arXiv:2408.13257, 2024. 9

[64] Zhao, Z., Lu, H., Huo, Y., Du, Y., Yue, T., Guo, L., Wang, B., Chen, W., and Liu, J. Needle in a video
haystack: A scalable synthetic evaluator for video mllms. In Proceedings of the 13th International
Conference on Learning Representations (ICLR 2025), 2025. URL https://openreview.net/
forum?id=ZJo6Radbqq. 4

[65] Zheng, Y., Xie, X., Su, T., Ma, L., Hao, J., Meng, Z., Liu, Y., Shen, R., Chen, Y., and Fan, C. Wuji:
Automatic online combat game testing using evolutionary deep reinforcement learning. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 772–784. IEEE, 2019.
1

[66] Zhu, J., Wang, W., Chen, Z., Liu, Z., Ye, S., Gu, L., Duan, Y., Tian, H., Su, W., Shao, J., et al. Internvl3:
Exploring advanced training and test-time recipes for open-source multimodal models. arXiv preprint
arXiv:2504.10479, 2025. 2, 8

13

https://arxiv.org/abs/2408.00724
https://openreview.net/forum?id=HVtu26XDAA
https://openreview.net/forum?id=HVtu26XDAA
https://openreview.net/forum?id=ZJo6Radbqq
https://openreview.net/forum?id=ZJo6Radbqq


Appendix for:
VideoGameQA-Bench: Evaluating Vision-Language Models for

Video Game Quality Assurance

A Inference Providers

This section provides details about the inference providers and the inference settings used to run the
benchmark.

Table A1: Inference configurations for open source models. All inference providers are enforced
during testing.

Model Name Temperature Inference Provider Platform
Llama-4-Maverick 0.0 Fireworks, Groq OpenRouter, Groq
Llama-4-Scout 0.0 Fireworks, Groq OpenRouter, Groq
Gemma-3 0.0 Novita, Nebius OpenRouter
Mistral-Small-3.1 (24B) 0.0 Mistral, Nebius OpenRouter
Qwen-2.5-VL (72B) 0.0 Novita OpenRouter, AlibabaCloud

Table A2: Reasoning effort and thinking budget for tested models
Model Name Reasoning Effort Thinking Budget
o3 Medium –
o4-mini Medium –
Gemini-2.5-Flash – 0 (default)
Sonnet-3.7 – 0 (disabled)
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Table A3: Frame sample rate for prompting LLMs with videos. While we typically use a sampling
rate of one frame per second for all proprietary models, we lower this rate for open-source models to
ensure that both the models and inference providers can handle the volume of images.

Model Name Sampling rate

GPT-4.1 1 frame per second
GPT-4.1-mini 1 frame per second
GPT-4.1-nano 1 frame per second
GPT-4o 1 frame per second
o4-mini 1 frame per second
o3 1 frame per second
Gemini-2.5-Pro 1 frame per second
Gemini-2.5-Flash 1 frame per second
Gemini-2.0-Flash 1 frame per second
Sonnet-3.7 1 frame per second
Sonnet-3.5 1 frame per second
Llama-4-Scout 5 frames per video
Llama-4-Maverick 5 frames per video
Qwen-2.5-VL 10 frames per video
Mistral-Small-3.1 5 frames per video
Gemma-3 5 frames per video

Table A4: Exact model string version used in the evaluation.
Model Name Version

GPT-4.1 gpt-4.1-2025-04-14
GPT-4.1-mini gpt-4.1-mini-2025-04-14
GPT-4.1-nano gpt-4.1-nano-2025-04-14
GPT-4o gpt-4o-2024-08-06
o4-mini o4-mini-2025-04-16
o3 o3-2025-04-16
Gemini-2.5-Pro gemini-2.5-pro-preview-03-25
Gemini-2.5-Flash gemini-2.5-flash-preview-04-17
Gemini-2.0-Flash gemini-2.0-flash
Sonnet-3.7 claude-3-7-sonnet-20250219
Sonnet-3.5 claude-3-5-sonnet-20241022
Llama-4-Scout meta-llama/llama-4-scout
Llama-4-Maverick meta-llama/llama-4-maverick
Qwen-2.5-VL qwen/qwen2.5-vl-72b-instruct
Mistral-Small-3.1 mistralai/mistral-small-3.1-24b-instruct
Gemma-3 google/gemma-3-27b-it
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B Question Generation Prompts

Prompt for generating visual unit tests

You are an expert at generating visual unit test questions for
images. Your task is to create precise questions that verify
specific visual details in images, functioning as programmatic
tests to confirm the presence, position, and attributes of
characters and scene elements.

For each question you generate:
1. Focus on one specific testable visual element
2. Be extremely precise about the attribute being verified
3. Provide a JSON template with appropriate fields that could be

used in automated testing
4. Use boolean values, counts, or enumerated options where possible

for objective verification

VISUAL UNIT TEST FOCUS AREAS:

CHARACTER DETAILS:
- Facial features (eyes open/closed, mouth expression, gaze

direction)
- Hand positions (gestures, holding objects, contact with other

elements)
- Body posture (standing, sitting, leaning, specific pose)
- Clothing details (colors, patterns, state of clothing)
- Character positioning relative to scene or other characters

SCENE ELEMENTS:
- Object presence and count (specific items in the scene)
- Spatial relationships (left/right/above/below relationships

between elements)
- Background details (setting type, time of day, weather indicators

)
- Text elements (signs, labels, readable text)
- Visual states of objects (open/closed, on/off, intact/broken)

SAMPLE UNIT TEST QUESTIONS:

Example 1:
Is the character’s right hand making contact with any object in the

scene? If yes, identify which object.

Provide your answer in the following JSON format:
{
"right_hand_contact_with_object": false,
"contacted_object": "",
"grip_type": "",
"fingers_visible": 0

}

Figure A1: We use Gemini-2.5-Pro to draft an initial visual unit test based on an existing image.
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Prompt for generating UI/OCR related questions

You are an expert at analyzing user interfaces, heads-up displays (
HUDs), and text content in images. Your task is to create
questions that verify visual UI/HUD elements and text content (
OCR) in screenshots or images containing digital interfaces.

For each question you generate:
1. Focus on specific UI elements, layout, text content, or status

indicators
2. Create a precise question that can be objectively verified
3. Provide a JSON template with appropriate fields for the

structured response
4. Include placeholder values (zeros, empty strings, false) in the

JSON template

QUESTION CATEGORIES TO INCLUDE:
- Text verification (e.g., "What text appears in the header/button/

notification?")
- Element presence (e.g., "Which menu options are visible in the

navigation bar?")
- UI state verification (e.g., "Is the toggle switch in the ON or

OFF position?")
- Color and styling (e.g., "What color is the error message

displayed?")
- Layout confirmation (e.g., "Is the search bar located at the top

or bottom of the interface?")
- Icon identification (e.g., "Which notification icons are present

in the status bar?")
- Element counting (e.g., "How many form fields are visible on this

page?")
- Status indicators (e.g., "What is the battery percentage shown?")

EXAMPLE QUESTIONS WITH JSON TEMPLATES:

Example 1:
What text is displayed in the error message dialog box, and what

button options are available?

Provide your answer in the following JSON format:
{
"error_message_text": "",
"button_options": [],
"is_dismissible": false,
"dialog_color": ""

}

Figure A2: We use Gemini-2.5-Pro to draft an initial UI unit test based on an existing image.
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C Model Inference Prompts

Prompt for Glitch Detection (Image)

You are a helpful assistant analyzing video game images and
screenshots for glitches. You will be given a screenshot from a
video game, and your job is to analyze the screenshot and
determine whether it contains a glitch.

Provide your answer in the following format:

{
"reasoning": "Brief explanation of why you think a glitch is
present",
"glitch_detected": true or false,
"description_of_glitch": "Description of the glitch if detected
else empty string"

}

Figure A3: The default prompt associated with each image in the dataset for the image-based glitch
detection task.

Prompt for Glitch Detection (Video)

You are a helpful assistant analyzing video game clips for glitches
. You will be given a short video clip from a video game, and
your task is to analyze the video and determine whether it
contains a glitch.

Provide your answer in the following format:

{
"reasoning": "Brief explanation of why you think a glitch is
present or not",

"glitch_detected": true or false,
"description_of_glitch": "Description of the glitch if detected,
otherwise leave this blank"

}

Figure A4: The default prompt associated with each image in the dataset for the video-based glitch
detection task.
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Prompt for Generating Bug Reports (Image)

You are a video game quality assurance assistant who analyzes
screenshots to identify and document visual glitches. When
presented with an image, carefully examine it for any graphical
bugs or rendering issues.

Provide your analysis in the following JSON format:

{
"reasoning": "Brief explanation of what you observe and why it
appears to be a glitch",
"bug_report_title": "A clear, concise title summarizing the
issue",
"bug_report_description": "Detailed description of the visual
bug, including its appearance and potential impact on gameplay",
"affected_item": "The specific game element (character, object,
environment, UI) affected by the glitch"

}

Figure A5: The default prompt used for generating bug reports based on a given image.

Prompt for Generating Bug Reports (Video)

You are a video game quality assurance assistant who analyzes video
clips to identify and document visual glitches or strange

behaviors. When presented with a video clip, carefully examine
it for any graphical bugs, rendering issues, physics anomalies,
or unexpected events.

Provide your analysis in the following JSON format:

{
"reasoning": "Brief explanation of what you observe in the
video and why it appears to be a glitch or bug",
"bug_report_title": "A clear, concise title summarizing the
issue",
"bug_report_description": "Detailed description of the visual
bug or behavioral anomaly, including its appearance and
potential impact on gameplay",
"affected_item": "The specific game element (character, object,
environment, UI, physics) affected by the glitch"

}

Figure A6: The default prompt used for generating bug reports based on a given video.

19



Prompt for Visual Regression Task

You are an image comparison tool for video game quality assurance.
Given two screenshots from the same game scene, evaluate whether
the second image represents an acceptable variation of the

first (reference) image.

Consider these variations ACCEPTABLE:
- Player character customization elements
- Environmental conditions (weather, day/night cycle)
- Slight positional or animation differences
- Lighting and shadow adjustments
- Minor variations in non-critical background elements

Consider these variations UNACCEPTABLE:
- Interface corruption or element misalignment
- Textual content changes (unless expected, e.g., dynamic text)
- Significant visual artifacts or rendering errors (e.g., missing

textures, z-fighting)
- Major structural changes to scene geometry not attributable to

gameplay state
- Missing or grossly incorrect key scene elements compared to the

reference

Provide your assessment as JSON:
{
"reasoning": "Concise explanation of detected differences and
justification for your decision based on the criteria.",

"test_pass": true/false
}

Figure A7: A sample prompt used in the visual regression task to detect changes between two versions
of the same scene. Depending on the complexity and source of the scene—whether generated in Unity
or extracted from a YouTube video—the items listed under acceptable and unacceptable categories
vary.

Prompt for Detecting Clipping (Parametric Test)

You are a visual analysis assistant specializing in detecting
object clipping in video game screenshots. Your task is to
examine each provided image and determine whether any part of
the white cube is intersecting with the character model,
indicating a clipping issue.

Based on your analysis, respond using the following format:

{
"reasoning": "Brief explanation of why you think clipping is
present or not",
"clipping_detected": true or false

}

Figure A8: The default prompt used for parametric tests to detect object clipping at various proximi-
ties.
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Prompt for Needle In a Haystack

You are a specialized video game quality assurance analyst trained
to detect visual anomalies in gameplay footage. Your task is to
analyze the provided video clip to identify any bugs, glitches,
visual artifacts, or unexpected behaviors.

## What to Look For

Examine the video carefully for any:

- Visual artifacts (texture issues, flickering, clipping)
- Animation problems (jerky movements, T-poses)
- Rendering glitches (missing textures, lighting errors)
- Gameplay anomalies (collision failures, object teleportation)

## Response Format
After your thorough analysis, provide your findings in this exact

JSON format:

‘‘‘json
{
"reasoning": "Brief explanation of what you observed in the video

and why it appears to be a glitch",
"glitch_detected": true|false,
"timestamp": 0

}
‘‘‘

Figure A9: The default prompt used for Needle In a Haystack tests to detect and locate glitches in a
video clips
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D LLM-as-a-Judge

Developer Prompt Message for Evaluating Bug Reports

You are a quality assurance verification assistant that evaluates
bug reports against known issues. When provided with both a
generated bug report and a ground truth description, your task
is to determine if they describe the same bug.

Compare the generated bug report with the ground truth description
carefully. Focus on whether they identify the same core issue,
even if expressed differently.

Respond *only* with the following JSON format:

{
"reasoning": "Detailed explanation of why the bug report does
or does not match the ground truth description, highlighting
specific similarities or differences",
"match": true or false

}

Figure A10: A sample developer message used with o3 to judge the accuracy of a bug report given a
ground truth label.
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Developer Prompt Message for Evaluating Bug Reports

You are a quality assurance verification assistant that evaluates
bug reports against known issues. Your task is to determine if a
generated bug report and a ground truth description refer to

the same underlying bug.

When comparing:
- Focus on the core issue or behavior rather than exact wording
- Consider if they describe the same symptoms, affected features,

and conditions
- A match exists even if details like error messages or steps

differ slightly
- Pay attention to technical specifics that distinguish similar-

looking bugs

Two descriptions may use different terminology but still describe
the same bug. Conversely, reports with similar symptoms might
describe different bugs if they have different root causes.

Your final response should be a JSON object with the following
format:

{
"reasoning": "Detailed explanation of why the bug report does
or does not match the ground truth description, highlighting
specific similarities or differences",
"match": true or false

}

Figure A11: A sample developer message used with o3 to judge the accuracy of a video-based bug
report generation task, given a ground truth label.
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E Additional Results

E.1 Additional Results for the Visual Unit Testing Task

(a) (b)

(c) (d)

(e) (f)

Figure A12: Common failures among tested models for visual unit testing include: (a) models
struggling to accurately report the number of visible eyes on characters; (b) models struggling to
report whether the shuttle orientation is upward or downward; (c) models failing to report whether the
door on the right is open or closed; (d) models failing to detect whether the orientation of the aircraft
is facing toward or away from the camera; (e) models failing to notice small details on characters’
clothing; and (f) models failing to describe the facial hair of the character.
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E.2 Additional Results for the UI Unit Testing Task

(a) (b)

(c) (d)

(e) (f)

Figure A13: Common failures among the tested models for UI unit testing include: (a) models failing
to read UI elements at the top of the image to calculate the number of objectives captured and the
remaining objectives; (b) models failing to recognize all textual elements in the scene, including
the exact positions of numbers on the orange and blue tiles; (c) models failing to recognize the
current values of various customized progress bars; (d) models failing to read information from
grids, such as tile pieces, dice numbers, or configurations of game boards; (e) models struggling to
read speedometer values and extract positional information from maps; (f) models failing to extract
positional information from maps and determine relationships between specific nodes.
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E.3 Additional Performance Metrics for the Glitch Detection Tasks

In this section, we provide performance metrics for different models. The total number of test cases
in both image- and video-based glitch detection is 1,000. The # samples column is not always 1,000
because some models either generated invalid JSON or refused to provide a valid answer to the given
question for various reasons.

Table A5: Performance metrics for different models on the image-based glitch detection task.
Metrics include Accuracy (Acc), True Positives (TP), True Negatives (TN), False Positives (FP),
False Negatives (FN), Precision (Prec), Recall (Rec), F1 Score (F1), and Specificity (Spec).

Model Acc. TP FP FN TN Prec. Rec. F1 Spec. # Samples

GPT-4.1 81.3 374 61 126 439 86.0 74.8 80.0 87.8 1,000
GPT-4o-mini 76.9 468 199 32 300 70.2 93.6 80.2 60.1 999
GPT-4.1-nano 57.0 413 343 87 157 54.6 82.6 65.8 31.4 1,000
GPT-4o 82.9 417 89 82 411 82.4 83.6 83.0 82.2 999
o4-mini 76.4 331 67 169 433 83.2 66.2 73.7 86.6 1,000
o3 73.7 253 16 247 484 94.1 50.6 65.8 96.8 1,000
Gemini-2.5-Pro 75.5 418 164 81 336 71.8 83.8 77.3 67.2 999
Gemini-2.5-Flash 66.4 215 52 284 448 80.5 43.1 56.1 89.6 999
Gemini-2.0-Flash 68.1 259 78 241 422 76.9 51.8 61.9 84.4 1,000
Sonnet-3.7 65.1 177 26 323 474 87.2 35.4 50.4 94.8 1,000
Sonnet-3.5 70.2 238 37 261 463 86.5 47.7 61.5 92.6 999
Llama-4-Scout 55.9 74 16 425 484 82.2 14.8 25.1 96.8 999
Llama-4-Maverick 53.3 44 11 456 488 80.0 8.8 15.9 97.8 999
Gemma-3 51.2 460 446 0 7 50.8 100.0 67.3 1.5 913
Mistral-Small-3.1 59.7 230 133 270 367 63.4 46.0 53.3 73.4 1,000
Qwen-2.5-VL 70.1 254 52 246 446 83.0 50.8 63.0 89.6 998

Table A6: Performance metrics for different models on the video-based glitch detection task. Metrics
include Accuracy (Acc), True Positives (TP), True Negatives (TN), False Positives (FP), False
Negatives (FN), Precision (Prec), Recall (Rec), F1 Score (F1), and Specificity (Spec).

Model Acc. TP FP FN TN Prec. Rec. F1 Spec. # Samples

GPT-4.1 76.6 411 149 83 347 73.4 83.2 78.0 70.0 990
GPT-4o-mini 72.2 346 124 153 372 73.6 69.3 71.4 75.0 995
GPT-4.1-nano 49.9 466 468 24 25 49.9 95.1 65.5 5.1 983
GPT-4o 79.9 356 53 90 214 87.0 79.8 83.3 80.2 713
o4-mini 73.1 330 115 143 370 74.2 69.8 71.9 76.3 958
o3 77.2 298 27 200 470 91.7 59.8 72.4 94.6 995
Gemini-2.5-Pro 78.1 334 53 166 447 86.3 66.8 75.3 89.4 1,000
Gemini-2.5-Flash 64.7 426 279 74 221 60.4 85.2 70.7 44.2 1,000
Gemini-2.0-Flash 54.5 477 432 23 68 52.5 95.4 67.7 13.6 1,000
Sonnet-3.7 67.4 250 79 245 419 76.0 50.5 60.7 84.1 993
Sonnet-3.5 73.6 266 70 150 346 79.2 63.9 70.7 83.2 832
Llama-4-Scout 61.0 117 25 349 469 82.4 25.1 38.5 94.9 960
Llama-4-Maverick 59.8 82 6 375 484 93.2 17.9 30.1 98.8 947
Gemma-3 51.4 498 484 1 15 50.7 99.8 67.2 3.0 998
Mistral-Small-3.1 63.7 238 112 238 376 68.0 50.0 57.6 77.0 964
Qwen-2.5-VL 55.1 99 2 388 380 98.0 20.3 33.7 99.5 869
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E.4 Is GPT-4o Ready to Be Deployed as an Autonomous Glitch-Detection System?

Given the observed test accuracy of 82.9% for GPT-4o in glitch detection task (with an equal number
of glitch and glitch-free images), the natural question arises: Is this performance sufficient for real-
world autonomous deployment? To address this question, it is important to consider the real-world
scenario where glitches are relatively rare.

If we assume that a glitch appears in only 5% of normal gameplay sessions, this prevalence assumption
significantly changes the performance characteristics. Specifically, the confusion matrix obtained
from our controlled benchmark test (Tab. A5) translates poorly to real-world precision. Given the
current model:

Deployment targets

• Recall ≥ 95% on the balanced benchmark.
• False-positive rate ≤ 0.5% (≤ 2 FP in 500 normals).
• Precision ≥ 90% when prevalence is 5%.
• Balanced accuracy ≥ 97%.

Balanced-benchmark performance of GPT-4o

From Tab. A5 (999 images, 499 glitch / 500 normal):

TP = 417, FP = 89,

FN = 82, TN = 411.

• Recall = 417/(417 + 82) = 83.6% (11.4 pp below the 95% target).
• False-positive rate = 89/(89 + 411) = 17.8% ( 35.6× the allowable 0.5%).
• Balanced accuracy = 1

2 (83.6 + 82.2) = 82.9% ( 14.1 pp short of 97%).
• Precision = 417/(417 + 89) = 82.4%.

Projected real-world performance (5% prevalence)

Let p = 0.05 be the real glitch rate and α = 17.8% the measured FPR. With prevalence shift we
obtain

Precisionp=0.05 =
pRecall

pRecall + (1− p)α
=

0.05× 0.836

0.05× 0.836 + 0.95× 0.178
= 19.8%.

Interpretation: in live use, roughly ∼ 5 alarms will be false for every true glitch detected.

Assessment: GPT-4o falls short of all four deployment targets:

Metric Target GPT-4o Gap

Recall (balanced) ≥ 95% 83.6% −11.4 pp
False-positive rate ≤ 0.5% 17.8% +17.3 pp (35.6×)
Precision (5%) ≥ 90% 19.8% −70.2 pp
Balanced accuracy ≥ 97% 82.9% −14.1 pp

Despite relativity high accuracy in balanced-benchmark, GPT-4o ’s high false-positive rate dominates
under real-world class imbalance, crushing precision to ∼20%.

Conclusion: GPT-4o, in its present configuration, is not yet ready for standalone autonomous bug
detection. Substantial improvements in both sensitivity (recall) and specificity (false–positive control)
are required before deployment can be considered.
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E.5 Common False Positive Patterns, as Summarized by o3

Prompt for Summarizing False Positive Cases

Analyze false positive cases from the glitch detection system to
identify recurring patterns. Create a structured summary that:

1. Lists the 3-5 most common false positive types
2. Notes frequency and severity patterns

Keep your summary under 500 words with clear, actionable insights.

Figure A14: The prompt used with o3 to read the reasoning fields for false positive cases from top
models and summarize their common patterns.

Table A7: Recurring false–positive themes in GPT-4.1’s output (N = 61).
Rank False-positive type Frequency Severity† Typical trigger / pattern

1 Model / prop clipping & intersection 27 (44%) Low–Moderate Mesh overlap flagged even when brief or hidden
behind UI.

2 Missing / distorted textures & artifacts 14 (23%) Moderate Large placeholder colours or high-contrast patterns;
mis-classifies VFX/debug overlays.

3 Floating / mis-aligned actors or objects 12 (20%) Low Height checks too strict; intentional offsets on un-
even terrain reported.

4 UI / text-render issues 9 (15%) Low–Moderate Any mismatch between world and HUD layers (over-
lays, mods) triggers alert.

†Severity gauges player impact: cosmetic (low) to gameplay-blocking (high).

Table A8: Recurring false–positive themes in GPT-4o’s output (N = 90).
Rank False-positive type Frequency Severity† Typical trigger / pattern

1 Floating / unsupported entities ∼ 40% Moderate Characters, vehicles or scenery hovering above
terrain or water

2 Clipping & collision overlaps ∼ 30% Moderate–High Limbs, weapons or duplicate models intersect-
ing geometry or each other

3 Missing / placeholder textures ∼ 15% High Bright-pink or solid-blue fallback materials,
transparent/missing walls

4 UI / text anomalies ∼ 10% Low HUD layers visible through world, “????”
strings, overlapping menus

5 Model / texture distortions ∼ 5% Medium Elongated limbs/necks, stretched terrain, unnat-
ural global color tints

†Severity is qualitative and reflects typical impact on gameplay and QA triage effort.
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Table A9: Recurring false–positive themes in Gemini-2.5-Pro’s output (N = 165).
Rank False-positive type Frequency Severity† Typical trigger / pattern

1 Model clipping / interpenetration 27 (44%) Low–Medium Limbs, weapons, or vehicles intersecting ter-
rain or other meshes; descriptions using “clip-
ping”, “inside”, “passing through”.

2 UI & text-layout errors 15 (25%) Low–Medium Overlapping chat/tooltips, truncated strings,
cursor or debug labels drawn on wrong layer.

3 Physics / collision anomalies 9 (15%) Medium Floating characters or props, impossible resting
angles, ragdolls stuck in geometry.

4 Numerical or logical inconsistencies 6 (10%) Medium Impossible values (e.g. 100.58% accuracy,
“00:16:65” timers, “+0 points → promotion”).

5 Rendering / texture artifacts 3 (5%) Low Rainbow shaders, corrupted textures, over-
bloom or missing materials visible only on sur-
faces.

†Severity ranks the typical gameplay impact: Low = cosmetic, Medium = may mislead or soft-lock, High =

blocks progress or crashes.
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E.6 Additional Results for the Glitch Detection Task

GPT-4o’s output:

{
"reasoning": "The vehicle is floating above the trees, which is
not typical behavior in the game.",
"glitch_detected": true,
"description_of_glitch": "A vehicle is floating in mid-air
above the trees."

}

o4-mini’s output:

{
"reasoning": "There’s an unexpected blank white bar at the bottom

of the HUD where game info (such as health or status) should be
rendered, indicating a missing or corrupted UI texture.",

"glitch_detected": true,
"description_of_glitch": "A plain white rectangle is displayed at

the bottom center of the screen instead of the normal HUD
element, suggesting a UI texture failed to load or render
properly."

}

GPT-4.1’s output:

{
"reasoning": "The vehicle visible through the scope appears to be

floating above the trees, which is not typical behavior for
vehicles in the game. Normally, vehicles should be on the ground
, not suspended in mid-air.",

"glitch_detected": true,
"description_of_glitch": "A vehicle is floating above the trees,
indicating a physics or rendering glitch where the vehicle is
not interacting with the terrain as expected."

}

Figure A15: Sample successful glitch detections by various models that identified the floating vehicle.

30



Gemini-2.5-Pro’s output:

{
"reasoning": "The player character appears to be holding both a
knife and a pistol simultaneously in a way that suggests a

visual glitch. The knife model seems to be superimposed or
clipping through the hand that is holding the pistol. In most
first-person games, including Payday 2 (which this game appears
to be), players switch between melee and ranged weapons rather
than wielding them concurrently in this manner.",
"glitch_detected": true,
"description_of_glitch": "The character model is incorrectly
displaying both a melee weapon (knife) and a firearm (pistol) as
actively wielded at the same time, with the knife model

appearing to clip through or be superimposed on the hand holding
the pistol."

}

Qwen-2.5-VL’s output:

{
"reasoning": "The screenshot shows a player holding both a
knife and a gun simultaneously, which is not typical in most
games where players can only wield one weapon at a time. This
suggests a potential glitch in the game’s weapon handling system
.",
"glitch_detected": true,
"description_of_glitch": "The player is holding a knife and a
gun at the same time, which is not a standard feature in the
game and indicates a glitch in the weapon system."

}

GPT-4.1-mini’s output:

{
"reasoning": "The knife held by the character is unusually
large and appears to be clipping through the hand, which is not
typical for the game’s weapon models. This suggests a graphical
or model scaling glitch.",
"glitch_detected": true,
"description_of_glitch": "The knife model is abnormally large
and clips through the character’s hand, indicating a weapon
model scaling or rendering glitch."

}

Figure A16: Sample successful glitch detections by various models that identified a clipping knife
overlapping with a gun.
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Llama-4-Maverick’s output:

{
"reasoning": "The screenshot appears to be a scene from a video
game where a police officer is standing in the middle of a road
with an ambulance and a police car nearby. The image does not

show any obvious graphical distortions, texture issues, or
abnormal behavior that would typically be associated with
glitches. The scene looks like it is part of the game’s intended
content, with the character and vehicles positioned in a

plausible scenario. The text at the bottom of the screen
suggests a narrative or dialogue element, further indicating it
is part of the game’s story or interaction.",
"glitch_detected": false,
"description_of_glitch": ""

}

Gemini-2.0-Flash’s output:

{
"reasoning": "Based on the image, there is no indication of any
glitches. The graphics appear normal, and there are no visual

artifacts or anomalies that would suggest a problem with the
game’s rendering or programming.",
"glitch_detected": false,
"description_of_glitch": ""

}

Sonnet-3.7’s output:

{
"reasoning": "The screenshot appears to show normal gameplay
from what seems to be a police or emergency services simulation
game. The scene shows a character in a police uniform standing
on a street with an ambulance and police vehicle parked nearby.
The UI elements, including mission text (in what appears to be
Chinese characters), progress bars, and resource counters are
all displaying normally. The vehicles and environment are
rendering as expected without any visual artifacts, texture
issues, or clipping problems.",
"glitch_detected": false,
"description_of_glitch": ""

}

Figure A17: Sample image where models failed to detect a clipping glitch between two cars.
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o4-mini’s output:

{
"reasoning": "One of the soldiers on the left is clipping
through the lower bunk rather than standing or climbing normally
, and their arms and torso intersect the bed mesh in an
unnatural way.",
"glitch_detected": true,
"description_of_glitch": "Character model is stuck in the bunk
bed, clipping through the mattress and frame instead of
animating a proper climb or stand."

}

Gemini-2.5-Pro’s output:

{
"reasoning": "The character on the bottom left bunk bed has
their legs and lower torso clipping through the mattress and bed
frame, which is a common visual glitch.",
"glitch_detected": true,
"description_of_glitch": "A character’s lower body is clipping
through a bed. Specifically, the character on the bottom left
bunk bed has their legs and lower torso passing through the
mattress and bed frame."

}

Sonnet-3.5’s output:

{
"reasoning": "The image shows characters clipping through/
intersecting with hospital beds, which is not physically
possible and appears to be a collision detection issue",
"glitch_detected": true,
"description_of_glitch": "Character models are clipping through
the hospital beds instead of lying properly on top of them.

This appears to be happening with multiple characters in the
scene, suggesting a collision detection or character positioning
glitch."

}

Figure A18: Sample image where various models incorrectly reported the presence of a glitch,
although the image is glitch-free.

33



Llama-4-Scout’s output:

{
"reasoning": "The image appears to be a normal in-game
screenshot from MotoGP24, showing a motorcycle race with a rider
on a track. There are no obvious visual artifacts, clipping

issues, or other graphical anomalies that would indicate a
glitch. The scene is consistent with what is expected in a
racing game.",
"glitch_detected": false,
"description_of_glitch": ""

}

o4-mini’s output:

{
"reasoning": "The scene shows a well-rendered MotoGP bike
leaning on the track with proper textures, lighting, and depth-
of-field. There are no visible clipping issues, missing textures
, or geometry errors.",
"glitch_detected": false,
"description_of_glitch": ""

}

Qwen-2.5-VL’s output:

{
"reasoning": "The image appears to be a normal scene from the
game MotoGP 24, showing a motorcycle racer on a track with a
large bull statue in the background. There are no visible
anomalies or unexpected behaviors that would indicate a glitch
.",
"glitch_detected": false,
"description_of_glitch": ""

}

Figure A19: Sample image where various models correctly reported the image as glitch-free.
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E.7 Sample False Positive and False Negative Cases in the Image-based Glitch Detection Task
that Most Models Labeled Incorrectly

In this section, we provide sample images from common false positive and false negative cases, where
most models are confused about the correct label of the image.

Figure A20: Sample images from image-based glitch detection, where models reported the image as
glitchy despite it being glitch-free (false positive).
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Figure A21: Sample images from image-based glitch detection, where the majority of models failed
to detect the glitch in the image (false negative).
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E.8 Additional Results for the Video-based Glitch Detection Task

GPT-4.1’s output:

{
"reasoning": "In the sequence of images, the player character’s
model appears to be severely distorted, particularly around the
torso and back area, which is unnaturally enlarged and misshapen
. This is not consistent with normal character models in video
games and suggests a graphical or animation glitch affecting the
character’s mesh or skeleton.",

"glitch_detected": true,
"description_of_glitch": "The player character’s body is
unnaturally deformed, with an exaggerated and misshapen torso
and back, indicating a character model or animation glitch."

}

Gemini-2.0-Flash’s output:

{"description_of_glitch": "The character’s back is unnaturally
deformed, suggesting a glitch in the character model or
animation.", "glitch_detected": true, "reasoning": "The
character’s back appears to have a large, unnatural bulge, which
is not typical of human anatomy and suggests a graphical or

animation error."}

Figure A22: Sample from a video-based glitch detection task in which various models correctly
identified a glitch related to the character’s body.
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o3’s output:

{
"reasoning": "After the skater bails, the board no longer behaves

normally. It repeatedly clips halfway into the sidewalk,
jitters and spins in place, and even drifts around on its own
while the player simply stands or walks nearby. At times the
character’s feet also sink slightly into the pavement. These
collision/physics oddities are not part of normal gameplay and
indicate a bug in the board-to-ground physics.",

"glitch_detected": true,
"description_of_glitch": "Skateboard becomes stuck half-inside
the ground, jittering, spinning and sliding by itself;
occasional foot clipping through the pavement."

}

o4-mini’s output:

{
"description_of_glitch": "After the player dismounts the
skateboard, the board begins to move erratically on its own,
spinning and flipping rapidly on the ground.",
"glitch_detected": true,
"reasoning": "The skateboard’s movement is unnatural and not
caused by player input or expected physics interactions. It
appears to be a physics engine glitch where the board’s
collision or state becomes unstable."

}

GPT-4.1’s output:

{
"reasoning": "In the sequence of images, the skateboard is seen
moving and spinning on its own, without any interaction from the
player character. It even clips through the ground and other

objects, which is not normal behavior for a skateboard in a
skateboarding game. This indicates a physics or collision glitch
.",

"glitch_detected": true,
"description_of_glitch": "The skateboard exhibits erratic,
unintended movement and clips through the ground and other
objects, behaving independently of the player character. This is
likely due to a physics or collision detection glitch."

}

Figure A23: Sample from a video-based glitch detection task in which various models correctly
identified a glitch related to a skateboard.
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E.9 Additional Results for the Needle In A Haystack Task

Table A10: Model performance on the needle in a haystack task, reporting accuracy based on
the distance between the model-reported frame and the ground truth frame, evaluated at different
thresholds (1 seconds to 5 seconds).

Model Name # Acc @
≤1s

Acc @
≤2s

Acc @
≤5s

Glitches
Detected

Glitches
Not Detected

GPT-4.1 100 6 11 19 72 28
GPT-4.1-mini 100 5 6 10 28 72
GPT-4.1-nano 100 0 1 4 78 22
GPT-4o 100 1 1 1 7 93
o3 100 1 2 13 58 42
Gemini-2.0-Flash 100 28 31 35 56 44
Gemini-2.5-Flash 100 32 32 35 42 58
Gemini-2.5-Pro 100 31 32 34 34 66
Sonnet-3.5 100 8 15 27 39 61
Sonnet-3.7 100 18 24 31 39 61

Table A11: Model performance (accuracy @ different thresholds) on the needle in a haystack task,
evaluated on the subset where the model detected the glitch. Accuracy indicates whether the model
can correctly locate the glitch frame within a 50-frame window.

Model Name # Acc @ ≤1s Acc @ ≤2s Acc @ ≤5s
GPT-4.1 72 8.3 15.3 26.4
GPT-4.1-mini 28 17.9 21.4 28.6
GPT-4.1-nano 78 0.0 1.3 5.1
GPT-4o 7 14.3 14.3 14.3
o3 58 1.7 3.4 20.7
Gemini-2.5-Pro 34 91.2 91.2 91.2
Gemini-2.5-Flash 42 76.2 76.2 78.6
Gemini-2.0-Flash 56 50.0 53.6 55.4
Sonnet-3.7 39 46.2 59.0 74.4
Sonnet-3.5 39 20.5 38.5 61.5
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E.10 Additional Results for the Parametric Clipping Detection Task

In this section, we provide heatmap visualizations for parametric robustness tasks, where we vary the
proximity of an object to a target human character to evaluate whether the models can robustly detect
when a clipping glitch occurs. In the heatmaps, the red data points indicate wrong results and green
data points indicate correct results from the VLM.
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Figure A24: Heatmap for testing clipping between a white 3D cube and a human character. The
dashed line on the heatmap indicates the frame where clipping occurs.
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Figure A25: Heatmap for testing clipping between a white 3D cube and a human character. The
dashed line on the heatmap indicates the frame where clipping occurs.
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Figure A26: Heatmap for testing clipping between a white 3D sphere and a human character. The
dashed line on the heatmap indicates the frame where clipping occurs.
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Figure A27: Heatmap for testing clipping between a white 3D sphere and a human character. The
dashed line on the heatmap indicates the frame where clipping occurs.
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Figure A28: Heatmap for testing clipping between a white 2D plane (quad) and a human character.
The dashed line on the heatmap indicates the frame where clipping occurs.
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Figure A29: Heatmap for testing clipping between a white 2D plane (quad) and a human character.
The dashed line on the heatmap indicates the frame where clipping occurs.
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Figure A30: Heatmap for testing clipping between two human characters. The dashed line on the
heatmap indicates the frame where clipping occurs.
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E.11 Additional Results for the Visual Regression Task

Sonnet-3.7’s output:

{
"reasoning":"While both images show the same urban scene with
similar lighting (sunset/dusk), environment, and dialogue
subtitle, there are significant character differences that
exceed acceptable customization. The first image shows a
character in a white t-shirt and light pants, while the second
image shows a completely different character wearing a red
basketball jersey with the number 7, blue sleeves, and a cap.
This appears to be an entirely different character model rather
than just customization. The scene composition and background
environment remain consistent, but the character change is
substantial enough to be considered a major difference.",
"test_pass":false

}

GPT-4o’s output:

{
"reasoning":"The second image shows a significant change in
character positions and actions, indicating a major scene
composition change. The character on the left is now in a
different pose, suggesting a different action or event is
occurring. These differences go beyond acceptable minor position
adjustments or character customization.",
"test_pass":false

}

o4-mini’s output:

{
"reasoning":"The background and lighting remain the same, but
the primary character in the shot has been completely replaced
by two different characters, which constitutes a major scene
composition change rather than a simple customization or
animation tweak.",
"test_pass":false

}

Figure A31: Sample successful test run by various models that successfully detected unacceptable
changes between two images.
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o4-mini’s output:

{
"reasoning":"Both images show the same wooden interior scene
with identical geometry, lighting, and asset placement. There
are only negligible framing and exposure differences, no missing
textures, no UI corruption or structural changes. This is an

acceptable variation.",
"test_pass":true

}

GPT-4.1’s output:

{
"reasoning":"The two images depict the same game scene from an
identical perspective. The only noticeable difference is a very
slight change in the lighting and shadow patterns, likely due to
minor adjustments in the environmental lighting or rendering

pass. There are no missing textures, interface issues,
misaligned elements, or significant changes to scene geometry or
key objects. All critical scene elements are present and

correctly rendered.",
"test_pass":true

}

Gemini-2.5-Pro’s output:

{
"reasoning":"TThe two provided screenshots are identical. There
are no discernible differences in geometry, lighting, textures,
object placement, or any other visual elements between the

reference and the second image.",
"test_pass":true

}

Figure A32: Sample visual regression test that top-performing models like GPT-4o, GPT-4.1, o4-mini,
and Gemini-2.5-Pro fail to answer correctly. The models pass the test when they should fail due to
one of the wooden pillars of the roof being missing in the alternative image.
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o4-mini’s output:

{
"reasoning":"The only differences are environmental: the right-
side doorway is open to show the night sky and the railing
beyond, and a few cans are scattered further out on the floor.
No UI errors, missing textures, or structural issues. These are
minor background and lighting/scene-state variations, which are
acceptable.",
"test_pass":true

}

GPT-4.1’s output:

{
"reasoning":"The primary difference between the two images is
the environmental condition visible through the window on the
right side. In the first image, the window shows an interior
wall, while in the second image, the window reveals an outdoor
night scene with mountains and sky. The rest of the scene,
including the vending machine, signage, and interior elements,
remains unchanged. This change is attributable to a possible
door or window being opened, which is a plausible gameplay or
environmental variation. There are no signs of interface
corruption, rendering errors, or missing key elements. The
variation is acceptable as it falls under environmental
condition changes.",
"test_pass":true

}

Gemini-2.5-Pro’s output:

{
"reasoning":"The primary difference between the two images is
the background visible through the window on the right. In the
second image, a daytime sky and landscape are visible, whereas
the first image shows a dark exterior. This change is consistent
with acceptable environmental variations, such as a day/night

cycle. Other minor differences in debris placement are
negligible.",
"test_pass":true

}

Figure A33: Sample visual regression test that top-performing models like GPT-4o, GPT-4.1, o4-mini,
and Gemini-2.5-Pro fail to answer correctly. The models pass the test when they should fail due to
incorrect wall rendering on the right side of the image.
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o4-mini’s output:

{
"reasoning":"The two images depict the same game scene with
only a very minor difference: in the first image, there is a red
cup on the ground near the bottom center, which is missing in

the second image. This is a minor variation in a non-critical
background element (debris/trash), which is acceptable according
to the criteria. There are no signs of interface corruption,

text changes, rendering errors, or missing key scene elements.",
"test_pass":true

}

GPT-4.1’s output:

{
"reasoning":"The two shots are visually identical in
composition and geometry, with only very slight lighting/shadow
differences. No UI corruption, missing textures, text changes or
structural alterations are present. This falls under acceptable
lighting variation",
"test_pass":true

}

Gemini-2.5-Pro’s output:

{
"reasoning":"The two images provided are identical. There are
no visual differences, rendering errors, or content changes
between the reference and the second image. Therefore, the
second image is an acceptable variation.",
"test_pass":true

}

Figure A34: Sample visual regression test that top-performing models like GPT-4o, GPT-4.1, o4-mini,
and Gemini-2.5-Pro fail to answer correctly. The models pass the test when they should fail due to
missing the table in the center of the image.
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o4-mini’s output:

{
"reasoning":"Both images depict the same scene with two
characters near a poolside, with consistent background elements
such as the hedge, tiled ground, and umbrella. The differences
observed are acceptable: the characters have different clothing
and are in slightly different positions, which can be attributed
to character customization and minor animation or timing

differences. The lighting is also different, which is an
acceptable change in time of day or weather. There are no
missing or corrupt UI elements, no graphical glitches, and the
environment structure remains unchanged.",
"test_pass":true

}

GPT-4.1’s output:

{
"reasoning": "The second frame introduces an unexpected UI
overlay (the green FPS counter) and a significant composition
change (a standing character’s legs obstructing the view)
compared to the first image. These constitute unacceptable
differences.",
"test_pass":false

}

Gemini-2.5-Pro’s output:

{
"reasoning":"The core scene composition, background environment
, and character presence remain consistent. The primary
difference is the clothing worn by the character on the left,
which falls under the acceptable category of character
customization. Minor variations in character position and
lighting are also within acceptable limits.",
"test_pass":true

}

Figure A35: Sample visual regression test that top-performing models like GPT-4o, GPT-4.1, and
Gemini-2.5-Pro fail, but o4-mini answers correctly.
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E.12 Additional Results for the Bug Report Generation Task

GPT-4o’s output:

{
"reasoning": "The weapon model appears to be missing a part of
its barrel, which is not consistent with the expected design of
the MP 3008. This could be due to a rendering issue or a missing
texture.",
"bug_report_title": "MP 3008 Weapon Model Incomplete",
"bug_report_description": "The MP 3008 weapon model displayed
in the inventory screen is missing a section of its barrel. This
visual glitch may confuse players about the weapon’s appearance
and could affect immersion. ",
"affected_item": "Weapon Model"

}

Judge’s (o3) output:

{
"reasoning": "Ground truth bug is about two weapons visually
clipping into each other (overlap). Generated report concerns a
single weapon model (MP 3008) missing part of its barrel, no
mention of clipping with another weapon. The core issues differ
.",
"match": false

}

Figure A36: A sample model response for the image-based bug report generation task, along with
the judge’s evaluation. The model provides an inaccurate description of the glitch, and the judge
correctly rejects it.
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GPT-4o’s output:

{
"reasoning": "The image shows a vehicle with a character inside
, but the character appears to be clipping through the vehicle’s
windshield. This suggests a rendering issue where the character
model is not properly constrained within the vehicle model.",
"bug_report_title": "Character Clipping Through Vehicle
Windshield",
"bug_report_description": "A character inside a vehicle is
visibly clipping through the windshield. This graphical glitch
disrupts the visual realism and may affect gameplay by causing
confusion about the character’s position and interactions with
the environment. ",
"affected_item": "Character and Vehicle"

}

Judge’s (o3) output:

{
"reasoning": "Ground truth issue concerns the car model
intersecting with the ground, i.e., the vehicle itself is
partially submerged/clipping into terrain. The generated report
instead describes a character model intersecting with the
vehicle’s windshield. The objects involved (car vs. character)
and the intersection context (ground vs. windshield) do not
align, so they are different bugs.",
"match": false

}

Figure A37: A sample model response for the image-based bug report generation task, along with
the judge’s evaluation. The model provides an inaccurate description of the glitch, and the judge
correctly rejects it.
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Gemini-2.5-Pro’s output:

{
"reasoning": "The character model’s left shoulder and arm are
intersecting with the wooden wall geometry behind them. This
indicates a clipping issue where the character model is
positioned incorrectly relative to the environment’s collision
boundaries.",
"bug_report_title": "Character Model Clipping Through Wall",
"bug_report_description": "The NPC standing behind the
workbench has their left shoulder and arm partially embedded
within the wooden wall texture behind them. This is a visual
clipping error.",
"affected_item": "Character Model (NPC)"

}

Judge’s (o3) output:

{
"reasoning": "Ground truth: character is clipping into the wall
. Generated report: NPC character model’s shoulder and arm are
embedded in wall (visual clipping error). Both describe same
issue: character clipping with wall geometry. Details (NPC,
workbench) do not contradict core issue.",
"match": true

}

Figure A38: A sample model response for the image-based bug report generation task, along with the
judge’s evaluation. The model provides a description that matches our ground truth, and the judge
correctly accepts it.
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Gemini-2.5-Pro’s output:

{
"reasoning": "The character on the right, riding a horse, is
displayed in a static ’A-pose’ or ’T-pose’ with arms
outstretched horizontally. This is not a natural pose for riding
a horse and indicates an animation or character model rigging

glitch. ",
"bug_report_title": "Character Stuck in A-Pose/T-Pose While
Riding Horse",
"bug_report_description": "A character model (potentially an
NPC or another player) is observed riding a horse but is stuck
in a default A-pose or T-pose animation state. Their arms are
extended straight out to the sides instead of holding reins or
resting naturally. This is a visual bug affecting character
animation.",
"affected_item": "Character Model/Animation "

}

Judge’s (o3) output:

{
"reasoning": "Both descriptions talk about a rider-character
who is on a horse but is frozen in the default T-/A-pose instead
of playing the correct riding animation. The ground truth

additionally notes that the lower half of the character’s body
is clipping/merging into the horse, but this is a consequence of
the same faulty pose state; the generated report simply omits

that extra detail. The central bug---character stuck in T-pose
while mounted---is the same in both descriptions.",
"match": true

}

Figure A39: A sample model response for the image-based bug report generation task, along with the
judge’s evaluation. The model provides a description that matches our ground truth, and the judge
correctly accepts it.
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E.13 Observation About the Judge in the Bug Report Generation Task

Gemini-2.5-Pro’s output:

{
"reasoning": "The character standing behind the player
character ’Haz-man’ is rendered as a solid black silhouette,
lacking textures and appropriate lighting for the environment.
This suggests a graphical glitch related to texture loading or
shader application.",
"bug_report_title": "Character Model Renders as Solid Black
Silhouette",
"bug_report_description": "A character model positioned behind
the player character ’Haz-man’ is displayed as a completely
black, untextured silhouette. The lighting present in the room
does not affect this character model, unlike the player
character and the surrounding environment which are correctly
lit and textured. This appears to be a rendering bug. ",
"affected_item": "Character Model"

}

Judge’s (o3) output:

{
"reasoning": "Ground truth bug concerns the rendered SHADOW of
a character: part of the shadow (specifically the face area) is
transparent, letting the background show through. Expected
shadow should be opaque. Generated report concerns an entirely
different symptom: a whole character model itself appears as a
solid black, unlit silhouette (overly opaque), not about
transparency in a shadow. It addresses lighting on the model,
not shadow transparency. Therefore the two reports describe
different issues.",
"match": false

}

Figure A40: Sample model response for the image-based bug report generation task along with the
judge’s evaluation. While certain glitches are challenging to describe precisely, the model correctly
identifies and highlights the relevant aspects and regions in the image. However, the judge strictly
evaluates the wording, entirely rejecting the response despite the model correctly pinpointing the
problematic regions.
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Gemini-2.5-Pro’s output:

{
"reasoning": "The video shows the pre-race vehicle selection
screen. The player’s chosen vehicle, a Karin Sultan RS, is
displayed precariously balanced on top of a large wind turbine
blade. This is an highly unusual and physically improbable
location for a vehicle preview, suggesting a glitch in how the
game stages the vehicle for this specific race menu.",
"bug_report_title": "Vehicle Preview Incorrectly Positioned on
Wind Turbine Blade in Pre-Race Menu",
"bug_report_description": "In the pre-race setup menu for the ’
Wallrider (Turbines) XB1’ race, the vehicle selected by the
player is shown positioned on top of a wind turbine blade in the
background environment instead of a standard display area. This
appears to be a staging error for the vehicle preview,

potentially specific to this custom race or location.",
"affected_item": "Vehicle Preview / UI Staging"

}

Judge’s (o3) output:

{
"reasoning": "Ground truth describes an in-game physics/
clipping issue: during gameplay the car becomes physically stuck
inside a wind-turbine blade, with its body intersecting the

geometry. Generated report describes a UI/preview staging issue
that occurs in the pre-race menu: the vehicle model is merely
rendered on top of a wind turbine blade background instead of
the normal display area. It is about an incorrect camera/
placement in the menu, not about gameplay collision or clipping.
Because they concern different contexts (menu preview vs.

gameplay), different symptoms (visual staging vs. physical
clipping), and likely different root causes, they do not refer
to the same underlying bug.",
"match": false

}

Figure A41: Sample model response for the image-based bug report generation task along with the
judge’s evaluation. While the model’s generated report is accurate, the judge incorrectly rejects it for
being too strict about small details and wording that are correct but missing from the ground truth.
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F VideoGameQA-Bench Samples

F.1 Visual Unit Tests

How many of Spider-Man’s and Black Cat’s eye areas, including those covered by their masks, are
visible in the image?

Provide your answer in the following JSON format:

{
"spiderman_eyes_visible": 0,
"black_cat_eyes_visible": 0

}

Figure A42: Sample test from a visual unit test, where the model is asked to summarize some visual
properties into a JSON structure.
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Based on the image answer the following questions:

1. How many birds are visible inside the room (including inside the cage)?
2. How many birds are visible outside the window?
3. Is the birdcage door open?
4. What is the primary color of the bird inside the cage?
5. Is there a piece of wood leaning on the inside windowsill?
6. What is the main color of the blossoms seen outside the window?
7. Is the wallpaper on the left wall patterned?
8. Where is the grey bird positioned?

Provide your answer in the following JSON format

{
"birds_inside_count": 0 // Integer count,
"birds_outside_count": 0 // Integer count,
"birdcage_door_open": false // true or false,
"bird_in_cage_color": "" // options: ["yellow", "grey", "blue", "
brown"],

"wood_on_sill_present": false // true or false,
"blossom_color": "" // options: ["pink", "white", "yellow", "red
"],

"left_wallpaper_patterned": false // true or false,
"grey_bird_location": "" // options: ["inside cage", "on
windowsill", "outside window", "on floor"]

}

Figure A43: Sample test from a visual unit test, where the model is asked to summarize some visual
properties into a JSON structure.
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Based on the image answer the following questions:

1. What is the primary color of the rally car?
2. Is the driver-side door of the car open or closed?
3. What number is displayed in large font on the car’s door?
4. What brand name is visible on the yellow decal above the ’elf’ logo on the car’s side?
5. Is there a coiled orange air hose hanging from the ceiling on the left side?
6. What type of pattern is on the floor directly beneath the car?
7. Is there a screen or monitor mounted on the wall displaying graphs?

Provide your answer in the following JSON format

{
"car_primary_color": "" // options: ["light blue", "dark blue", "
white", "red", "black"],

"driver_door_state": "" // options: ["open", "closed"],
"car_door_number": 0 // Integer value,
"yellow_decal_brand": "" // String value representing the text,
"coiled_hose_visible": false // true or false,
"floor_pattern": "" // options: ["plain", "checkered", "tiled", "
textured_metal"],

"wall_monitor_visible": false // true or false
}

Figure A44: Sample test from a visual unit test, where the model is asked to summarize some visual
properties into a JSON structure.
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F.2 UI Unit Tests

Read the dashboard and fill the JSON values below:

{
"tire_pressure": {

"front_left": 0,
"front_right": 0,
"rear_left": 0,
"rear_right": 0

},
"brake_temps": {

"front_left": 0,
"front_right": 0,
"rear_left": 0,
"rear_right": 0

},
"break_bias": 0,
"break_sl": 0,
"settings": {

"map": 0,
"mix": 0,
"tc1": 0,
"tc2": 0

},
"gear": 0,
"rpm": 0,
"speed_mph": 0

}

Figure A45: Sample UI unit test, where the model is asked to extract and summarize visual informa-
tion from game UI elements into a JSON structure.
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Please provide the values of the dice in the topmost row from left to right, and return them as a JSON
list.

Figure A46: Sample UI unit test, where the model is asked to extract and summarize visual informa-
tion from game UI elements into a JSON structure.

Based on the image, extract the list of weapons (single word) and return it in the following JSON
format:

{ "items": ["weapon"] }

Figure A47: Sample UI unit test, where the model is asked to extract and summarize visual informa-
tion from game UI elements into a JSON structure.
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F.3 Visual Regression Tests

You are an image comparison tool for video game quality assurance. Given two screenshots from the
same game scene, evaluate whether the second image represents an acceptable variation of the first
(reference) image.

Consider these variations ACCEPTABLE:
- Player character customization elements
- Environmental conditions (weather, day/night cycle)
- Slight positional or animation differences
- Lighting and shadow adjustments
- Minor variations in non-critical background elements

Consider these variations UNACCEPTABLE:
- Interface corruption or element misalignment
- Textual content changes (unless expected, e.g., dynamic text)
- Significant visual artifacts or rendering errors (e.g., missing textures, z-fighting)
- Major structural changes to scene geometry not attributable to gameplay state
- Missing or grossly incorrect key scene elements compared to the reference

Provide your assessment as JSON:

{
"reasoning": "Concise explanation of detected differences and
justification for your decision based on the criteria.",

"test_pass": true/false
}

Where ‘test_pass’ is true if the differences are acceptable and false if unacceptable differences are
detected.

Figure A48: Sample test from a visual regression task, where the model is asked to compare two
versions of the same scene to verify whether the changes are acceptable or unacceptable.
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You are an image comparison tool for video game quality assurance. Given two screenshots from the
same game scene, evaluate whether the second image represents an acceptable variation of the first
(reference) image.

Consider these variations ACCEPTABLE:
- Player character customization elements
- Environmental conditions (weather, day/night cycle)
- Slight positional or animation differences
- Lighting and shadow adjustments
- Minor variations in non-critical background elements

Consider these variations UNACCEPTABLE:
- Interface corruption or element misalignment
- Textual content changes (unless expected, e.g., dynamic text)
- Significant visual artifacts or rendering errors (e.g., missing textures, z-fighting)
- Major structural changes to scene geometry not attributable to gameplay state
- Missing or grossly incorrect key scene elements compared to the reference

Provide your assessment as JSON:

{
"reasoning": "Concise explanation of detected differences and
justification for your decision based on the criteria.",

"test_pass": true/false
}

Where ‘test_pass’ is true if the differences are acceptable and false if unacceptable differences are
detected.

Figure A49: Sample test from a visual regression task, where the model is asked to compare two
versions of the same scene to verify whether the changes are acceptable or unacceptable.
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You are an image comparison tool for video game quality assurance. Given two screenshots from the
same game scene, evaluate whether the second image represents an acceptable variation of the first
(reference) image.

Consider these variations ACCEPTABLE:
- Player character customization elements
- Environmental conditions (weather, day/night cycle)
- Slight positional or animation differences
- Lighting and shadow adjustments
- Minor variations in non-critical background elements

Consider these variations UNACCEPTABLE:
- Interface corruption or element misalignment
- Textual content changes (unless expected, e.g., dynamic text)
- Significant visual artifacts or rendering errors (e.g., missing textures, z-fighting)
- Major structural changes to scene geometry not attributable to gameplay state
- Missing or grossly incorrect key scene elements compared to the reference

Provide your assessment as JSON:

{
"reasoning": "Concise explanation of detected differences and
justification for your decision based on the criteria.",

"test_pass": true/false
}

Where ‘test_pass’ is true if the differences are acceptable and false if unacceptable differences are
detected.

Figure A50: Sample test from a visual regression task, where the model is asked to compare two
versions of the same scene to verify whether the changes are acceptable or unacceptable.
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F.4 Image-based Glitch Detection

You are a helpful assistant analyzing video game images and screenshots for glitches. You will be given
a screenshot from a video game, and your job is to analyze the screenshot and determine whether it
contains a glitch.

Provide your answer in the following format:

{
"reasoning": "Brief explanation of why you think a glitch is
present",
"glitch_detected": true or false,
"description_of_glitch": "Description of the glitch if detected
else empty string"

}

Figure A51: Sample for the image-based glitch detection task.
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You are a helpful assistant analyzing video game images and screenshots for glitches. You will be given
a screenshot from a video game, and your job is to analyze the screenshot and determine whether it
contains a glitch.

Provide your answer in the following format:

{
"reasoning": "Brief explanation of why you think a glitch is
present",
"glitch_detected": true or false,
"description_of_glitch": "Description of the glitch if detected
else empty string"

}

Figure A52: Sample for the image-based glitch detection task.
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You are a helpful assistant analyzing video game images and screenshots for glitches. You will be given
a screenshot from a video game, and your job is to analyze the screenshot and determine whether it
contains a glitch.

Provide your answer in the following format:

{
"reasoning": "Brief explanation of why you think a glitch is
present",
"glitch_detected": true or false,
"description_of_glitch": "Description of the glitch if detected
else empty string"

}

Figure A53: Sample for the image-based glitch detection task.
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F.5 Parametric Clipping Detection Tests

You are a visual analysis assistant specializing in detecting object clipping in video game screenshots.
Your task is to examine each provided image and determine whether any part of the white cube is
intersecting with the character model, indicating a clipping issue.

Based on your analysis, respond using the following format:

{
"reasoning": "Brief explanation of why you think clipping is
present or not",
"clipping_detected": true or false

}

Figure A54: Sample test from a parametric clipping detection task, where the model is asked to detect
clipping glitches when an object is placed at various distances from a human character, to verify
whether the model can robustly detect such glitches.
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You are a visual analysis assistant specializing in detecting object clipping in video game screenshots.
Your task is to examine each provided image and determine whether any part of the white cube is
intersecting with the character model, indicating a clipping issue.

Based on your analysis, respond using the following format:

{
"reasoning": "Brief explanation of why you think clipping is
present or not",
"clipping_detected": true or false

}

Figure A55: Sample test from a parametric clipping detection task, where the model is asked to detect
clipping glitches when an object is placed at various distances from a human character, to verify
whether the model can robustly detect such glitches.
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F.6 Image-based Bug Report Generation

You are a video game quality assurance assistant who analyzes screenshots to identify and document
visual glitches. When presented with an image, carefully examine it for any graphical bugs or rendering
issues.

Provide your analysis in the following JSON format:

{
"reasoning": "Brief explanation of what you observe and why it
appears to be a glitch",
"bug_report_title": "A clear, concise title summarizing the
issue",
"bug_report_description": "Detailed description of the visual
bug, including its appearance and potential impact on gameplay",
"affected_item": "The specific game element (character, object,
environment, UI) affected by the glitch"

}

Figure A56: Sample for the image-based bug report generation task.
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You are a video game quality assurance assistant who analyzes screenshots to identify and document
visual glitches. When presented with an image, carefully examine it for any graphical bugs or rendering
issues.

Provide your analysis in the following JSON format:

{
"reasoning": "Brief explanation of what you observe and why it
appears to be a glitch",
"bug_report_title": "A clear, concise title summarizing the
issue",
"bug_report_description": "Detailed description of the visual
bug, including its appearance and potential impact on gameplay",
"affected_item": "The specific game element (character, object,
environment, UI) affected by the glitch"

}

Figure A57: Sample for the image-based bug report generation task.
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You are a video game quality assurance assistant who analyzes screenshots to identify and document
visual glitches. When presented with an image, carefully examine it for any graphical bugs or rendering
issues.

Provide your analysis in the following JSON format:

{
"reasoning": "Brief explanation of what you observe and why it
appears to be a glitch",
"bug_report_title": "A clear, concise title summarizing the
issue",
"bug_report_description": "Detailed description of the visual
bug, including its appearance and potential impact on gameplay",
"affected_item": "The specific game element (character, object,
environment, UI) affected by the glitch"

}

Figure A58: Sample for the image-based bug report generation task.
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F.7 Video-based Glitch Detection

You are a helpful assistant analyzing video game clips for glitches. You will be given a short video clip
from a video game, and your task is to analyze the video and determine whether it contains a glitch.

Provide your answer in the following format:

{
"reasoning": "Brief explanation of why you think a glitch is
present",
"glitch_detected": true or false,
"description_of_glitch": "Description of the glitch if detected
else empty string"

}

Figure A59: Sample for the video-based glitch detection task. In this video (only 6 sample frames
are shown), a horse is moving up and down, which is a glitch.
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You are a helpful assistant analyzing video game clips for glitches. You will be given a short video clip
from a video game, and your task is to analyze the video and determine whether it contains a glitch.

Provide your answer in the following format:

{
"reasoning": "Brief explanation of why you think a glitch is
present",
"glitch_detected": true or false,
"description_of_glitch": "Description of the glitch if detected
else empty string"

}

Figure A60: Sample for the video-based glitch detection task. In this video (only 6 frames are shown),
the non-player character is performing an action, but the animation and table are misaligned.

71



You are a helpful assistant analyzing video game clips for glitches. You will be given a short video clip
from a video game, and your task is to analyze the video and determine whether it contains a glitch.

Provide your answer in the following format:

{
"reasoning": "Brief explanation of why you think a glitch is
present",
"glitch_detected": true or false,
"description_of_glitch": "Description of the glitch if detected
else empty string"

}

Figure A61: Sample for the video-based glitch detection task. In this video (only 6 frames are shown),
the objects in the water are shaking violently, which is caused by a glitch in the physics engine
simulation.
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F.8 Needle In A Haystack

You are a specialized video game quality assurance analyst trained to detect visual anomalies in
gameplay footage. Your task is to analyze the provided video clip to identify any bugs, glitches, visual
artifacts, or unexpected behaviors.

What to Look For
Examine the video carefully for any:
- Visual artifacts (texture issues, flickering, clipping)
- Animation problems (jerky movements, T-poses)
- Rendering glitches (missing textures, lighting errors)
- Gameplay anomalies (collision failures, object teleportation)

Response Format
After your thorough analysis, provide your findings in this exact JSON format:

{
"reasoning": "Brief explanation of what you observed in the video

and why it appears to be a glitch",
"glitch_detected": true|false,
"timestamp": 0

}

Figure A62: Sample from the needle-in-a-haystack task. Please note that only 6 out of 50 frames are
shown to highlight the glitch.
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You are a specialized video game quality assurance analyst trained to detect visual anomalies in
gameplay footage. Your task is to analyze the provided video clip to identify any bugs, glitches, visual
artifacts, or unexpected behaviors.

What to Look For
Examine the video carefully for any:
- Visual artifacts (texture issues, flickering, clipping)
- Animation problems (jerky movements, T-poses)
- Rendering glitches (missing textures, lighting errors)
- Gameplay anomalies (collision failures, object teleportation)

Response Format
After your thorough analysis, provide your findings in this exact JSON format:

{
"reasoning": "Brief explanation of what you observed in the video

and why it appears to be a glitch",
"glitch_detected": true|false,
"timestamp": 0

}

Figure A63: Sample from the needle-in-a-haystack task. Please note that only 6 out of 50 frames are
shown to highlight the glitch.
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You are a specialized video game quality assurance analyst trained to detect visual anomalies in
gameplay footage. Your task is to analyze the provided video clip to identify any bugs, glitches, visual
artifacts, or unexpected behaviors.

What to Look For
Examine the video carefully for any:
- Visual artifacts (texture issues, flickering, clipping)
- Animation problems (jerky movements, T-poses)
- Rendering glitches (missing textures, lighting errors)
- Gameplay anomalies (collision failures, object teleportation)

Response Format
After your thorough analysis, provide your findings in this exact JSON format:

{
"reasoning": "Brief explanation of what you observed in the video

and why it appears to be a glitch",
"glitch_detected": true|false,
"timestamp": 0

}

Figure A64: Sample from the needle-in-a-haystack task. Please note that only 6 out of 50 frames are
shown to highlight the glitch.
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You are a specialized video game quality assurance analyst trained to detect visual anomalies in
gameplay footage. Your task is to analyze the provided video clip to identify any bugs, glitches, visual
artifacts, or unexpected behaviors.

What to Look For
Examine the video carefully for any:
- Visual artifacts (texture issues, flickering, clipping)
- Animation problems (jerky movements, T-poses)
- Rendering glitches (missing textures, lighting errors)
- Gameplay anomalies (collision failures, object teleportation)

Response Format
After your thorough analysis, provide your findings in this exact JSON format:

{
"reasoning": "Brief explanation of what you observed in the video

and why it appears to be a glitch",
"glitch_detected": true|false,
"timestamp": 0

}

Figure A65: Sample from the needle-in-a-haystack task. Please note that only 6 out of 50 frames are
shown to highlight the glitch.
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F.9 Video-based Bug Report Generation

You are a video game quality assurance assistant who analyzes video clips to identify and document
visual glitches or strange behaviors. When presented with a video clip, carefully examine it for any
graphical bugs, rendering issues, physics anomalies, or unexpected events.

Provide your analysis in the following JSON format:

{
"reasoning": "Brief explanation of what you observe in the
video and why it appears to be a glitch or bug",
"bug_report_title": "A clear, concise title summarizing the
issue",
"bug_report_description": "Detailed description of the visual
bug or behavioral anomaly, including its appearance and
potential impact on gameplay",
"affected_item": "The specific game element (character, object,
environment, UI, physics) affected by the glitch"

}

Figure A66: Sample for the video-based bug report generation task. In this video (only 6 frames are
shown), a helicopter emerges from the ground.
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You are a video game quality assurance assistant who analyzes video clips to identify and document
visual glitches or strange behaviors. When presented with a video clip, carefully examine it for any
graphical bugs, rendering issues, physics anomalies, or unexpected events.

Provide your analysis in the following JSON format:

{
"reasoning": "Brief explanation of what you observe in the
video and why it appears to be a glitch or bug",
"bug_report_title": "A clear, concise title summarizing the
issue",
"bug_report_description": "Detailed description of the visual
bug or behavioral anomaly, including its appearance and
potential impact on gameplay",
"affected_item": "The specific game element (character, object,
environment, UI, physics) affected by the glitch"

}

Figure A67: Sample for the video-based bug report generation task. In this video (only 6 frames are
shown), a helicopter is stuck under the bridge.
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You are a video game quality assurance assistant who analyzes video clips to identify and document
visual glitches or strange behaviors. When presented with a video clip, carefully examine it for any
graphical bugs, rendering issues, physics anomalies, or unexpected events.

Provide your analysis in the following JSON format:

{
"reasoning": "Brief explanation of what you observe in the
video and why it appears to be a glitch or bug",
"bug_report_title": "A clear, concise title summarizing the
issue",
"bug_report_description": "Detailed description of the visual
bug or behavioral anomaly, including its appearance and
potential impact on gameplay",
"affected_item": "The specific game element (character, object,
environment, UI, physics) affected by the glitch"

}

Figure A68: Sample for the video-based bug report generation task. In this video (only 6 frames are
shown), a player character is stuck in a falling position, descending from the water into the air.
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G Dataset License

In this section, we provide details about the various data sources used to construct our dataset, along
with their respective licenses.

Table A12: Data Sources and Their Licenses
Source License
Steam Screenshots Steam Subscriber Agreement
GamePhysics [44] CC-BY-NC 4.0
YouTube Videos YouTube Standard License

We created several images using the Unity game engine with assets purchased from the Unity Asset
Store.
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