
Leveraging Natural Language Processing Techniques to Improve Manual
Game Testing

by

Markos Viggiato de Almeida

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Markos Viggiato de Almeida, 2023

Abstract

The gaming industry has experienced a sharp growth in recent years, surpassing other

popular entertainment segments, such as the film industry. With the ever-increasing

scale of the gaming industry and the fact that players are extremely difficult to satisfy,

it has become extremely challenging to develop a successful game. In this context,

the quality of games has become a critical issue. Game testing is a widely-performed

activity to ensure that games meet the desired quality criteria. However, despite

recent advancements in test automation, manual game testing is still prevalent in

the gaming industry, with test cases often described in natural language only and

consisting of one or more test steps that must be manually performed by the Quality

Assurance (QA) engineer (i.e., the tester). This makes game testing challenging and

costly. Issues such as redundancy (i.e., when different test cases have the same testing

objective) and incompleteness (i.e., when test cases miss one or more steps) become

a bigger concern in a manual game testing scenario. In addition, as games become

bigger and the number of required test cases increases, it becomes impractical to

execute all test cases in a scenario with short game release cycles, for example.

Prior work proposed several approaches to analyze and improve test cases with

associated source code. However, there is little research on improving manual game

testing. Having higher-quality test cases and optimizing test execution help to reduce

wasted developer time and allow testers to use testing resources more effectively, which

makes game testing more efficient and effective. In addition, even though players are

extremely difficult to satisfy, their priorities are not considered during game testing.

In this thesis, we investigate how to improve manual game testing from different

ii

perspectives.

In the first part of the thesis, we investigated how we can reduce redundancy

in the test suite by identifying similar natural language test cases. We evaluated

several unsupervised approaches using text embedding, text similarity, and cluster-

ing techniques and showed that we can successfully identify similar test cases with a

high performance. We also investigated how we can improve test case descriptions

to reduce the number of unclear, ambiguous, and incomplete test cases. We pro-

posed and evaluated an automated framework that leverages statistical and neural

language models and (1) provides recommendations to improve test case descriptions,

(2) recommends potentially missing steps, and (3) suggests existing similar test cases.

In the second part of the thesis, we investigated how player priorities can be

included in the game testing process. We first proposed an approach to prioritize test

cases that cover the game features that players use the most, which helps to avoid bugs

that could affect a very large number of players. Our approach (1) identifies the game

features covered by test cases using an ensemble of zero-shot techniques with a high

performance and (2) optimizes the test execution based on highly-used game features

covered by test cases. Finally, we investigated how sentiment classifiers perform on

game reviews and what issues affect those classifiers. High-performing classifiers can

be used to obtain players’ sentiments about games and guide testing based on the

game features that players like or dislike. We show that, while traditional sentiment

classifiers do not perform well, a modern classifier (the OPT-175B Large Language

Model) presents a (far) better performance.

The research work presented in this thesis provides deep insights, actionable rec-

ommendations, and effective and thoroughly evaluated approaches to support QA

engineers and developers to improve manual game testing.

iii

Preface

The research work presented in this thesis has been conducted in the Analytics of Soft-

ware, GAmes, And Repository Data (ASGAARD) lab led by Dr. Cor-Paul Bezemer.

This thesis is an original work by Markos Viggiato de Almeida.

Chapter 2 has been published as: M. Viggiato, D. Paas, C. Buzon and C.-P.

Bezemer, “Identifying Similar Test Cases That Are Specified in Natural Language”,

in IEEE Transactions on Software Engineering, doi: 10.1109/TSE.2022.3170272. I

was responsible for developing the ideas, collecting and processing the game testing

data, creating and evaluating the unsupervised approaches for similarity detection,

analyzing the data, and manuscript composition. D. Paas and C. Buzon provided

access to the data and assisted with the data collection. Dr. Bezemer was the super-

visory author and was involved in concept formation and manuscript composition.

Chapter 3 has been published as: M. Viggiato, D. Paas, C. Buzon and C.-P.

Bezemer, “Using Natural Language Processing Techniques to Improve Manual Test

Case Descriptions”, 2022 IEEE/ACM 44th International Conference on Software En-

gineering: Software Engineering in Practice (ICSE-SEIP), 2022, pp. 311-320, doi:

10.1145/3510457.3513045. I was responsible for developing the ideas, collecting and

processing the game testing data, creating and evaluating the automated framework,

analyzing the data, and manuscript composition. D. Paas and C. Buzon provided

access to the data and assisted with the data collection. Dr. Bezemer was the super-

visory author and was involved in concept formation and manuscript composition.

Chapter 4 has been submitted for review as: M. Viggiato, D. Paas and C.-P.

Bezemer, “Prioritizing Natural Language Test Cases Based on Highly-Used Game

iv

Features”, 2023 IEEE/ACM 45th International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), 2023. I was responsible for devel-

oping the ideas, collecting and processing the game testing and the game execution

data, creating and evaluating the optimization approaches, analyzing the data, and

manuscript composition. D. Paas provided access to the game execution log data and

assisted with the data collection. Dr. Bezemer was the supervisory author and was

involved in concept formation and manuscript composition.

Chapter 5 has been published as: M. Viggiato, D. Lin, A. Hindle and C.-P.

Bezemer, “What Causes Wrong Sentiment Classifications of Game Reviews?”, in

IEEE Transactions on Games, vol. 14, no. 3, pp. 350-363, Sept. 2022, doi:

10.1109/TG.2021.3072545. I was responsible for developing the ideas, collecting

part of the game review data, processing and analyzing the game review data, and

manuscript composition. D. Lin was responsible for collecting the data and con-

tributed to manuscript edits. Dr. Hindle and Dr. Bezemer were the supervisory

authors and were involved in concept formation and manuscript composition.

Chapter 6 has been submitted for review as: M. Viggiato, D. Lin and C.-P.

Bezemer, “Leveraging the OPT Large Language Model for Sentiment Analysis of

Game Reviews”, in IEEE Transactions on Games. I was responsible for developing

the ideas, collecting part of the game review data, processing and analyzing the game

review data, and manuscript composition. D. Lin was responsible for collecting the

data. Dr. Bezemer was the supervisory author and was involved in concept formation

and manuscript composition.

v

Acknowledgements

I would like to thank everyone who contributed to the works presented in this thesis.

First, I would like to express my sincere gratitude to my supervisor, Dr. Cor-Paul

Bezemer, who has guided me and taught me so much during my studies. Dr. Bezemer

has always been patient and motivated and has given me invaluable advice over all

these years. This research would not have been possible without his support.

I would like to express my gratitude to the members of my examination committee:

Dr. Fabio Petrillo, Dr. Denilson Barbosa, Dr. Marek Reformat and Dr. James Miller.

I would also like to thank the Alberta Innovates research and innovation agency and

Prodigy Education, which supported the research presented in this thesis.

I am also thankful for all the friends that I made during my studies, in particular

my friends at the ASGAARD lab, who were always there when I needed support and

made my journey more joyful.

Finally, I am grateful to my parents, my sister, and my partner for all their

unconditional love, care and support during my studies. I could not have come this

far without them.

vi

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis objectives . 3

1.3 Natural language test cases . 8

1.4 Thesis outline . 10

2 Identifying Similar Test Cases That Are Specified in Natural Lan-

guage 11

2.1 Abstract . 11

2.2 Introduction . 12

2.3 Background . 14

2.3.1 Text representation . 15

2.3.2 Clustering techniques . 18

2.3.3 Game testing . 19

2.4 Related Work . 19

2.4.1 Clustering techniques for software testing 20

2.4.2 Natural Language Processing techniques for software testing . 22

2.5 Proposed approach . 24

2.5.1 Stage 1: Test case pre-processing 25

2.5.2 Stage 2: Test step clustering 27

2.5.3 Stage 3: Test case similarity 28

2.5.4 Motivational Example . 29

2.6 Dataset and ground truth . 30

2.7 Evaluating our approach for clustering similar test steps 32

2.7.1 Evaluated techniques . 32

2.7.2 Configuration of the word embedding techniques 33

2.7.3 Configuration of the sentence embedding techniques 35

2.7.4 Computing the test step similarity 36

2.7.5 Clustering test steps . 36

vii

2.7.6 Evaluation metric . 38

2.7.7 Findings . 40

2.8 Evaluating our approach for identifying similar test cases 42

2.8.1 Evaluated techniques . 43

2.8.2 Evaluation metric. 48

2.8.3 Findings . 48

2.9 Discussion . 51

2.10 Threats to Validity . 54

2.11 Conclusion . 57

3 Using Natural Language Processing Techniques to Improve Manual

Test Case Descriptions 58

3.1 Abstract . 58

3.2 Introduction . 59

3.3 Our automated framework for analysis and feedback 61

3.3.1 Data preparation component 63

3.3.2 Analysis component . 64

3.3.3 Report generation component 66

3.3.4 Using the framework in practice 66

3.3.5 A description of our dataset 67

3.4 The terminology improvement analysis module 67

3.4.1 Training phase . 67

3.4.2 Evaluation . 71

3.4.3 Inference phase . 75

3.5 The missing test step analysis module 76

3.5.1 Training phase . 76

3.5.2 Evaluation . 78

3.5.3 Inference phase . 80

3.6 The test case similarity analysis module 81

3.6.1 Training phase . 82

3.6.2 Evaluation . 82

3.6.3 Inference phase . 83

3.7 Related Work . 83

3.8 Threats to Validity . 85

3.9 Conclusion . 85

viii

4 Prioritizing Natural Language Test Cases Based on Highly-Used

Game Features 87

4.1 Abstract . 87

4.2 Introduction . 88

4.3 Industrial case study subject . 90

4.4 Overview of our approach for test case prioritization 91

4.4.1 Input . 91

4.4.2 Extracting test case information 92

4.4.3 Analyzing game features . 92

4.4.4 Optimizing test case execution 93

4.5 Identifying game features from natural language test cases 93

4.5.1 Experiment setup . 94

4.5.2 Evaluation . 98

4.5.3 Results . 99

4.6 Multi-objective prioritization of natural language test cases 99

4.6.1 Multi-Objective Genetic Algorithms 100

4.6.2 Test Case Prioritization Using NSGA-II 101

4.6.3 Objective functions for NSGA-II 101

4.6.4 Stopping Criteria for NSGA-II 104

4.6.5 Experiment setup . 105

4.6.6 Evaluation of test case prioritization approaches 106

4.6.7 Results . 108

4.7 Discussion . 111

4.8 Using our prioritization approach in practice 113

4.9 Related work . 114

4.10 Threats to validity . 115

4.11 Conclusion . 116

5 What Causes Wrong Sentiment Classifications of Game Reviews? 117

5.1 Abstract . 117

5.2 Introduction . 118

5.3 Sentiment Analysis . 122

5.4 Related Work . 127

5.5 Methodology . 130

5.5.1 Collecting Game Reviews . 130

5.5.2 Evaluating Sentiment Analysis Performance 132

5.5.3 Manually Analyzing Wrong Classifications 134

ix

5.5.4 Quantifying the Impact of the Root Causes 135

5.6 Pre-study . 135

5.7 RQ1: How do sentiment analysis classifiers perform on game reviews? 136

5.8 RQ2: What are the root causes for wrong classifications? 140

5.9 RQ3: To what extent do the identified root causes impact the perfor-

mance of sentiment analysis? . 144

5.9.1 Contrast Conjunctions . 145

5.9.2 Game Comparison . 147

5.9.3 Negative Terminology . 148

5.10 Recommendations and research directions for sentiment analysis on

game reviews . 150

5.11 Conclusion . 151

6 Leveraging the OPT Large Language Model for Sentiment Analysis

of Game Reviews 152

6.1 Abstract . 152

6.2 Introduction . 153

6.3 The OPT-175B Large Language Model 154

6.4 Methodology . 156

6.4.1 Selecting game reviews . 156

6.4.2 Evaluating the performance of OPT-175B 157

6.4.3 Manually analyzing the wrong classifications made by OPT-175B158

6.5 RQ1: How does OPT-175B perform on the sentiment classification of

game reviews? . 159

6.6 RQ2: How do the root causes of wrong classifications made by OPT-

175B compare to the root causes of wrong classifications made by tra-

ditional sentiment classifiers? . 161

6.7 Threats to Validity . 164

6.8 Conclusion . 164

7 Conclusion and Future Work 165

7.1 Conclusion . 165

7.2 Future Work . 168

Bibliography 171

x

List of Tables

1.1 Examples of natural language test case descriptions. 9

2.1 Running example that shows the test case fields: test case identifier

(TC ID), test case name (TC name), test case type (TC type), test

step identifier (TS ID), test step (TS) before pre-processing, and test

step (TS) after pre-processing. 26

2.2 Motivational example of two similar test cases. 29

2.3 Precision, recall, and F-score of the test step clustering approaches

along with the execution time (in minutes) and the optimal number

of clusters obtained using HAC and K-means. In the last column, we

show the F-score distribution for a number of clusters between 2,150

and 3,000. 39

2.4 Examples of test case representations (through vectors) obtained with

the experimented three techniques and their versions with test case

name embedding (Technique n + name embedding). 43

2.5 Precision, recall and F-score of the test case similarity techniques along

with the execution time (in seconds) and the optimal similarity threshold. 49

2.6 Examples of the four types of test case similarity. Differences between

test cases’ steps are highlighted in bold. 52

3.1 Examples of test case descriptions from the Prodigy Math game. . . . 64

3.2 Median accuracy@k (acc@k) for combinations of different types of lan-

guage models. *BERT whole word refers to the BERT large uncased

whole word masking model. 75

4.1 Test case example with the covered features. 93

4.2 Example of multi-label classification of test cases. Binary vectors for

the “battle” feature are highlighted in green (true) and orange (pre-

dicted). 98

4.3 Results of experiments with the zero-shot models. 100

xi

5.1 Sentiment analysis techniques, corresponding classifiers and default

training dataset. 123

5.2 Evaluation metrics (median) for unbalanced and balanced dataset. . . 137

5.3 F-measure of sentiment classification across different corpora. 139

5.4 Root causes for misclassifications in sentiment analysis (each review

may be assigned to more than one root cause). 140

5.5 Contrast conjunctions and corresponding examples. 146

5.6 Game genres and corresponding number of reviews. 149

6.1 Evaluation metrics (median) for traditional and modern sentiment clas-

sifiers. 160

6.2 Example of a game review with sarcasm wrongly classified by tradi-

tional classifiers but correctly classified by OPT-175B. 163

xii

List of Figures

2.1 Examples of test step embeddings. Note that we provide only the first

two elements of the embedding vector due to space constraints as the

actual vectors have a high dimension. 16

2.2 Overview of our proposed approach. 25

2.3 Overview of stage 2 of our approach with the running example. . . . 27

2.4 Overview of stage 3 of our approach with the running example. . . . 27

2.5 Overview of the experiments to identify clusters of similar test steps. 33

2.6 Overview of the experiments to identify similar test cases. 43

2.7 F-score for different similarity thresholds for our proposed techniques.

The vertical line indicates the threshold that maximizes the F-score

(red for Techniques 1, 2, and 3 and blue for their versions with the test

name). 45

3.1 Our automated framework for analysis and feedback of test cases in

natural language. 62

3.2 Our approach for recommending terminology improvements with n-

grams and BERT-based language models (LMs). 68

3.3 Distributions of the perplexity* metric of the evaluated language mod-

els. *Log-transformed perplexity for better visualization. 72

3.4 Our approach for recommending missing test steps using association

rules. 77

3.5 Our approach for recommending similar test cases using text embed-

ding and clustering techniques. 81

4.1 Overview of our approach for prioritizing natural language test cases. 91

4.2 Overview of our LatentEmb technique for test case 1. 96

4.3 Examples to demonstrate our objective function. 104

4.4 Experiment 1: Trade-off between AUCT ime and AUCFeat for different

per-feature coverage thresholds across our different approaches (without

feature usage). 107

xiii

4.5 Experiment 2: Trade-off between AUCT ime and featRankSim across

our approaches (with feature usage). 110

4.6 Distributions of featRankSim (NDCG) for our different approaches. . 111

4.7 Comparison of game feature coverage for our best approaches in ex-

periments 1 and 2. 112

5.1 Examples of sentiment classifications. 124

5.2 Example of the Recursive Neural Tensor Network predicting the sen-

timent in a sentence. 125

5.3 Study methodology overview. 131

5.4 Plots of experiments to determine the sample size for NLTK. 136

5.5 Distribution of the AUC. 138

5.6 Performance of classifiers for different length ranges. Note that there

is a data point for every range of 20 characters (0-20, 20-40, and so

on). However, for the purpose of a better visualization, the figure only

displays every other range in the x axis (e.g., the label ‘20 40’ is not

shown in the plot, but the corresponding data point for that range is

present in the plot). 139

5.7 AUC distribution for reviews without and with contrast.

. 146

5.8 AUC distribution for reviews without and with comparison.

. 146

5.9 AUC distribution for reviews of all the game genres and the baseline. 146

6.1 Example of a prompt to determine the sentiment of a game review.

The text highlighted in green was generated by the OPT-175B model. 155

6.2 Overview of our methodology for evaluating OPT-175B. 157

6.3 Comparison of the AUC distribution with bootstrap samples for mod-

ern (OPT-175B) and traditional (NLTK, SentiStrength, and Stanford

CoreNLP) sentiment classifiers. 160

6.4 Comparison of the number of misclassified game reviews with tradi-

tional sentiment classifiers (SentiStrength, NLTK, and Stanford CoreNLP)

and a modern classifier (OPT-175B). 162

6.5 Percentage of root causes for sentiment misclassifications with OPT-

175B. 163

xiv

Chapter 1

Introduction

The gaming industry is a market segment that has rapidly grown in recent years and

has become a multi-billion dollar industry bigger than the global movie and North

American sports industries combined [198]. The global gaming market is projected

to reach approximately $546 billion in 2028 [56] and it has seen a surge in the number

of players, with an expected number of 3.32 billion players worldwide by 2024 [78].

With the scale of the gaming industry and the fact that players are extremely difficult

to satisfy [32, 97, 105, 106], developing a successful game has become challenging and

the quality of games has become a critical issue [97, 105, 106].

1.1 Motivation

Game testing is a widely-used and essential quality assurance activity during the

game development to ensure that the game meets the desired quality criteria [15, 58,

69, 73]. Despite the recent advancements in the test automation field [111, 140, 173],

prior work showed that manual testing is still prevalent in the gaming industry [130,

140, 145, 180]. For instance, Politowski et al. [145] showed, through a survey, that

manual game testing is the primary testing technique used by game developers and, as

a result, the gaming industry relies almost solely on manual labour to test games. In

addition, Murphy-Hill et al. [130] interviewed 14 developers with experience in game

and non-game development and surveyed 364 practitioners and showed that game

1

developers face several challenges to write automated tests, which was also shown in

other prior works [140, 145]. One example of such a challenge is the non-determinism

that is present in games due to multithreading, artificial intelligence, and purposely

injected randomness. In addition, the large state space that needs to be explored and

the difficulty of asserting what the expected behavior is make it challenging to write

automated tests [130].

In a manual game testing scenario, test cases are often described in natural lan-

guage only and consist of one or more test steps that must be manually performed

by the Quality Assurance (QA) engineer (i.e., the tester) to test the target game.

Manually executing test steps is a tedious activity and requires a large amount of

human effort (e.g., testers may need to play through several levels of a game to verify

that the game logic is working as expected).

An additional challenge for manual testing is to organize and maintain test cases,

mainly in a situation with a large test suite, and ensure the high quality of test case

descriptions. For instance, having redundant test cases in the test suite (i.e., when

different test cases have the same testing objective) or incomplete test cases (i.e.,

when test cases miss one or more steps) are bigger concerns for manual testing (than

for automated testing). Those kinds of problems make the testing activity even more

costly, might result in wasted QA and developer time and effort and, ultimately, lead

to less effective and efficient testing. Furthermore, as games grow and the number of

test cases increases, it becomes impractical to execute all manual test cases, mainly

in a scenario with short release cycles.

Test cases with associated source code have been widely studied [11, 27, 36, 81,

112, 116, 141]. However, research targeting how natural language test cases in a man-

ual game testing scenario can be improved is scarce [111]. Having well-maintained,

organized, and high-quality test cases (e.g., test cases with a clear and objective de-

scription) help to reduce wasted developer time and make testing more efficient and

effective [101]. In addition, optimizing the execution of test cases allows developers

2

and testers to use the available resources (e.g., time) more effectively when there is

not time to execute all the test cases (e.g., during regression testing). For instance,

the execution of tests can be optimized based on player priorities such as the game

features that players use the most. This helps to guide testing based on features

that are more relevant to players and avoid bugs that could affect a large number of

players.

1.2 Thesis objectives

This thesis has the following objectives:

1. Objective 1: Investigate how natural language test cases for manual game test-

ing can be improved.

(a) Investigate how we can reduce redundancy in the test suite by identifying

similar natural language test cases.

(b) Investigate how we can reduce the number of unclear, ambiguous and in-

complete test cases by improving the descriptions of newly-designed natu-

ral language test cases.

2. Objective 2: Investigate how we can take player priorities into account during

the manual game testing process.

(a) Investigate how we can prioritize test cases that cover game features which

are relevant to players by optimizing the test execution using the game

features that players use the most.

(b) Investigate how we can focus testing on the game features that players like

or dislike by guiding testing based on the sentiment that players express

through game reviews.

3

To achieve our objectives, we performed five research studies. In the first study

(which targets Objective 1.a), we evaluated several unsupervised approaches to auto-

matically identify similar test cases that are specified in natural language only. In the

second study (which targets Objective 1.b), we proposed an automated framework

that analyzes the test cases specified in natural language and provides actionable in-

sights to improve their descriptions. In the third study (which targets Objective 2.a),

we investigated how to optimize test case execution to prioritize test cases that cover

highly-used game features, which are more relevant to players. Finally, to verify

if we can leverage sentiment analysis techniques to obtain players’ sentiment about

games, in the fourth and fifth studies (which target Objective 2.b) we investigated

how sentiment classifiers perform on game reviews and the reasons why they might

fail.

We performed industrial case studies to thoroughly evaluate the approaches pro-

posed in studies 1, 2, and 3 with the data of our industry partner, Prodigy Education.1

We summarize the motivation and findings of our research studies below:

Research Study 1: Identifying Similar Test Cases That Are Specified in

Natural Language (Chapter 2)

Motivation: Despite prior work having proposed approaches for test case simi-

larity, these approaches have important limitations, such as the large manual effort

needed to use the approach (e.g., to specify formal descriptions of test cases based

on textual descriptions) or the need for the test case source code. Therefore, in Re-

search Study 1, we explore unsupervised approaches to automatically identify similar

test cases described only in natural language. QA engineers and developers can use

our approach to identify groups of similar test cases, which can help to identify and

remove redundant test cases from the test suite.

Findings: We found that we can leverage text embedding, text similarity and

1https://www.prodigygame.com/main-en/

4

https://www.prodigygame.com/main-en/

clustering techniques to identify groups of similar test cases with a high performance.

Our evaluations showed that using a two-stage approach achieves the best results:

(1) our approach first clusters similar test steps and then (2) uses the test step clusters

to identify groups of similar test cases.

Research Study 2: Using Natural Language Processing Techniques to Im-

prove Manual Test Case Descriptions (Chapter 3)

Motivation: Manual test cases are often specified by employees from different

departments, such as QA engineers or developers. This may result in problematic

test cases, such as unclear, ambiguous or incomplete test case descriptions, which can

hinder the efficiency and effectiveness of the manual testing activity. Having an au-

tomated approach to analyze and suggest improvements to test cases helps to reduce

the manual testing effort of QA engineers and developers by improving the quality of

test case descriptions. It also helps the creation and maintenance of a high-quality,

more consistent and more standardized test suite, which can be useful and benefit

new employees who do not yet have much knowledge about the existing test suite.

Therefore, in Research Study 2, we propose an automated framework that provides

the following actionable recommendations to improve test case descriptions to QA

engineers: recommendations to improve the terminology of a new test case, recom-

mendations of potentially missing test steps in a new test case, and recommendations

of existing similar test cases.

Findings: We found that we can combine traditional (statistical) and state-of-the-

art (neural) language models to effectively recommend terminology improvements.

We also found that association rules are an effective approach to identify potentially

missing test steps in a newly-specified test case. Text embedding, text similarity, and

clustering techniques can be used to identify and recommend existing test cases which

are similar to a newly-designed test case.

Research Study 3: Prioritizing Natural Language Test Cases Based on

5

Highly-Used Game Features (Chapter 4)

Motivation: To include player priorities regarding the game features that they

use the most in the testing process, we need to be able to automatically prioritize

test cases that test the most used game features. However, most existing techniques

for prioritizing test cases do not work for manual test cases. For instance, they

might depend on test case source code, which does not exist for manual test cases,

or the execution history of test cases, which could be difficult to be accessed or

is generally not meaningful in a manual testing scenario. Therefore, in Research

Study 3, we investigate how we can prioritize test cases specified in natural language

without source code. In particular, we prioritize test cases that cover highly-used

game features. Focusing the test execution on highly-used game features helps to

avoid bugs that could affect a very large number of players.

Findings: Our results show that our approach can successfully identify the game

features covered by test cases and prioritize test cases that cover highly-used game

features. This means that our approach can find test case orderings that cover highly-

used game features early in the test execution while keeping the test execution time

as short as possible.

Research Study 4: What Causes Wrong Sentiment Classifications of Game

Reviews? (Chapter 5)

Motivation: To include player priorities with respect to players’ sentiment about

the game features in the testing process, we need to be able to automatically identify

the players’ sentiment about games and their features. The first step is to investigate

how well sentiment classifiers perform on game reviews provided by players and what

are the problems with those classifiers (if any). Therefore, in Research Study 4, we

investigate how widely-used traditional sentiment classifiers perform on game reviews

from the Steam platform2 and which factors cause wrong classifications. This investi-

2https://steamcommunity.com/

6

https://steamcommunity.com/

gation provides insights for game developers and researchers about whether existing

classifiers can be used to identify players’ sentiment about the game features and how

to improve the performance of sentiment classification techniques.

Findings: At the time that we conducted this study, we found that traditional

sentiment classification techniques performed poorly on game reviews. Furthermore,

we identified four main causes for wrong classifications, such as reviews that point

out advantages and disadvantages of the game, reviews with game comparisons, and

reviews that contain sarcastic text, which might confuse the classifier.

Research Study 5: Leveraging the OPT Large Language Model for Senti-

ment Analysis of Game Reviews (Chapter 6)

Motivation: The findings from Research Study 4 showed that traditional senti-

ment classifiers, which were available at the time that study was performed, do not

perform well on game reviews. However, the Natural Language Processing (NLP)

field has seen major improvements in several different tasks, such as sentiment clas-

sification, in the last few years. Therefore, to better understand if we can now use

sentiment analysis techniques to obtain players’ sentiment about games and include

that information in the testing process, we performed a follow-up study. In Research

Study 5, we investigate how a pre-trained Large Language Model performs on the sen-

timent classification of game reviews and what issues affect the performance of such

a model. This study provides insights about whether a modern sentiment classifier

can be used to effectively capture players’ sentiment about games.

Findings: We found that the pre-trained Large Language Model that we used

performs (far) better on the sentiment classification of game reviews and that most

issues that affect traditional classifiers have been solved. Therefore, a Large Language

Model can be used to capture players’ sentiment about game features and we can now

include this information in the testing process.

Together, the research studies discussed above provide deep insights and action-

7

able recommendations to improve manual game testing. They also present novel

approaches to support QA engineers and developers to improve test case descriptions

and optimize the test execution taking into account player priorities, which makes the

manual testing more effective and efficient and improve the experience of players with

the game. In the next section, we discuss an example of a typical natural language

test case that is used in a manual game testing scenario.

1.3 Natural language test cases

In a manual game testing scenario, test cases are written in natural language only

and do not have source code. A natural language test case contains the following

fields:

• a meaningful test case name.

• an objective with the main goal of the test case.

• the duration of the test case execution, as provided by developers and QA

engineers.

• one or more steps with instructions that must be manually performed by a

human tester.

Table 1.1 presents two examples of typical test cases in natural language that were

used in the research studies that we performed. The first example is a simple test

case that verifies if the login functionality is working as expected. The tester needs to

manually log in to the game with an existing account designed for testing and verify

the success of the operation in the system. The second test case aims at verifying if

a membership can be purchased. The tester needs to log in to the game using a non-

member account designed for testing, perform the steps to purchase a membership,

and verify in the system that the membership was successfully purchased.

8

Table 1.1: Examples of natural language test case descriptions.

Name Objective Duration Steps

Login -

Existing account

Verify if players

can log in to the game

with an existing account

1 minute

1. Log in to the game using an

existing player account

2. Verify if the player is

successfully logged in

Membership

purchase

Verify if players without

a membership can

purchase it

3 minutes

1. Log in to the game using a

non-member player account

2. Go to the membership page

3. Click on the membership icon

4. Go through the membership flow

5. Verify that the player successfully

purchased the membership

For the research studies presented in Chapters 2, 3, and 4, we collaborated with

an industry partner, Prodigy Education, and used the test cases designed to test

the Prodigy Math game.3 The Prodigy Math game is a proprietary, online, web-based

serious math game with a curriculum-aligned educational content. The game features

over 50,000 math questions spanning Grade 1-8. In the game, players play the role

of a character (a wizard) in the Prodigy world and can go to the several different

world zones. As the players answer math questions, their wizards can evolve, learn

new spells, and acquire new equipment and in-game items. Furthermore, differently

from entertainment-only games, the Prodigy Math game has been designed with a

primary focus on supporting the learning of math, and aspects such as providing

entertainment and fun to players are used to keep players engaged in the learning

process.

3https://www.prodigygame.com/main-en/

9

https://www.prodigygame.com/main-en/

1.4 Thesis outline

The remainder of this thesis is organized as follows: Chapter 2 presents an investi-

gation of several unsupervised approaches to identify similar test cases specified in

natural language. Chapter 3 presents a study in which we investigated how NLP

techniques can be used to improve the description of manual test cases. Chapter 4

presents an approach to prioritize test cases that cover highly-used game features.

Chapter 5 presents a study with an evaluation of traditional sentiment classifiers on

game reviews and the causes of wrong sentiment classifications. Chapter 6 presents an

evaluation of a Large Language Model on the sentiment classification of game reviews

and the challenges of using such a model for game review sentiment classification. Fi-

nally, Chapter 7 concludes the thesis by highlighting the findings and contributions

of our research studies and discussing directions for future research.

10

Chapter 2

Identifying Similar Test Cases That
Are Specified in Natural Language

2.1 Abstract

Software testing is still a manual process in many industries, despite the recent im-

provements in automated testing techniques. As a result, test cases (which consist

of one or more test steps that need to be executed manually by the tester) are often

specified in natural language by different employees and many redundant test cases

might exist in the test suite. This increases the (already high) cost of test execution.

Manually identifying similar test cases is a time-consuming and error-prone task.

Therefore, in this chapter, we propose an unsupervised approach to identify similar

test cases. Our approach uses a combination of text embedding, text similarity and

clustering techniques to identify similar test cases. We evaluate five different text

embedding techniques, two text similarity metrics, and two clustering techniques to

cluster similar test steps and three techniques to identify similar test cases from the

test step clusters. Through an evaluation in an industrial setting, we showed that

our approach achieves a high performance to cluster test steps (an F-score of 87.39%)

and identify similar test cases (an F-score of 86.13%). Furthermore, a validation

with developers indicates several different practical usages of our approach (such as

identifying redundant test cases), which help to reduce the testing manual effort and

time.

11

2.2 Introduction

Despite the many recent improvements in automated software testing, testing is still

a manual process in many industries. For example, in the gaming industry, game

developers face several challenges and difficulties with writing automated tests [130,

140, 145]. As a result, test cases are often described in natural language and consist of

a sequence of one or more test steps, which have instructions that must be manually

performed to test the target game. Furthermore, those test cases are usually defined

by employees from different departments, such as Quality Assurance (QA) engineers

or developers, which may result in redundant test cases (i.e., test cases that are

semantically similar or even duplicates) as the system evolves and the test suite

grows [157]. Having redundant test cases is problematic in particular in a manual

testing scenario, due to the tediousness and cost of executing such manual tests.

Manually identifying similar or duplicate test cases to reduce test redundancy is

an expensive and time-consuming task. In addition, naive approaches (e.g., searching

for exactly matching test cases) are not sufficient to capture all similarity, as different

test case writers may use different terminology to specify a test case, even for similar

test objectives. Approaches proposed by prior work [36, 101, 186] have limitations

in terms of scope (e.g., the work by Li et al. [101] can only cluster test steps but

not entire test cases), the large manual effort necessary to specify formal descriptions

of test cases [186], or the need for the test case source code [36]. Therefore, an

automated and unsupervised technique to identify similar test cases (which can be

applied directly to the natural language description of entire test cases) is necessary

as it can prevent the QA and development teams from wastefully executing test cases

that perform the same task. Throughout this chapter, for brevity we adopt the term

“similar test cases” to refer to semantically similar and duplicate test cases.

In this chapter, we propose an approach to identify similar test cases that are

specified in natural language. More specifically, (1) we use text embedding, text

12

similarity, and clustering techniques to cluster similar test steps that compose test

cases and (2) we compare test cases based on their similarity in terms of steps that

belong to the same cluster.

In the first part of the chapter, we study how text embeddings obtained from dif-

ferent techniques, text similarity metrics, and different clustering algorithms can be

leveraged to identify semantically similar test steps. We compare embeddings from

five different techniques (Word2Vec, BERT, Sentence-BERT, Universal Sentence En-

coder, and TF-IDF), two similarity metrics (Word Mover’s Distance and cosine sim-

ilarity), and evaluate two different clustering techniques (Hierarchical Agglomerative

Clustering and K-Means). In particular, we address the following research question

for this part of the chapter:

RQ1: How effectively can we identify similar test steps that are written

in natural language?

Understanding if we can effectively identify similar test steps automatically allows to

know if we can rely on test step clusters to identify similarity between entire test cases.

We found that we can achieve the highest performance (an F-score of 87.39%) using

an ensemble approach that consists of different embedding and clustering techniques.

In addition, we show that using Sentence-BERT instead of Word2Vec (which was

identified as the best-performing model by prior work [101]) yields a slightly lower

performance but reduces the execution time from 150 minutes to about 2 minutes.

In the second part of the chapter, we leverage the previously detected clusters of

test steps to identify similar test cases. We compared three different techniques and

related variations to compute a similarity score (using the simple overlap, Jaccard,

and cosine metrics) to measure the similarity of test cases based on the test step

clusters that they have in common. In particular, we address the following research

question for this part of the chapter:

RQ2: How can we leverage clusters of test steps to identify similar test

cases?

13

Given the difficulty of identifying similar test cases, which are usually composed of

several steps, we use clusters of similar test steps to identify similar test cases. We

found that test step clusters can be used to identify test case similarity with a high

performance (an F-score of 86.13%).

Our work presents an approach to identify similar test cases based only on their

natural language descriptions. We highlight that our approach is unsupervised as it

does not require labelled data nor requires human supervision. In addition, no test

source code or system model is necessary. QA engineers and developers can use our

approach to obtain groups of similar test cases, which can be used, for example, to

identify and remove redundant test cases from the test suite. Furthermore, existing

groups of similar test cases can be leveraged to support the design of new test cases

and help to maintain a more consistent and homogeneous terminology across the

test suite. Finally, we provide access to the source code of our approach and the

experiments that we performed.1

The remainder of the chapter is organized as follows. In Section 2.3, we present

background information about text embedding, clustering techniques and game test-

ing. We discuss related work in Section 2.4 and our proposed approach in Section 2.5.

Section 2.6 presents the dataset that we used to evaluate our approach. Sections 2.7

and 2.8 discuss the experiments that we performed to evaluate the two main stages of

our approach. In Section 2.9, we discuss our results and the approach validation. Fi-

nally, Sections 2.10 and 2.11 present the threats to validity and conclude the chapter,

respectively.

2.3 Background

In this section, we present an overview of the terminology and concepts that we use

throughout this chapter. In this work, we use “test cases” to refer to manual test

cases that are described in natural language as a sequence of steps, i.e., test cases for

1https://github.com/asgaardlab/test-case-similarity-technique

14

https://github.com/asgaardlab/test-case-similarity-technique

which there is no source code associated.

2.3.1 Text representation

In order to use text data as input for a machine learning algorithm, we first need to

convert the text into a numeric vector through a process called text embedding [193,

194]. Different methods can be used to obtain a text embedding, and the embedding

can be done at different granularity levels, such as at word and sentence-level. Below,

we explain the different techniques that we use in this work to obtain the numeric

representation of words and sentences.

Word Embedding

A word embedding is the representation of a single word through a real-valued (and

usually high-dimensional) numeric vector. In this study, we use two natural lan-

guage processing techniques to obtain word-level embeddings: Word2Vec [124] and

BERT [46]. Figure 2.1a presents two examples of pre-processed test steps along with

part of their word embeddings obtained by the Word2Vec and BERT models. Next,

we explain how each word embedding technique works and how the example embed-

dings presented in Figure 2.1a are computed.

Word2Vec transforms words into high-dimensional numeric vectors that are able

to maintain the syntactic and semantic relationships between words in the vector

space [123, 124]. This means that embeddings of similar words will (most of the

time) be close in the vector space (i.e., the distance between the embedding vectors is

small). Furthermore, with Word2Vec, each word is assigned a single numeric vector

regardless of the context in which it is used, as we can see for the words “verify” and

“item” in the two steps in Figure 2.1a. In this work, we used the continuous bag-

of-words (CBOW) model architecture of Word2Vec, which is faster than the other

possible architecture, called skip-gram [123].

Differently from Word2Vec, BERT (Bidirectional Encoder Representations

15

Test step Word2Vec BERT

[verify item name] [(-0.93, -0.16, ...), (0.57, 0.21, ...), (0.12, 0.85, ...)] [(-0.12, -0.11, ...), (-0.59, -0.13, ...), (-0.24, -0.58, ...)]

[verify item description] [(-0.93, -0.16, ...), (0.57, 0.21, ...), (-0.03, -0.27, ...)] [(-0.12, 0.07, ...), (-0.61, -0.08, ...), (-0.24, -0.50, ...)]

(a) Examples of word embeddings for test steps.

Test step SBERT USE TF-IDF

[verify item name] [(0.32, 0.02, ...)] [(0.46, 0.52, ...)] [(0.0 ... 0.63, 0.67 … 0.0)]

[verify item description] [(0.31, -0.09, ...)] [(-0.15, 0.81, ...)] [(0.0 … 0.76, 0.55 … 0.0)]

(b) Examples of sentence embeddings for test steps.

Figure 2.1: Examples of test step embeddings. Note that we provide only the first
two elements of the embedding vector due to space constraints as the actual vectors
have a high dimension.

from Transformers) is a transformer-based model that can be used to extract

contextual word embeddings, i.e., embeddings that change depending on the context

in which a word is present [46]. The context of a target word refers to the words

that surround it, i.e., the words that appear before and after the target word. This

means that the same word may have different embedding vectors, as we can see in

Figure 2.1a, where the BERT embeddings for the words “verify” and “item” are

different in the two test steps because those words are in different contexts.

BERT is available as a model that was pre-trained on lower-cased English text (un-

cased BERT). This pre-trained model can further be trained with a domain-specific

training set (known as domain-adaptive pre-training [65]). The BERT model uses

WordPiece tokenization [202], in which a word may be split into sub-words. For

example, the word “validate” is composed of the sub-words “valid” and “ate”, each

one with its own embedding vector. Therefore, when extracting embeddings of words

that are split into sub-words, we need to aggregate the embeddings of the sub-words

(e.g., by averaging the embedding vectors).

16

Sentence Embedding

Differently from word embedding, sentence embedding is the representation of a whole

sentence with a real-valued (and usually high-dimensional) numeric vector. In this

work, we use three different techniques to extract sentence embeddings (SBERT,

USE, and TF-IDF). Figure 2.1b presents two examples of pre-processed test steps

along with part of their sentence embeddings obtained by the SBERT, USE, and TF-

IDF techniques. Next, we explain how each sentence embedding technique works.

Sentence-BERT (SBERT) is a BERT-based framework that allows us to di-

rectly extract numeric representations of full sentences [152]. The embeddings of

sentences that are semantically similar are close in the embedding space. We can

use this information for different purposes, such as identifying paraphrases and clus-

tering similar sentences. For instance, the SBERT embeddings of the two test steps

presented in Figure 2.1b are close in the embedding space (i.e., have a small dis-

tance between them). Among several generic and task-specific SBERT pre-trained

models that are available2, three models are suitable for our task (identifying similar

test steps): paraphrase-distilroberta-base-v1, stsb-roberta-base, and stsb-roberta-large.

While the first model is optimized to identify paraphrases and was trained on large

scale paraphrase data, the second and third ones are the base and large versions of a

model that was optimized for semantic textual similarity.

Universal Sentence Encoder (USE) is an embedding technique that can be

used to directly extract embeddings from sentences, phrases, or short paragraphs to

be used in another task, such as textual similarity and clustering tasks [31]. With

a similar behavior to SBERT, the two examples presented in Figure 2.1b have close

embedding vectors.

Finally, we also used the TF-IDF (Term Frequency–Inverse Document Fre-

quency) method to represent sentences. TF-IDF computes the importance of a word

2https://www.sbert.net/docs/pretrained models.html

17

https://www.sbert.net/docs/pretrained_models.html

to a document by combining the word frequency in the document and the word fre-

quency across all the other documents [86, 87, 161]. In our case, the test steps (i.e.,

sentences) are considered documents. We built a numeric vector for each test step

using the word importance values. Words that are not present in the step are as-

signed a value of zero. We can observe a typical vector obtained with TF-IDF in the

examples presented in Figure 2.1b, in which the values different from zero correspond

to the importance of the words presented in the “verify item name” and “verify item

description” steps.

2.3.2 Clustering techniques

Hierarchical Agglomerative Clustering (HAC) [155] is a clustering algorithm

that works in a bottom-up manner. Initially, each data point corresponds to a single

cluster itself, and as the algorithm iterates, different clusters are merged with the aim

of minimizing a specific linkage criterion. The result of the iterative merging process

is a tree structure that can represent the data points (and their clusters), known

as a dendrogram. Although the dendrogram can be used to identify the number of

clusters, in our work we determined that parameter empirically and used the number

that maximizes our evaluation metric (as explained in Section 2.7.5). Different linkage

criteria can be used, such as single-linkage (the algorithm uses the minimum of the

distances between all data points of two sets) and average-linkage (the algorithm uses

the average of the distances between all data points of two sets).

The K-means clustering [50] algorithm splits the data points into k different

clusters. Different from HAC, no hierarchical cluster structure is generated with

K-means. The goal of K-means is to group data points in order to minimize the

distance between points belonging to the same cluster compared to the distance of

points from different clusters. Using the Expectation-Maximization algorithm [127],

K-means starts with k centroids. Then, the algorithm (1) assigns each data point

to the closest cluster (in terms of the distance between the point and the centroids)

18

and (2) computes the new centroids using the updated data point assignments. The

execution finishes when there is no change to the allocation of data points.

2.3.3 Game testing

Video game testing is substantially different from traditional software (e.g., desktop

or mobile) testing. While there have been advances in test automation for traditional

software, games still rely mainly on high-level, black-box, manual testing, in which

human testers play through the game to assert its expected behavior (which is known

as gameplay testing) [130, 140, 145]. Furthermore, the focus of game testing is more

related to the overall user experience than to the accuracy of the test [145]. The

test cases in a test suite of a game must also verify different types of requirements

compared to traditional software, such as fun, entertainment, gameplay and other

user experience aspects that traditional testing cannot satisfy [145]. Test automation

is significantly more difficult in games for a number of reasons, such as (1) the diffi-

culty of separating the user interface from the rest of the game, (2) the difficulty to

explore the often large state space in games, (3) the challenge in asserting what the

expected behavior is, and (4) the non-determinism that games have (e.g., because of

multithreading, distributed computing, and AI agents) [130]. Finally, the common

scenario of manual testing and the difficulties to automate tests in games show the

need for new methodologies that can support QA engineers and developers during

the game testing and enable game test automation in the future [140].

2.4 Related Work

In this section, we discuss prior work that applied clustering techniques [10, 34, 101,

186, 214] and natural language processing (NLP) [101, 113, 119, 120, 175, 189, 190]

to software testing.

19

2.4.1 Clustering techniques for software testing

Our work is based on the study of Li et al. [101], which proposed an approach to

cluster test steps written in natural language based on the steps’ similarities. The

study used text embeddings (including embeddings obtained with the Word2Vec tech-

nique) together with the Relaxed Word Mover’s Distance (RWMD) metric [93] to

measure similarity between embeddings. The test steps were then clustered with the

hierarchical agglomerative and K-means clustering techniques. The approach was

evaluated on a large-scale dataset of a mobile app and achieved an F-score of 81.55%

in the best case. The proposed approach also reduced the manual effort for imple-

menting test-step API methods by 65.90%. Differently from Li et al.’s work [101],

we evaluated more recent NLP techniques to obtain word and sentence embeddings

(BERT, SBERT, and Universal Sentence Encoder). Furthermore, we extended Li et

al.’s work [101] for the purpose of identifying similar test cases using the identified

clusters of test steps.

Walter et al. [186] proposed an approach to improve the efficiency of test execu-

tion. The approach removes redundant test steps and uses clustering techniques to

rearrange the remaining steps. To use the approach, the textual descriptions of test

cases must be converted into a representation form of parameters concatenated by

first-order logic operators (AND, OR, NOT). The approach was evaluated in a case

study with a system from an automotive industry company. The results indicated a

test load reduction of 18% due to the removal of redundant test steps and rearranging

of the remaining steps. Chetouane et al. [36] proposed an approach to reduce a test

suite by clustering similar test cases (based on their source code) with the K-means

algorithm. 13 Java programs were used to evaluate if the approach could efficiently re-

duce the test suite and assess the impact on coverage metrics. The evaluation showed

that the approach can reduce the test suite by 82.2% while maintaining the same

coverage metric as the original test suite. Even though the work of Walter et al. [186]

20

addressed the problem of test step redundancy, their approach requires all test steps

to contain a formal description of their precondition, action and postcondition. Cre-

ating these formal descriptions requires a large amount of manual effort which causes

scalability issues and reduces the applicability of the approach in practice. Our ap-

proach does not require such manual effort. The approach proposed by Chetouane et

al. [36] requires test cases that have source code associated with them. The test cases

on which our approach focuses consist of only natural language descriptions and do

not have any source code associated with them.

Pei et al. [141] proposed distance-based Dynamic Random Testing (DRT) ap-

proaches with the goal of improving the fault detection effectiveness of DRT. The

work clustered similar test cases based on their source code with three clustering

methods: K-means, K-medoids, and hierarchical clustering. The information of dis-

tance between the test case groups was used to identify test cases that are closer to

failure-causing groups. 12 versions of 4 open-source programs were used to evaluate

the approaches. The evaluation showed that the proposed strategies achieve a larger

fault detection effectiveness with a low computational cost compared to other DRT

approaches. Arafeen and Do [6] investigated whether clustering of test cases based

on similarities in their requirements could improve traditional test case prioritization

techniques. The paper used TF-IDF and the K-means clustering algorithm to group

test cases that have similar requirements. Two Java programs were used to evaluate

the approach. The evaluation showed that the use of requirements similarity can

improve the effectiveness of test case prioritization techniques but the improvements

vary with the cluster size.

Differently from the works above, our study aims at finding similar test cases that

are written in natural language and for which there is no associated source code. We

experimented with different NLP and clustering techniques to find clusters of similar

test steps, which are used with test case names to obtain similar test cases. Further-

more, differently from the work of Walter et al. [186], which converts natural language

21

descriptions of test cases into a representation form of parameters concatenated by

logic operators to be used with their approach, our proposed approach works in an

unsupervised manner with the original test cases written in natural language.

2.4.2 Natural Language Processing techniques for software
testing

Wang et al. [190] proposed an approach to automate the generation of executable

system test cases. The approach applies NLP techniques (such as tokenization and

part-of-speech tagging) to textual data obtained from use case specifications. Further-

more, a domain model of the system under analysis is necessary to generate test data

and oracles. Wang et al. [190] performed an industrial case study with automative

software to demonstrate the feasibility of the proposed approach. Wang et al. [189]

extended their previous work [190] by further providing empirical evidence about the

scalability of the approach to generate executable, system-level test cases for accep-

tance testing from natural language requirements. In addition, Wang et al. [189]

focused on embedded systems and demonstrated the effectiveness of the proposed

approach using two industrial case studies, in which the approach correctly gener-

ated test cases that exercise different scenarios manually implemented by experts,

including critical scenarios not previously considered.

Yue et al. [210] proposed a Test Case Specification (TCS) language, called Re-

stricted Test Case Modeling (RTCM), and an automated test case generation tool,

called aToucan4Test, to transform textual test cases into executable test cases. RTCM

provides a template that combines natural language with restriction rules and key-

words for writing TCS. Two case studies were performed to assess the applicability of

RTCM and a commercial video conferencing system was used to evaluate the aTou-

can4Test tool. aToucan4Test could correctly generate 246 executable test cases from

9 test case specifications of subsystems of the video conferencing system. The study

also evaluated the effort to use RTCM and aToucan4Test using the average time for

22

deriving the executable test cases, which is 0.5 minutes. Mai et al. [113] addressed the

problem of automatically generating executable test cases from security requirements

in natural language. Mai et al. proposed an approach to generate security vulnera-

bility test cases from use case specifications that capture malicious behavior of users.

Similarly to previous work, Mai et al. evaluated the approach with an industrial case

study in the medical domain. The evaluation indicated that the proposed approach

can automatically generate test cases detecting vulnerabilities.

Prior work also used NLP techniques for test case prioritization and fault local-

ization. Peng et al. [142] investigated program change-based test case prioritization

using Information Retrieval (IR) techniques, in which the textual similarity between

the program changes and the tests is used to rank tests for execution. Four techniques

were used to compare and rank the tests, such as BM25, LDA, LSI, and TF-IDF,

which transforms the text data into a numeric vector using bag-of-words. The pro-

posed techniques were evaluated using cost-aware and cost-unaware metrics related

to the Average Percentage of Faults Detected (APFD). Lachmann et al. [94] investi-

gated test case prioritization of system-level, black-box test cases written in natural

language. Test case textual descriptions were pre-processed (with techniques such as

tokenization and stemming) and converted to numeric vectors using the frequency

of terms occurring in the test cases. These vectors were combined with other test

case meta-data (e.g., failures revealed by the test cases) to rank test cases based on

their importance. Hemmati et al. [74] also studied test prioritization using natural

language, black-box test cases. Three techniques were proposed (text diversification,

topic modeling, and history-based test prioritization) and evaluated on Mozilla Firefox

projects. The evaluation showed that, in rapid release environments, test case failure

history can be used to effectively prioritize test cases for execution. DiGiuseppe and

Jones [48] proposed a Semantic Fault Diagnosis (SFD), which automatically provides

natural language descriptions of software faults. Using information extracted from the

source code text (e..g, class names, comments, and other keywords), SFD can present

23

developers not only with the pass and fail outcome of a test execution, but also a list

of words that describe the topics related to the fault. Finally, Fry and Weimer [55]

presented an approach that relies on textual features (e.g., term frequency vectors)

from source code and defect report descriptions to localize defects in the source code.

Using a similarity score to compare the representations of a defect report and the

source code files, the approach ranks the source code files such that files at the top

are more likely to contain the defect.

The aforementioned works used different NLP techniques to perform several tasks

related to testing, such as to automatically generate different types of test cases, test

case prioritization, and fault localization. In contrast, we propose an approach that

leverages different NLP techniques to extract text embeddings and can automati-

cally identify similar test cases. The approach can be used to identify and remove

redundant test cases written in natural language.

2.5 Proposed approach

In this section, we demonstrate our proposed approach through a running example.

Our approach starts by clustering similar test steps, which are then used to identify

similar test cases. We adopt a test step-based approach since test steps have a simpler

grammatical structure compared to whole test cases. Also, a whole test case, which

consists of all of its test steps aggregated, is not a coherent document as the test

steps in a test case might be very different from each other. For example, in the same

test case, one test step might be related to the ’login’ functionality and another test

step might be related to ’purchasing a membership’. Finally, using a test step-level

approach provides more flexibility for recommending improvements not only related

to whole test cases but also to individual test steps in the future. Figure 2.2 presents

an overview of our approach, which consists of three stages: (1) pre-processing of

test cases, (2) clustering of similar test steps and (3) identification of similar test

cases. Next, we explain the stages of our approach, and we present an example that

24

Stage 2: Test step clustering

Compute text
embedding

Compute text
embedding
similarity

Apply clustering
techniques

Stage 3: Test case similarity

Identify similar test
cases based on common

test step clusters

Clusters of
test steps

Identify test step
clusters belonging
to each test case

Groups of similar
test cases

Stage 1: Test case pre-processing

Raw test cases
Split test cases
into test steps

Pre-process
test steps

Pre-processed
test steps

Figure 2.2: Overview of our proposed approach.

demonstrates the necessity of our approach.

2.5.1 Stage 1: Test case pre-processing

Our approach relies only on test cases that are written in natural language, which

means that there is no source code available for our test cases. The input to our

approach consists of unprocessed (raw) test cases. Table 2.1 presents three test cases

(TC1, TC2, and TC3) that we use as a running example to describe how our approach

identifies similar test cases. As we can observe, each test case contains an identifier,

a name and a type. In addition, a test case has one or more test steps, which are

instructions that the tester must perform in order to achieve the overall objective of

the test case. Note that this objective is generally not explicitly specified. Test steps

might be related to one or more game assets, which are the content of the game (e.g.,

in-game items, characters, and maps). The test steps that we collect to perform our

experiments are explicitly identified (i.e., each test step has its own field within a

test case). Therefore, we can directly collect the test steps and identify to which test

case they belong. Each test step is assigned a unique identifier and is pre-processed.

Initially, we used tokenization to transform the step sentences into a list of words. To

ensure that we have high-quality data, we obtained a list of the unique words in our

25

Table 2.1: Running example that shows the test case fields: test case identifier (TC
ID), test case name (TC name), test case type (TC type), test step identifier (TS
ID), test step (TS) before pre-processing, and test step (TS) after pre-processing.

TC ID TC name TC type TS ID TS (before pre-processing) TS (after pre-processing)

TC1 Log in to an
existing ac-
count

Login TS1.1 Login to the game using an ex-
isting account that has completed
the tutorial

[login, game, using, existing, ac-
count, completed, tutorial]

TS1.2 Select the Playing from School
portal

[select, playing, school, portal]

TC2 Assignment
with many
students

Education TS2.1 Update the assignment adding
students

[update, assignment, adding, stu-
dent]

TS2.2 Request the next skill and ques-
tion from the algorithm gateway
for the 1st student on the assign-
ment

[request, next, skill, question, al-
gorithm, gateway, student, assign-
ment]

TS2.3 Request the next skill and ques-
tion from the algorithm gateway
for the middle student on the as-
signment

[request, next, skill, question, al-
gorithm, gateway, middle, stu-
dent, assignment]

TC3 Student has
multiple as-
signments

Education TS3.1 Request the next skill and ques-
tion from the algorithm gateway
for one of the students that was
on the assignment

[request, next, skill, question, al-
gorithm, gateway, one, student,
assignment]

TS3.2 Remove student from the first as-
signment

[remove, student, first, assign-
ment]

TS3.3 Request the next skill and ques-
tion from the algorithm gateway
for one of the students that was
on the assignment

[request, next, skill, question, al-
gorithm, gateway, one, student,
assignment]

TS3.4 Remove the student from the sec-
ond assignment

[remove, student, second, assign-
ment]

data and manually inspected the list to identify misspelled words, which were used

to build a list of [misspelled word, fixed word] tuples. The manually built tuple list

was used to programmatically replace misspelled words with the corresponding fixed

words across the entire dataset. We then removed stopwords (such as “a”, “of”, and

“the”) as they do not add meaning to the sentences. Also, we applied lemmatization

to the words to have a consistent terminology across the data. Finally, similar to

prior work [101], we removed words that occur only once in the whole dataset (507

out of 2,599 unique words) as they may result in incorrect embeddings due to the

small amount of data for these words. Overall, a test case instance can be represented

26

Test step clusteringDistance between test

step embeddings

Test step

embeddings

TS1.1
TS1.2

TS2.1

TS2.2
TS2.3

TS3.1

TS3.3

TS3.2

TS3.4

[login, game … tutorial]

[select, playing … portal]

[remove, student … assignment]

[request, next … assignment]

Pre-processed

test steps

[0.53, 1.32 … 0.01]

[1.6, 2.01 … 0.06]

[1.11, 0.25 … 0.33]

[4.1, 1.23 … 0.33]

C1
C2

C3

C4

C5

Figure 2.3: Overview of stage 2 of our approach with the running example.

Similarity between test casesTest case

representation
Test case matrix

[1, 1, 0, 0, 0]

[0, 0, 1, 2, 0]

[0, 0, 0, 2, 2]

Test case name

Log in to an existing account

Assignment with many
students

Student has multiple
assignments

Test name embedding

[1.9, 2.1 … 0.6]

[1.9, 0.1 … 0.5]

[1.7, 0.2 … 0.3]

Similarity between test names

Final similarity between

test cases

Figure 2.4: Overview of stage 3 of our approach with the running example.

by the triple:

<test case name, test case type, test steps>

2.5.2 Stage 2: Test step clustering

In the second stage, our approach clusters similar test steps. Figure 2.3 shows how

the steps of the three test cases are processed in this stage. Before applying a ma-

chine learning algorithm to text data, we need to transform the text into a numeric

representation [193, 194]. Our approach starts by transforming each test step into

one or more numeric vectors (text embedding). The pairwise similarity between steps

(in terms of embedding distance) is then computed. The computed distances between

the text embeddings of the test steps can be used to capture their similarity. In par-

27

ticular, embeddings that are close in the embedding space should represent similar

steps.

Finally, our approach leverages the computed distances to identify clusters of sim-

ilar test steps. While steps that have a small distance between them should belong

to the same cluster, steps with larger distances should be in different clusters.

2.5.3 Stage 3: Test case similarity

In the last stage, our approach leverages the clusters of test steps identified in stage

2 together with the test case name to find similar test cases. Figure 2.4 shows how

the TC1, TC2, and TC3 test cases are processed in this stage. The relationship

between test cases and test step clusters is represented through a matrix in which

each row is a test case (TC1, TC2, and TC3) and each column is a step cluster (C1,

C2, C3, C4, and C5). Initially, for each test case (matrix row), the approach identifies

the test step clusters (matrix column(s)) that contain one or more steps of the test

case. Our approach supports the use of binary (which yields a matrix consisting of

0’s and 1’s) or numeric flags. Note that a numeric flag represents the number of

test steps present in the identified cluster. After filling in the matrix, each test case

is represented by the corresponding binary or numeric vector (a row in the matrix)

with a length corresponding to the total number of test step clusters. Test cases are

then compared to each other in terms of the similarity between their representation

vectors. Finally, to incorporate knowledge from the test case name, the approach

computes the pairwise similarity between test case name embeddings and combines

this similarity metric with the one obtained from the test step clusters. The final test

case similarity score is a weighted sum between the test step cluster and the test case

name metrics. For the running example, our approach identifies the TC2 and TC3

test cases as similar but both are different from the TC1 test case. A QA engineer can

then investigate those test cases to decide, for example, whether they are redundant

or should be improved.

28

Table 2.2: Motivational example of two similar test cases.

Test case name 1 Test steps 1

Boots - Ruin Dweller Boots (Got Item)
1. Verify item name

2. Verify item icon

Test case name 2 Test steps 2

Boots - Got Item

1. Verify item name

2. Verify item icon

3. Sanity check on wearable item - check
”Got item dialogue” for Boots

2.5.4 Motivational Example

Li et al. [101] proposed an approach to cluster similar test steps in natural language.

Even though their work is supposed to be used for test steps only (and not entire

test cases composed of one or more test steps), we evaluated an adaptation of their

approach on our dataset using their best-performing techniques. The adaptation

approach consists of using Word2Vec for text embedding, Word Mover’s Distance

(WMD) for text similarity, and hierarchical agglomerative clustering together with

K-means for clustering. To be able to apply their approach, we considered a test case

to be represented by either (1) the test case name concatenated with all the test steps

or (2) all the test steps together. In both scenarios, the approach failed to cluster the

two similar test cases presented in Table 2.2 (and there are many more examples in

our dataset which could not be identified as similar by our adaptation of Li et al.’s

approach).

The intended purpose of Li et al.’s approach is to cluster test steps (and not test

cases). When considering a whole test case as a single test step, the granularity of

Li et al.’s approach becomes too coarse and it considers the differences between the

two test cases too large to cluster them together. However, when comparing the test

29

cases step by step, instead of as a single blob of text, our approach detects that many

of the steps overlap, hence clustering the two test cases in the same cluster.

2.6 Dataset and ground truth

We collected 3,323 test case descriptions written in natural language. The test cases

under study were manually designed to test the Prodigy Game3, a proprietary, educa-

tional math game with more than 100 million users around the world. Each test case

is composed of one or more test steps and, in total, there are 15,644 steps. There is

an average of 4.71 (and a median of 2) test steps per test case. We also collected the

predefined type of the test case regarding the part of the game that is being tested.

The test case type is available for 2,053 test cases (62% of the total number of test

cases). All the test steps are pre-processed according to the pre-processing steps as

explained in Section 2.5.1. Manual testing using test cases that are described only in

natural language is still a common practice across several industries [73, 74, 101, 130,

140, 145, 186]. The test cases of the Prodigy game are similar in structure to natural

language test cases from other projects. Hemmati et al. [74] studied Mozilla Firefox

projects, with manual test cases described only in natural language, with an objective

and one or more test steps, similarly to our test cases. Li et al. [101] studied natural

language test cases of a large industrial app (WeChat) with similar characteristics,

such as 4.04 words per test step description on average (our average is 3.92) and test

steps with simple grammatical structure. Walter et al. [186] studied automotive test

cases in natural language, also with similar characteristics, such as an average of 3.57

test steps per test case for one of the studied systems (our average is 4.71).

To evaluate the performance of our approach (stage 2, for test step clustering, and

stage 3, for test case similarity), we used our dataset to manually build a ground

truth of similar test steps (stage 2) and similar test cases (stage 3), as we explain

below.

3https://www.prodigygame.com/main-en/

30

Ground truth of similar test steps (stage 2 of our approach). We randomly

selected a representative sample from all 15,644 test steps with a confidence level of

95% and a confidence interval of 5%, which corresponds to 394 steps. The test step

samples were manually analyzed in an incremental manner: when analyzing test step

n, we looked at all the (n-1) previously clustered steps to verify if step n should be

assigned to an existing cluster or to a new cluster. To determine if two test steps

are similar, we looked for two main characteristics of the data: (1) if the steps are

textually similar or (2) if the steps give the same or similar instructions for testing,

even if the textual descriptions are not similar. If any of those two characteristics are

observed, we cluster the two samples together. Below, we show examples of pairs of

test steps to demonstrate both characteristics:

(1) Textually similar test steps:

• “Play before 4pm and attempt to play video.”

• “Play before 8am and attempt to play video.”

(2) Test steps with similar instructions for testing:

• “Verify the game zones that can be selected by the student.”

• “Check which game zones are available to the student.”

The ground truth of similar test steps ended up with a total of 213 clusters and

an average of 1.9 (standard deviation of 2.0) test steps per cluster. We also found

that the largest cluster has 15 test steps. The fourth author independently validated

the ground truth on a sample of 80 randomly selected pairs of test steps, which

corresponds to a representative sample with a confidence level of 95% and a confidence

interval of 10%. For each pair of test steps, the fourth author indicated if the two

test steps should be in the same cluster (i.e., if they are similar) or not. We reached

an agreement of 96.25% (which corresponds to a kappa coefficient [40, 95] of 0.89 or

31

almost perfect agreement). The reached agreement demonstrates that the manual

clustering process is straightforward (though time-consuming).

Ground truth of similar test cases (stage 3 of our approach). We randomly

selected a representative sample of test cases with a confidence level of 95% and

a confidence interval of 5%, which corresponds to 381 test cases. Similarly to the

way that we built the ground truth of similar test steps, the test case samples were

manually analyzed in an incremental manner: when analyzing test case n, we looked

at all the (n-1) previously clustered test cases to verify if test case n should be

assigned to an existing cluster or to a new cluster. To determine if two test cases are

similar, we looked for the same characteristics (1) and (2) as for the test steps. If any

of those two characteristics are observed, we cluster the two samples together. Note

that, to analyze test cases, we consider the test case name, test case type, and all

the steps that compose the test case. The ground truth of similar test cases ended

up with a total of 242 clusters and an average of 1.6 (standard deviation of 1.9) test

cases per cluster. For this ground truth, we found that the largest cluster has 21 test

cases.

2.7 Evaluating our approach for clustering similar

test steps

In this section, we discuss the experiments that we performed to evaluate our approach

for clustering similar test steps in an industrial setting.

2.7.1 Evaluated techniques

Our approach consists of several steps that can be implemented through different

techniques and models. To evaluate our approach, we performed experiments with

combinations of five different text embedding techniques, two similarity metrics, and

two clustering techniques. Figure 2.5 presents an overview of the experiments that we

performed to address RQ1. Different NLP techniques can be used for text embedding

32

Clustering test steps (6.5)

Hierarchical
Agglomerative

Clusters

ClustersK-means

Sentence

embedding (6.3)
Pre-processed

test steps

Word2Vec

BERT

SBERT

USE

TF-IDF

Word embedding

(6.2)
Text similarity

(6.4)

Compute
Word Mover’s

Distance
(WMD)

Compute
cosine

similarity

Figure 2.5: Overview of the experiments to identify clusters of similar test steps.

at different granularities, such as words, sentences, and short paragraphs [31, 46,

96, 123, 124, 152]. As our test steps usually consist of a single sentence and the

test steps are transformed into a list of words after pre-processing, we adopt word-

level and sentence-level text embedding. We used two techniques to obtain text

embeddings at the word-level (Word2Vec [123, 124] and BERT [46]) for the test steps

and computed the embedding similarity using the Word Mover’s Distance (WMD)

metric [93]. For text embeddings at the sentence-level, we used three techniques

(SBERT [152], Universal Sentence Encoder [31], and TF-IDF [86, 161]) and used

the cosine similarity to compare the embeddings. For both types of embeddings, we

applied the hierarchical agglomerative [169] and K-means [50] clustering techniques

to obtain clusters of similar steps.

2.7.2 Configuration of the word embedding techniques

Word2Vec. We trained a Word2Vec model using all 15,644 test steps that we collected.

Furthermore, to provide more context to the embedding model during training, we

concatenated the test case type (available for 2,053 test cases) and test case name to

each step. We used an embedding vector of length 300 (as in the original study that

proposed the Word2Vec model [124]). We used the continuous bag-of-words (CBOW)

33

model architecture of Word2Vec with two context words as this configuration pro-

vides the highest test step clustering performance, which was determined through an

experiment in which we varied the number of context words from one to ten. We

initialized the word embeddings with the weights from the large-scale pre-trained

model released by Google.4 This model contains 3 million word embeddings with

dimension 300 and was trained on a Google News corpus with approximately 100

billion words. For words that are present in our dataset but not in the pre-trained

model (and, therefore, cannot be initialized with pre-trained weights), we followed a

process proposed by Li et al. [101] to initialize the word embeddings. We computed

the mean and standard deviation of the initialized words and initialized the remaining

words with samples of a normal distribution parameterized by the computed mean

and standard deviation. Finally, the outcome of the training process is the word

embeddings learned with our data.

BERT. In this work, we used the pre-trained model released by Google5 (pre-trained

BERT) to obtain contextual embeddings of the test steps. Furthermore, we used

a model with additional pre-training using our own corpus of test steps (domain-

adaptive pre-trained BERT) to obtain the contextual embeddings. We explain the

configurations of both models below.

Pre-trained BERT. For the pre-trained model, we used the uncased (case-insensitive)

version of the base model [46, 179]. We transformed the test step text into the BERT

format by adding the [CLS] and [SEP] tokens respectively to the start and end of each

test step text. The test step was then tokenized with BERT’s own tokenizer. Finally,

we used the tokenized steps to extract the contextual embeddings. As explained

in Section 2.3.1, we can adopt different pooling strategies to obtain the embedding

vector for a word. We performed experiments with four different pooling strategies

to combine the layers (as suggested by the original paper’s authors [46]): using only

4https://code.google.com/archive/p/word2vec/
5https://github.com/google-research/bert

34

https://code.google.com/archive/p/word2vec/
https://github.com/google-research/bert

the second-to-last layer, summing the last four layers, averaging the last four layers,

and concatenating the last four layers. We found that summing the last four layers

achieves the best performance with our data. Finally, we used the average of sub-

word embeddings (see Section 2.3.1) to obtain the original out-of-vocabulary word

embedding.

Domain-adaptive pre-trained BERT. We also performed additional pre-training of

BERT with our corpus. For the additional pre-training, after experimenting with

the base and large models, we decided to use the uncased version of the BERT large

model as the initial checkpoint (i.e., we performed the additional pre-training on top

of the pre-trained large model). We followed the same process to configure the test

step text to a BERT-friendly format. However, differently from the pre-trained model,

using the second-to-last layer (instead of summing the last four layers) achieves the

best results for the domain-adaptive pre-trained BERT model.

2.7.3 Configuration of the sentence embedding techniques

Sentence-BERT (SBERT). We performed experiments with three available pre-trained

SBERT models suitable for our task (see Section 2.3.1): paraphrase-distilroberta-

base-v1, stsb-roberta-base, and stsb-roberta-large. We decided to use the paraphrase-

distilroberta-base-v1 model since it achieves the best results with our data. To obtain

the embeddings for the test steps, we just provided the test steps directly as param-

eters to the SBERT model.

Universal Sentence Encoder (USE). To obtain the test step embeddings with the USE

model, we provided the steps directly as parameters to the USE model.

TF-IDF. Finally, we also used TF-IDF to extract the numeric vector representations

of the test steps. For each word, we computed its importance in a single test step

relative to all the other test steps. We used the TfidfVectorizer class provided by

sklearn6 with default parameters, which includes a smoothing parameter of 1 so that

6https://scikit-learn.org/stable/

35

https://scikit-learn.org/stable/

out-of-vocabulary words can be properly handled.

2.7.4 Computing the test step similarity

Word Mover’s Distance (WMD). We used the Word Mover’s Distance (WMD) [93]

metric to measure the similarity between test step word-level embeddings. The WMD

metric is suitable to be used together with the Word2Vec and BERT models because

of the property that distances between embedded words in the embedding space are

semantically meaningful, which is a property that WMD relies on [93]. Therefore, for

word-level embeddings, we used the WMD metric instead of other metrics, such as

the cosine similarity. We computed the pairwise WMD metric between any two test

steps and built a distance matrix of dimension [15,644 x 15,644]. The more similar

two steps are, the lower is the WMD metric, with the lowest bound being zero for

exactly matching steps.

Cosine similarity. Since cosine is a widely used metric to measure similarity between

text vectors [60, 79, 99, 162], we used the cosine to measure the similarity between

test step sentence-level embeddings. Note that we cannot use the WMD metric for

sentence-level embeddings since WMD requires the embeddings of each word individ-

ually instead of a whole sentence embedding. Similarly to the way we computed the

WMD metric, we computed the pairwise cosine similarity between any two test steps

and built a distance matrix of dimension [15,644 x 15,644]. As the cosine similarity

score measures the cosine of the angle between the numeric vectors of two steps, the

smaller the angle, the larger its cosine and the more similar the two test steps are.

2.7.5 Clustering test steps

Hierarchical Agglomerative Clustering. We applied the hierarchical agglomerative

clustering technique to the distance matrix that we built in the previous step (Sec-

tion 2.7.4). We used the average linkage criterion (with Euclidean distance), which

means that the clustering algorithm merges pairs of test step clusters that minimize

36

the average distance between each observation of the pairs.

K-means. To apply the K-means clustering technique, we used the test step embed-

dings obtained with the word/sentence embedding techniques (Sections 2.7.2 and 2.7.3).

Note that, for word-level embeddings, we transformed the embedding vectors of the

words of a test step into a single vector to represent the whole test step by computing

the word embeddings’ average [117, 216]. Furthermore, to speed up the execution of

K-means, we used the centroids of the clusters obtained by the hierarchical approach

as the initialization centroids, similarly to prior work [101, 110].

Regarding the number of clusters for both clustering techniques, we chose the

number of clusters that maximized the F-score (which is our evaluation metric, as

explained in Section 2.7.6). We performed a search by varying the number of clusters

from 50 up to 15,000 with a step of 50, and for each value we executed both clustering

approaches and computed the F-score. Finally, we selected the (optimal) number of

clusters for which each clustering technique achieved the highest F-score. Note that

the optimal number of clusters might be different for the hierarchical clustering and

K-means.

Ensemble approach. Each text embedding technique that we used has different

characteristics and properties to extract word or sentence embeddings, which leads

to different clusters of test steps. Therefore, attempting to mitigate each model’s

specific weaknesses and based on prior work [47, 187] which showed that ensemble

approaches might perform well for certain tasks (e.g., classification and clustering), we

built an ensemble approach that uses majority voting. The approach uses the clusters

generated by each previous single approach and starts by getting the set of all the

test steps in the data. Then, it iterates through each test step and performs pairwise

comparisons with all the other test steps. Suppose the approach (1) starts with test

step TSn. Then, (2) for each pair (TSn-TSn+1, TSn-TSn+2, etc.), the approach verifies

if the majority of the single approaches (i.e., at least three out of five) assigned that

37

pair to the same cluster or not and does the same assignment (i.e., puts the pair

together if the majority did so or just skips the test step being compared to TSn).

After this first pass, we have all the test steps that are similar to TSn. (3) The test

steps that are clustered with TSn are removed from the main set of test steps (i.e.,

they will not be analyzed anymore). (4) We then repeat procedures (1), (2), and (3)

for the next test step that is not part of the TSn cluster. When there is no test step

left in the main set of test steps, the approach finalizes and we have a set of clusters

of similar test steps.

Baseline. We used two baselines to evaluate the performance of our proposed ap-

proaches for test step (TS) clustering. The first baseline (TS-Baseline 1) assigns test

steps to the same cluster only if those steps are exactly the same after pre-processing,

similarly to Li et al. [101]. The second baseline (TS-Baseline 2) uses the Word2Vec

technique together with the WMD similarity metric and only assigns two test steps to

the same cluster if the WMD similarity of those steps is zero (i.e., their embeddings

are the same).

2.7.6 Evaluation metric

We are interested in penalizing both the false positives (to avoid excessive suggestions

of similar test steps when they are not similar) and false negatives (to avoid missing

out many similar test steps). Therefore, we used the F-score metric (as shown in

Equation 2.1) to evaluate the test step clustering approaches as this metric captures

the trade-off between precision (related to false positives) and recall (related to false

negatives). Even though we focus on the F-score, we also report the precision and

recall of the proposed techniques along with the time necessary to execute the tech-

niques. The executed time consists of the median time (in minutes) of five executions.

Using the test steps present in the manually built ground truth of similar test steps,

we analyzed all the pairs of test steps, similarly to prior work [101]:

• True positive (TP): when a pair of steps is included in the same cluster by our

38

Table 2.3: Precision, recall, and F-score of the test step clustering approaches along
with the execution time (in minutes) and the optimal number of clusters obtained
using HAC and K-means. In the last column, we show the F-score distribution for a
number of clusters between 2,150 and 3,000.

Text embedding
technique

Clustering Precision Recall F-score Exec. time
(min)

Num. clus-
ters

F-score for num. of clusters be-
tween 2,150 and 3,000

TS-Baseline 1 Identical
text

100.00 54.32 70.40 1 4,407 -

TS-Baseline 2 Identical
embeddings

100.00 54.32 70.40 151 4,393 -

Word2Vec HAC 93.74 79.19 85.85 149 2,650 80 87

Word2Vec K-means 94.24 80.77 86.99 150 2,650 80 87

BERT HAC 89.57 80.25 84.65 157 3,050 80 87

BERT K-means 91.14 79.89 85.15 160 3,050 80 87

Domain-
adaptive BERT

HAC 93.89 78.66 85.60 159 3,300 80 87

Domain-
adaptive BERT

K-means 94.29 78.66 85.77 162 3,300 80 87

SBERT HAC 94.67 78.30 85.71 2 3,350 80 87

SBERT K-means 95.09 78.66 86.10 2 3,350 80 87

USE HAC 90.26 78.48 83.96 1 3,050 80 87

USE K-means 86.91 82.01 84.39 1 2,900 80 87

TF-IDF HAC 91.90 82.01 86.67 2 2,500 80 87

TF-IDF K-means 91.80 80.95 86.03 2 2,500 80 87

Ensemble - 94.47 81.30 87.39 317 3,158 -

approach and the steps indeed belong to the same cluster in the ground truth.

• False positive (FP): when a pair of steps is included in the same cluster by our

approach but the steps do not belong to the same cluster in the ground truth.

• True negative (TN): when a pair of steps is not included in the same cluster

by our approach and the steps do not belong to the same cluster in the ground

truth.

• False negative (FN): when a pair of steps is not included in the same cluster by

our approach but the steps belong to the same cluster in the ground truth.

We then computed the F-score metric as follows:

39

F-score = 2 × precision× recall

precision + recall
(2.1)

Where the precision corresponds to the proportion of true positives regarding all

the pairs identified as positive (TP
TP+FP

) and the recall corresponds to the proportion

of true positives regarding all the existing positive instance (TP
TP+FN

).

2.7.7 Findings

Similar test steps that are written in natural language can be identified

with an F-score of 87.39% by applying the ensemble approach. Word2Vec

(K-means), TF-IDF (HAC) and SBERT (K-means) also have high F-scores

(86.99%, 86.67%, and 86.10%, respectively), but TF-IDF and SBERT con-

siderably reduce the execution time (from 150 minutes to 2 minutes com-

pared to Word2Vec). Table 2.3 presents the precision, recall, and F-score of all

the approaches along with the execution time and the optimal number of clusters.

All the proposed approaches achieve a similar and high performance, with an F-

score between 83.96% and 87.39%, except for both baselines, which have the same

F-score of 70.40%. More specifically, the ensemble approach achieves the highest

performance, with an F-score of 87.39%. If we look at the performance of the single

models, Word2Vec with K-means has the highest F-score (86.99%), which is very

close to the ensemble approach performance. TF-IDF with HAC achieves the second

highest F-score (86.67%) among the single models, followed closely by SBERT with

K-means (86.10%) and Domain-BERT with K-means (85.77%). By analyzing the

F-score obtained by all the approaches for all the searched number of clusters (from

50 up to 15,000), we observed that the F-score plateaus when we use a number of

clusters of 6,000 or higher. This means that, in practice, we do not need to search

for the optimal number of clusters with values above 6,000. We also noticed that the

F-score is always above 80% when the number of clusters is between 2,150 and 3,000.

We can therefore use a number of clusters in that range to avoid searching for the

40

optimal number of clusters frequently.

Regarding the two versions of the BERT model, we observe that the domain-

adaptive pre-trained BERT is a little better, with F-scores of 85.60% (using HAC)

and 85.77% (using K-means), in comparison to the generic pre-trained BERT, with

F-scores of 84.65% (using HAC) and 85.15% (K-means). One possible reason for the

small gain is that we do not have large amounts of data for the domain-adaptive pre-

training. However, our findings indicate that the additional pre-training is capable of

improving the model performance and might be more helpful with larger datasets.

We can observe that for all the approaches except for TF-IDF, running K-means

on top of HAC is beneficial as this increases the F-score. Note, however, that the

gain in performance is minimal, such as 1.14% and 0.50% in absolute percentage

point for Word2Vec and BERT, respectively. On average, applying K-means on top

of hierarchical clustering increases the performance by 0.33% in absolute percentage

point. The number of clusters obtained by the approaches with HAC does not nec-

essarily need to be the same as the number of clusters obtained by the approaches

with K-means. HAC and K-means are two different clustering techniques that we

evaluate and, since they follow different procedures to cluster the data, they might

achieve a different number of clusters. Note that, since we use the centers of the

clusters obtained by HAC to initialize the K-means’ centroids, K-means will converge

fast as those initial cluster centers are often close to optimal or are in fact optimal in

terms of F-score (which is the case when using HAC and K-means achieves the same

number of clusters).

Table 2.3 also presents the precision and recall for all the approaches. Except

for the baselines, we can observe that the precision varies from 86.91% (USE with

K-means) up to 95.09% (SBERT with K-means) and the recall varies from 78.30%

(SBERT with HAC) up to 82.01% (USE with K-means and TF-IDF with HAC). For

the best performing models (ensemble approach and Word2Vec with K-means), both

the precision and recall metrics are similar. Regarding the baselines, both of them

41

present a very high precision (100%) but with a low recall (54.32%).

Finally, the presented execution time is the median time (in minutes) of five ex-

ecutions of the techniques. Even though the ensemble approach has the highest

performance for clustering test steps, this approach is computationally expensive as

it requires the implementation and execution of all the other approaches, which takes

around 317 minutes (about 5 hours) in total (using six cores on an Intel i7-8700

CPU to compute the WMD metric and a single core for all the other computations).

However, we can achieve a very close performance with a single technique, such as

Word2Vec with K-means (which takes around 150 minutes to execute using six cores

to compute the WMD metric). TF-IDF (HAC) and SBERT (K-means) also achieve

similar high F-scores (86.67% and 86.10%, respectively) but present much shorter

execution times using a single core (2 minutes for both). Our experiments showed

that both Word2Vec and BERT present a large execution time due to the large com-

putational cost of computing the Word Mover’s Distance, which makes SBERT a

great alternative since it is considerably faster despite the slightly lower performance,

and does not require further configurations or training as it uses a pre-trained model.

The reported execution times are for the full test step clustering pipeline (test step

pre-processing, word embedding training, test step similarity, and clustering) using

the optimal number of clusters.

2.8 Evaluating our approach for identifying similar

test cases

In this section, we discuss the experiments that we performed to evaluate our approach

for identifying similar test cases that are specified in natural language. Below, we

discuss four different techniques to identify similar test cases using the test step

clusters obtained by the best-performing approach in Section 2.7 (ensemble approach).

42

Simple
overlap

Jaccard
index

Computing the test case similarity

Replace steps by
their cluster IDs

Represent test
cases through

step cluster IDs

Representing test cases through IDs of test step clusters

Cosine
similarity

Groups of similar
test cases

Groups of similar
test cases

Groups of similar
test cases

T1 = [cluster1, cluster2…]
T2 = [cluster1, cluster2…]
T3 = [cluster5, cluster6…]

Compute
Binary matrix

Compute
numeric matrix

Embed test
case name

Compute test case
name similarity

Name
Similarity

Groups of similar
test cases for
technique n

+

..

Identify steps of
test cases

Technique 1

Technique 2

Technique 3

Technique n + test name embedding

n = 1

n = 2

n = 3

Figure 2.6: Overview of the experiments to identify similar test cases.

Table 2.4: Examples of test case representations (through vectors) obtained with
the experimented three techniques and their versions with test case name embedding
(Technique n + name embedding).

Test
case

Test step Test step
cluster

Technique 1 Technique 2 Technique 3 Technique n +
name embed.

TC1 TS1, TS2, TS3,
TS4

C1, C2, C3, C1 [C1, C2, C3] [1, 1, 1, 0, 0] [2, 1, 1, 0, 0] Technique n +
[TC1 Name embedding]

TC2 TS1, TS5, TS6,
TS7, TS8

C1, C4, C5,
C2, C5

[C1, C2, C4, C5] [1, 1, 0, 1, 1] [1, 1, 0, 1, 2] Technique n +
[TC2 Name embedding]

2.8.1 Evaluated techniques

We performed experiments with three different techniques and variations of those

techniques to identify similar test cases using the previously identified clusters of test

step (with the ensemble approach). Figure 2.6 gives an overview of the experiments.

To explain how each technique works, we use the two example test cases presented in

Table 2.4.

In the example, there are two test cases (TC1 and TC2). TC1 contains four steps

43

(TS1, TS2, TS3, TS4) and TC2 contains five steps (TS1, TS5, TS6, TS7, TS8). As

we can see, only the TS1 step is shared between the test cases. In the test step cluster

column, we can see the cluster ID to which each step belongs (TS1 belongs to the C1

cluster, TS2 belongs to the C2 cluster, and so on), where Cn is the ID of the cluster

n. Note that different steps (such as TS2 and TS7) might belong to the same cluster

(C2). Next, we explain each proposed technique using this example.

Technique 1: Test step cluster overlap. For this technique, we used only the

identifiers of the test step clusters to represent test cases. For each test case, we

gathered the unique list of cluster IDs that contain the test steps. For our running

example, the TC1 test case is represented through the [C1, C2, C3] vector, while

TC2 is represented through the [C1, C2, C4, C5] vector. Finally, we computed the

pairwise similarity of any two test cases using a simple overlap metric, which indicates

the proportion of overlap that test cases have in terms of test step cluster IDs, as

shown below:

Overlap =
length((TCn) ∩ (TCm))

max(length(TCn), length(TCm))
(2.2)

Where TCn and TCm correspond to the representations of the test cases n and m

through the unique cluster IDs, respectively. Intuitively, test cases that have a large

overlap of test step clusters (even if the test steps themselves are different) should be

similar since test steps in the same cluster are (most of the time) similar. For our

example, the length of TC1 is three (C1, C2, C3), the length of TC2 is four (C1, C2,

C4, C5), and the length of the intersection between TC1 and TC2 is two (C1, C2).

Therefore, the overlap between the TC1 and TC2 test cases is: 2
max(3,4)

= 2
4

= 0.5

(50%).

We used the computed overlap as the similarity metric to compare the test cases.

Furthermore, in order to determine the optimal similarity threshold (i.e., with the

44

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Similarity threshold

F
−

sc
or

e

(a) F-score for different sim-
ilarity thresholds for Tech-
nique 1 and Technique 1 +
test name.

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Similarity threshold

F
−

sc
or

e

(b) F-score for different sim-
ilarity thresholds for Tech-
nique 2 and Technique 2 +
test name.

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Similarity threshold

F
−

sc
or

e

(c) F-score for different sim-
ilarity thresholds for Tech-
nique 3 and Technique 3 +
test name.

Figure 2.7: F-score for different similarity thresholds for our proposed techniques. The
vertical line indicates the threshold that maximizes the F-score (red for Techniques
1, 2, and 3 and blue for their versions with the test name).

optimal tradeoff between false positives and false negatives) to be used to identify

similar test cases, we performed a search by varying the threshold from 0.1 (10% of

overlap) up to 1.0 (100% of overlap). Figure 2.7a shows how the F-score changes with

the similarity threshold (the optimal threshold is indicated with the vertical red line).

As we can see, our search showed that the threshold that provides the maximum F-

score is 0.70, which means that two test cases should be considered similar if their

overlap metric is at least 70%.

Technique 2: Binary representation of test cases. Similarly to Technique

1, for Technique 2 we used the test step clusters to represent test cases. However,

instead of using the cluster IDs directly, we used a binary vector for each test case,

in which we flagged the clusters that contain at least one test step of that case with

a “1”. Otherwise, we used “0”. For our example, both test cases TC1 and TC2 are

represented through a vector of length five because there are five different test step

clusters in total (C1, C2, C3, C4, C5). TC1 is represented through the [1,1,1,0,0]

vector (because TC1 has steps that belong to the clusters C1, C2, and C3, but no step

belongs to the clusters C4 and C5), while TC2 is represented through the [1,1,0,1,1]

vector. We built a matrix of dimension [#test cases x #test step clusters], where each

row corresponds to a test case and each column corresponds to a test step cluster.

45

Finally, we computed the pairwise similarity of any two test cases using the Jaccard

index, as used in prior work [1, 2] to calculate the similarity between binary vectors.

Our search (see Figure 2.7b) shows that the optimal lower threshold for the Jaccard

index is 0.60 (vertical red line), which means that two test cases are similar if their

Jaccard index is equal to or larger than 0.60.

Technique 3: Numeric representation of test cases. Using a binary vector

to represent test cases might not be sufficient for situations where test cases have

more than one step in a cluster. Therefore, we modified the previous technique so

that, instead of representing test cases as a binary vector, we represent test cases

as a numeric vector. This numeric vector corresponds to the number of test steps

that the test case has in each cluster. For our example, TC1 is represented through

the [2,1,1,0,0] vector (because TC1 has two steps in the C1 cluster, one step in

each of the C2 and C3 clusters, and no step in the C4 and C5 clusters). TC2 is

represented through the [1,1,0,1,2] vector. We found that using a threshold of 0.85

(see Figure 2.7c, vertical red line) achieved the best performance in terms of F-score.

This means that all the pairs of test cases that have a cosine similarity equal to or

larger than 0.85 are considered similar by Technique 3.

Including the test case name embedding. For each technique mentioned above

(Techniques 1, 2, and 3), we evaluated their versions with the test case name embed-

ding as well: Technique 1 + test name, Technique 2 + test name, and Technique 3 +

test name. For our example, both test cases TC1 and TC2 are represented through

the same vectors discussed above for Techniques 1, 2, and 3. For the versions with the

test case name, we combined the test step clusters with the test case name embedding.

To obtain the embeddings for the name, we used the best-performing text embed-

ding technique from the experiments for test step clustering (which is Word2Vec).

Following a similar process as we did for the test step clustering, we computed the

pairwise similarity for any two test case name embeddings. To compute the final

similarity score for test cases, we used the weighted sum between the similarity score

46

obtained with the test step clusters and the similarity score obtained with the test

case name embeddings, as shown in Equation 2.3. Two test cases are considered

similar if the final score is above a certain threshold.

Final score = (weight) ∗ (test step cluster similarity)

+ (1− weight) ∗ (test case name similarity)
(2.3)

To determine the best weight and threshold for the final score, we performed a

search similarly to the threshold search that we did for Techniques 1, 2, and 3. We

varied the weight from 0.1 up to 1.0 with a step of 0.1. For each weight, we varied the

threshold from 0.10 up to 1.0 with a step of 0.05. For each combination of weight and

threshold, we obtained the clusters of similar test cases and computed the evaluation

metrics.

For Technique 1 + test name, we found that the optimal weight is 0.9, i.e., the

similarity score from the test step clusters contributes with 90%, while the similarity

score from the test case name contributes with 10% to the final score. For Technique

2 + test name, the optimal weight is 0.8 and for Technique 3 + test name, the optimal

weight is 0.5. Furthermore, as Figures 2.7a, 2.7b, and 2.7c show (vertical blue line),

the optimal similarity thresholds for Technique 1 + test name, Technique 2 + test

name, and Technique 3 + test name are 0.65, 0.55, and 0.75, respectively. Note that,

due to space constraints and for a better visualization, Figures 2.7a, 2.7b, and 2.7c

only display how the F-score changes with the threshold already using the optimal

weights for each technique.

Baseline. We compared the performance of our proposed approaches with several

baselines for test case (TC) similarity identification. TC-Baseline 1 considers two

test cases to be similar if they have the exact same steps (regarding the text of

the step). TC-Relaxed baseline 1 considers two test cases similar if they differ only

in N test steps (with N=1), with the remaining test steps being exactly the same.

Note that TC-Baseline 1 has N=0. TC-Baseline 2 considers two test cases to be

47

similar if they have the same name. TC-Relaxed baseline 2 considers two test cases

similar if their test case name embedding vectors are close, for which we embedded

test case names with Word2Vec (as in Section 2.7.2) and searched for the optimal

similarity threshold. TC-Baseline 1, TC-Relaxed baseline 1, TC-Baseline 2, and TC-

Relaxed baseline 2 are simple, intuitive and computationally cheap methods. TC-

Baseline 3 and TC-Baseline 3 + test name are based on existing document clustering

techniques [79, 131]. We transformed the textual description of the test cases into

a numeric vector (vectorization) using a traditional vectorization method (TF-IDF).

We then computed the pairwise cosine similarity between the test cases and applied

the HAC and K-means clustering algorithms. For both baselines, we consider the

whole test case as a single document. For TC-Baseline 3, we represent a test case

with all its test steps aggregated, while for TC-Baseline 3 + test name we consider

the test case name concatenated to the aggregated test steps. For both cases, we

followed a similar procedure as for the test step clustering (Section 2.7.5), in which

we searched for the optimal number of clusters.

2.8.2 Evaluation metric.

To evaluate our approaches for finding similar test cases, we used the manually built

ground truth of similar test cases to compute the precision, recall, and F-score. We

followed the exact same process as we did previously for the test step clustering

(Section 2.7.6).

2.8.3 Findings

Clusters of similar test steps and test case name embeddings together can

be used to identify similar test cases with an F-score of 86.13%. Table 2.5

presents the F-score of all the techniques that we evaluated along with precision,

recall, execution time and the optimal similarity threshold.

We observe that Technique 1 + test name achieves the highest performance in

48

Table 2.5: Precision, recall and F-score of the test case similarity techniques along
with the execution time (in seconds) and the optimal similarity threshold.

Technique Technique name Prec. Recall F-score Exec. time (sec) Thresh.

TC-Baseline 1 Identical steps 99.42 31.07 47.35 18.28 -

TC-Relaxed
baseline 1

Close number of identical
steps

93.91 38.57 54.68 23.36 -

TC-Baseline 2 Identical name 50.00 0.18 0.35 6.53 -

TC-Relaxed
baseline 2

Close test name embed-
ding

59.77 27.86 38.00 7.98 -

TC-Baseline 3 Aggregated test steps 68.87 72.68 70.72 325.82 -

TC-Baseline 3 +
test name

Test case name + aggre-
gated test steps

27.25 39.46 32.24 343.29 -

Technique 1 Test step cluster overlap 82.43 78.75 80.54 16.33 0.70

Technique 1 +
test name

Test step cluster over-
lap + test name em-
bedding

83.19 89.29 86.13 33.63 0.65

Technique 2 Binary repres. of test
cases

78.34 75.53 76.90 144.09 0.60

Technique 2 +
test name

Binary repres. of test
cases + test name embed-
ding

77.80 81.96 79.82 154.16 0.60

Technique 3 Numeric repres. of test
cases

90.45 67.67 77.42 6.52 0.85

Technique 3 +
test name

Numeric repres. of test
cases + test name embed-
ding

94.37 74.82 83.47 23.84 0.75

terms of F-score (86.13%), followed by Technique 3 + test name, which achieves

an F-score of 83.47%. We also observe that, even though Technique 3 achieves a

higher performance than Technique 2, the improvement is very small (0.52 in absolute

percentage point). This indicates that using the number of test steps in each cluster

(instead of just flagging whether the cluster contains a test step) slightly improves the

performance of the test case similarity technique. Further incorporating the test case

name information considerably improves the performance for all the three techniques.

Technique 1 + test name improved the F-score in 5.59 absolute percentage point from

Technique 1. The absolute percentage point improvements for Techniques 2 and 3

49

were 2.92 and 6.05, respectively.

Regarding the baselines, all the experimented techniques perform considerably bet-

ter than all the baseline methods. We observe that TC-Baseline 2 achieves an ex-

tremely low F-score (0.35%) and that TC-Baseline 3 presents the best F-score among

the baseline methods (70.72%). Note that for TC-Baseline 3, HAC performed better

than K-means, while for TC-Baseline 3 + test name, K-means performed better. We

only report the results using the best-performing clustering algorithms. We also see

that the precision of the TC-Baseline 1 is very high (99.42%), but the recall is very

low (31.07%). Two main reasons explain why all our proposed approaches perform

better than the baseline methods. First, TC-Baseline 1 and 2 and TC-Relaxed base-

line 1 and 2 are too simple to capture all the different types of similar test cases

(e.g., test cases that have a different name and number of test steps, which, despite

describing similar testing activities, are written differently). Second, TC-Baseline 3

and TC-Baseline 3 + test name consider a whole test case as a single document.

However, a whole test case is not a coherent document as test steps might be very

different from one another. For example, in the same test case, one test step might be

related to the ’login’ functionality and another test step might be related to ’purchas-

ing a membership’. Therefore, using whole test cases as documents for the similarity

detection is a much more difficult task.

The presented execution time is the median time (in seconds) of five executions of

the techniques and reflect the time necessary to run the test case similarity techniques

considering that the clusters of test steps (obtained in the previous stage, as described

in Section 2.7) are available. Apart from the TC-Baseline 3 and TC-Baseline 3 +

test name and Technique 2 and Technique 2 + test name, all the other techniques

present a similar execution time, which ranges from 6.52 seconds (Technique 3) up to

33.63 seconds (for the best-performing Technique 1 + test name). Using the optimal

similarity threshold, the best technique (Technique 1 + test name) found 427 groups

of similar test cases with two or more test cases in each group. The 427 groups contain

50

a total of 2,193 test cases (65.9%), i.e., there are 2,193 test cases in the test suite that

have at least one similar test case, according to this technique. This leaves 1,130 test

cases for which there is no other similar test case. On average, each group has two

similar test cases, with a standard deviation of four.

To understand the output produced by our best technique, we manually inspected

a representative sample of 100 of the obtained groups of similar test cases. The sample

was randomly selected with a confidence level of 95% and a confidence interval of 10%

from the 427 groups of similar test cases obtained by the best technique (Technique 1

+ test name). We identified four main types of similar test cases (shown in Table 2.6).

While Type 1 corresponds to test cases with the same steps for different game assets,

Type 2 regards test cases that have slightly different steps to indicate the asset being

tested (e.g., backpack hat and backpack wand). Type 3 refers to test cases with

a large overlap of steps but one of them has more/fewer steps, which might indicate

unnecessary or missing steps. Finally, Type 4 regards redundant test cases, which are

written differently and may have a different number of steps, but the testing objective

is the same. The last type of similarity helps to identify and remove redundant test

cases from the test suite.

2.9 Discussion

In this section, we revisit the research questions and discuss the validation of our

approach.

RQ1: How effectively can we identify similar test steps that are written

in natural language?

Our experiments demonstrate that we can identify similar test steps with a high

performance in terms of F-score. We showed that an ensemble approach using a com-

bination (majority voting) of different techniques (five text embedding techniques

with two similarity metrics and two clustering algorithms) achieves the highest per-

formance. Such ensemble approach has a large computational cost as it requires the

51

Table 2.6: Examples of the four types of test case similarity. Differences between test
cases’ steps are highlighted in bold.

Similarity type Test case name Test steps

(1) Same steps for different

game assets

Check Hat -

In Backpack

1. Verify item name

2. Verify item icon

Check Wand -

In Backpack

1. Verify item name

2. Verify item icon

(2) Slightly different steps

for different game assets

Equip Hat

1. Trigger equip functionality
via backpack hat item slot

2. Trigger unequip functional-
ity via backpack hat item slot

Equip Wand

1. Trigger equip functionality
via wand backpack item slot

2. Trigger unequip functional-
ity via wand backpack item
slot

(3) Test cases with

additional/missing steps

Check Consumables

(Water Resist)

1. Use in battle

2. Check battle bonus

3. Check item card name

4. Check item card stats

Check Food

(Popcorn)

1. Use in battle

2. Check battle bonus

(4) Redundant test cases

Catch Firefly

in Forest
1. Catch firefly in forest

Firefly Forest -

Catch Firefly
1. Catch a firefly

execution of several different techniques. However, we showed that using a single

technique (such as Word2Vec or TF-IDF) can also provide a high performance while

being less computationally expensive.

52

RQ2: How can we leverage clusters of test steps to identify similar test

cases?

Our experiments demonstrate that we can use the clusters of similar test steps identi-

fied in the first part of the study to represent test cases and identify the similar ones.

More specifically, representing test cases through a vector that captures the number of

test steps in each cluster boosts the similarity technique performance. Furthermore,

we showed that combining the clusters of similar test steps with the embedding of the

test case name achieves an even higher performance. Our experiments showed that

the optimal weight (for our data) for the test step clusters and the test case names

is 90% (i.e., the similarity score from the test step clusters contributes with 90%,

while the similarity score from the test case name contributes with 10% to the final

similarity score). In addition, we can use a threshold of 0.65 for the final similarity

score to decide whether two test cases are similar (i.e., two test cases are similar if

their final similarity score is equal to or larger than 0.65).

Validation with developers. To validate the results of our approach, we did an

informal interview with a QA expert at Prodigy Education to discuss whether our

results are valid and how they can be used in practice and improve the testing process.

We selected a purposive sample [53, 63, 178] to explicitly select test cases that cover

the different types of similar test cases that we identified.

Overall, the expert validated the different types of test case similarity that we

identified and mentioned that our approach can help the QA to improve the quality

of the test cases. More specifically, the QA expert pointed out four practical usages

of our approach, as we explain next.

• Identification of redundant test cases, which are test cases that are de-

scribed differently (e.g., because they were written by different professionals)

but test exactly the same aspect/asset of the game.

• Reuse of existing test cases when creating new ones for new features of the

53

game. In this case, existing descriptions of test cases can either be fully or

partially (e.g., a few test steps) reused. The reuse can be full (e.g., when a new

test case instructs the tester to perform the exact same steps of an existing test

case but for a new game asset, such as a new consumable item in the game) or

partial (e.g., when a new test case performs a similar test as an existing test case

but with a few differences, such that only part of the test steps of the existing

similar test case can be reused). By reusing test cases, the overall quality of

the test suite improves with more consistent and homogeneous descriptions in

terms of terminology. Furthermore, reusing test cases reduces the manual effort

and time required for designing and creating new test cases.

• Identification of test cases with missing steps. A few test case samples

that we discussed with the expert were indeed groups of similar test cases which

perform the same task, but some of the cases had fewer steps than what is

actually performed by a tester. We further investigated those cases with the

QA expert and found out that the missing steps were scattered across the test

suite (in different cases) and should be merged with the steps of the main test

case.

• Identification of test cases which are redundant but one of the cases

has additional steps. This occurs when a new test case is created based on

existing ones, but some steps are added for clarification purposes and the older

test case is not removed from the test suite.

2.10 Threats to Validity

External validity relates to the generalizability of our findings. One threat is that

our findings rely on the test case descriptions of an educational game company. Test

cases of organizations from different domains might be different (e.g., in terms of

the used terminology, grammar complexity and structure, and characteristics of the

54

data, such as the distribution of test steps across the test cases) and might affect

the results. However, as we explained in Section 2.6, our test cases are similar in

structure to natural language test cases from other domains studied by prior work,

such as WeChat [101], automotive systems [186], and Mozilla Firefox projects [74].

Our approach can be applied to natural language test cases from other industrial

projects with similar characteristics as the test cases from our industry partner, such

as the test cases from the projects and companies discussed above. Furthermore,

our approach can be applied to well-maintained open-source projects which have test

cases described in natural language that are composed of one or more individual test

steps. Note that our approach consists of using clusters of similar test steps together

with the similarity of test case name embeddings, which might be computationally

expensive for large datasets. In addition, specifying a ground truth to be used with

our approach can be challenging and time-consuming. Finally, further investigation

is necessary to apply our approach to projects with different test case characteristics,

such as different distributions of test steps across test cases or different test case

structures (e.g., test cases which are not composed of individual test steps). Another

threat is that our thresholds for optimal values (e.g., the number of clusters and

the similarity score) likely do not apply to other systems. However, our method for

searching for these values is generalizable.

Internal validity concerns the bias and errors due to the experimental design.

One threat concerns the methods that we used for text embedding, text similarity and

clustering. Even though we mitigated this threat by studying several different types

of techniques (five different text embedding techniques, three similarity metrics and

two clustering algorithms), different results might be achieved with other techniques.

Future studies should further investigate additional methods and algorithms for text

embedding, text similarity and clustering. Another threat is related to the manual

analysis of the samples of test steps and test cases performed by one author to build

the ground truth. The manual analysis is subject to error and bias because of hu-

55

man factors. To mitigate this threat, another author independently cross-validated a

subset of the 20 randomly selected test steps, which achieved an agreement of 100%.

Furthermore, a QA engineer with more than 5 years of experience in the company

further validated the output produced by our technique.

Construct validity concerns the choices made during the construction of our

experiments. One threat is related to the chosen parameters for the embedding tech-

niques. We mitigated this threat by using well-studied or recommended values for

such parameters. For example, our chosen length for the Word2Vec embedding vector

is 300. This is a popular choice and was used in the original study that proposed

the Word2Vec model [124], but models with different lengths might achieve different

performances for the clustering task. Another threat concerns the pooling strategies

that we used to combine the layers of the BERT models and extract the embedding

vectors. Different strategies provide different word embedding vectors. Even though

several strategies can be used, we compared the four strategies recommended by the

original paper on BERT [46]. The use of the clusters obtained by the HAC algo-

rithm to initialize K-means’ centroids is another threat to validity. Even though we

adopted this process to speed up the execution of K-means, using different initializa-

tion methods might produce different clusters and achieve a different performance.

Future studies should investigate how the initialization of the K-means’ centroids af-

fects the performance of the test step clustering. Finally, another threat is regarding

the evaluation of the test step clustering and test case similarity identification. We

evaluated our proposed techniques using a random sample of test steps/cases, which

may not reflect the characteristics of the entire population. To mitigate this threat, we

randomly sampled the data with a confidence level of 95% and a confidence interval

of 5%, which yielded a statistically representative sample.

56

2.11 Conclusion

Test cases written in natural language are often defined by different people who may

use different terminology to refer to the same concept. As a result, many similar or

redundant test cases may exist in the test suite, which increases the manual testing

effort and the usage of development resources. Since manually identifying similar test

cases is a time-consuming task, an automated technique is necessary.

In this chapter, we propose an approach to identify similar test cases specified in

natural language. First, we evaluated different text embedding techniques, similarity

metrics, and clustering algorithms to identify clusters of similar test steps (which

compose test cases). We then leveraged the identified test step clusters together with

the test case name to identify similar test cases. To evaluate the approach, we used

test cases from an educational game company. We manually built a ground truth

of similar test steps and test cases and computed the F-score metric. The approach

evaluation shows that similar test steps can be identified with a high performance

(an F-score of 87.39%) using an ensemble approach which consists of different NLP

techniques. We can also achieve a similar performance (an F-score of 86.99%) using

a single technique (Word2Vec). Furthermore, we identified similar test cases with a

high performance (an F-score of 86.13%) using clusters of similar test steps combined

with the similarity between test case names.

We show how we can identify similar test cases based only on their description in

natural language with an unsupervised approach, which requires no labelled data nor

human supervision. As indicated in an informal interview with a QA engineer, our

approach has several usages in practice, such as supporting QA and developers to

identify and remove redundant test cases from the test suite. Furthermore, existing

groups of similar test cases can be leveraged to create new test cases and help to

maintain a more consistent and homogeneous terminology across the test suite.

57

Chapter 3

Using Natural Language
Processing Techniques to Improve
Manual Test Case Descriptions

3.1 Abstract

Despite the recent advancements in test automation, testing often remains a manual,

and costly, activity in many industries. Manual test cases, often described only in

natural language, consist of one or more test steps, which are instructions that must

be performed to achieve the testing objective. Having different employees specifying

test cases might result in redundant, unclear, or incomplete test cases. Manually

reviewing and validating newly-specified test cases is time-consuming and becomes

impractical in a scenario with a large test suite. Therefore, in this chapter, we pro-

pose an automated framework to automatically analyze test cases that are specified in

natural language and provide actionable recommendations on how to improve the test

cases. Our framework consists of configurable components and modules for analysis,

which are capable of recommending improvements to the following: (1) the termi-

nology of a new test case through language modeling, (2) potentially missing test

steps for a new test case through frequent itemset and association rule mining, and

(3) recommendation of similar test cases that already exist in the test suite through

text embedding and clustering. We thoroughly evaluated the three modules on data

58

from our industry partner. Our framework can provide actionable recommendations,

which is an important challenge given the widespread occurrence of test cases that

are described only in natural language in the software industry (in particular, the

game industry).

3.2 Introduction

Software testing is a fundamental and widely-performed, yet costly, activity for quality

assurance of a software system [58, 73]. Despite the recent advancements in test

automation, software testing often remains a manual activity in industry, such as in

the gaming industry where developers face challenges to automate tests [140, 145].

In a manual testing scenario, the testing and test case design activities require even

more effort and time from the development team and the Quality Assurance (QA)

engineers (testers), which makes testing even more costly for the company.

Manual test cases are often described in natural language and consist of a sequence

of one or more steps, which are instructions that need to be executed by the tester

to achieve the test case objective (e.g., to test a new feature of the system). Those

test cases are often defined by employees from different departments, such as QA

engineers or developers, which may result in redundant (i.e., test cases with the same

testing objective), unclear/ambiguous, or even incomplete (e.g., when necessary steps

are missing from a test case description) test cases as the system evolves and the test

suite grows [157]. Problematic test case descriptions can hinder the manual testing

activity efficiency and effectiveness, and can also affect the performance of techniques

such as Natural Language Processing (NLP) techniques and text clustering [101].

Having several employees manually review new test cases (e.g., to check if they

are clear, unambiguous and complete) and identify redundant test cases is time-

consuming and becomes impractical in a scenario with a large test suite in which test

cases are constantly added to it. Also, prior work has indicated the need for automated

approaches that can be integrated into the testing process of video games [145]. There-

59

fore, an automated approach to analyze the test cases specified in natural language

and provide actionable insights to improve their descriptions is needed to support QA

and developers and help make testing more efficient and effective.

In this chapter, we propose an automated framework for providing feedback on

how to improve a new test case that is specified in natural language. In particular,

we discuss three modules for analysis that we implemented so far for our framework.

These analysis modules provide the following recommendations:

• Recommendations to improve the terminology of a new test case description

based on existing test case descriptions through language modeling.

• Recommendations of potentially missing test steps for a new test case

through frequent itemset and association rule mining.

• Recommendations of similar test cases that already exist in the test suite

through a similarity detection technique that we proposed in a prior work [101,

183].

All three analysis modules were thoroughly evaluated and optimized for the data

from our industry partner (Prodigy Education),1 and we provide access to the source

code of the experiments that we performed.2 The framework’s analysis modules are

unsupervised (i.e., they do not require manually labelled data or human intervention).

In this work we use the term “existing test cases” to refer to all test cases that are

already part of the test suite and “new test case” to refer to a newly-specified test

case that is not yet part of the test suite. Our framework should be used right after

a new test case is specified to analyze it and provide feedback to improve the test

case description. Then, the improved test case can be added to the test suite and

manually executed.

1https://www.prodigygame.com/main-en/
2https://github.com/asgaardlab/21-markos-test case improvement framework-code

60

https://www.prodigygame.com/main-en/
https://github.com/asgaardlab/21-markos-test_case_improvement_framework-code

The goal of our framework is to help QA engineers and developers to reduce the

time and effort needed for manual testing by improving the overall quality of test cases

that are described in natural language. The framework also supports the creation and

maintenance of a high-quality, more consistent and more standardized test suite. In

particular, our framework can be useful and benefit new employees who do not yet

have much knowledge about the existing test suite. Furthermore, a more consistent

test suite can reduce the challenges when automating tests in the future [101] as the

overall quality and consistency of the test suite will be higher.

The remainder of the chapter is structured as follows. In Section 3.3, we explain

our framework. In Sections 3.4, 3.5, and 3.6, we detail the approaches that were used

to implement the framework’s analysis modules, with the performed experiments and

the results. We then present related work and threats to validity in Sections 3.7

and 3.8. Finally, we conclude the chapter in Section 3.9.

3.3 Our automated framework for analysis and feed-

back

Our automated framework provides feedback to improve the description of the test

cases designed to test the Prodigy Math game, which is a proprietary, online, web-

based educational math game with more than 100 million users around the world.

The game has a curriculum-aligned educational content and features over 50,000

math questions spanning Grade 1-8. It is an RPG-style game, which means that

players play the role of a character (a wizard) in the Prodigy world and can go to

the several different world zones available in the game. As the players answer math

questions, their wizards can evolve, learn new spells, and acquire new equipment

and in-game items. While the game is available to every student, there is an optional

membership subscription, that allows members to have an increased level of character

customization, level up faster, among other benefits not available to non-members.

The membership is not required to access the in-game curriculum-aligned content.

61

Data preparation

Existing
test

cases

New
test
case

Module: terminology improvement analysis

Module: missing test step analysis

Module: test case similarity analysis

Train a model
to analyze
test case

terminology Saved model

Recommend
test case

terminology
improvements

Train a model to
detect test

steps missing
from test case Saved model

Recommend
missing test

steps for
test case

Saved model

Recommend
similar test

cases

Read and
pre-process data

Report generation

Aggregate
outputs from the
analysis modules

Present aggregate
outputs in a single

document

Analysis

Train a model
to detect test
case similarity

Figure 3.1: Our automated framework for analysis and feedback of test cases in
natural language.

Our framework consists of three main components, which correspond to the steps

that are performed: data preparation, analysis, and report generation. The frame-

work’s analysis component consists of individual configurable modules. Each module

implements an approach that provides a different capability regarding automated

analysis and feedback for test cases that are described in natural language. New

modules with new capabilities can be easily added to the framework. Figure 3.1

presents an overview of our automated framework, which currently consists of the

following components and modules:

• Data preparation component

• Analysis component, which currently contains modules for the following: (1) ter-

minology improvement, and analyzing (2) missing test steps and (3) similar test

cases.

• Report generation component

The three implemented modules within the analysis component were driven based

on our experience at Prodigy and reports from experienced QA engineers and de-

velopers that indicated the need to support these types of test case improvements.

62

Furthermore, prior work highlighted the need for more consistent and standard test

case descriptions in a manual testing scenario and automated approaches to better

support the testing process of games [101, 145].

Our framework first reads and pre-processes the data from existing and new test

cases (data preparation component). Then, the pre-processed data is fed into one

or more modules (analysis component) and the framework generates a report with

the modules’ outputs (report generation component). Each analysis module takes the

data through a training and an inference phase. In the training phase, users can train

new models using the pre-processed existing test cases. In the inference phase, users

can use the trained models to analyze a new test case. The modules are independent

from each other and can be enabled or disabled depending on the desired analysis

that the users wish to perform. Next, we demonstrate each framework’s component

using the test case examples in Table 3.1.

3.3.1 Data preparation component

This component loads and pre-processes the data. The input to our approach consists

of unprocessed test cases that are written in natural language: there is no source

code available for these test cases. Each test case contains one or more test steps,

which each gives an instruction that must be manually performed by a human tester.

Table 3.1 presents examples of two test cases TC1 and TC2 from the Prodigy game.

TC1 is already in the test suite and TC2 is about to be added to it (and hence is

not used to train the models in the analysis modules). Each test case has a name, an

objective, and one or more test steps.

We applied several pre-processing steps to each test case’s name, objective and test

step(s). We used tokenization to transform the sentences into lists of words. We then

removed stop words (e.g., “of” and “the”) as they do not add meaning to the text.

Finally, we converted all words to their root form (lemmatization), such as “playing”

to “play”, to have more consistent terminology. The data preparation component can

63

Table 3.1: Examples of test case descriptions from the Prodigy Math game.

Test case name Test case objective Test step ID Test step

Membership

purchase

(TC1)

Verify the membership

flow through the HUD

(Heads Up Display)

TS1 Log into the game with a
non-member account

TS2 Go to the membership
page

TS3 Click on the member icon
in the HUD

TS4 Click on “Continue to buy
a membership”

TS5 Go through the member-
ship flow and become a
member

TS6 Verify that the user is a
member

Membership

flow

(TC2)

User successfully

purchases membership

TS7 Log into the game with a
child account

TS8 Go through the member-
ship flow and become a
member

TS9 Verify that the user is a
member

be adapted if users wish to apply other pre-processing steps for an analysis module.

3.3.2 Analysis component

Module: terminology improvement analysis

This module uses the pre-processed test cases to train models to analyze the ter-

minology of test cases. The models are then used to recommend improvements by

identifying words in the description that could be replaced by more likely alterna-

tives, based on their usage in existing test cases. For our example test case (TC2) in

Table 3.1, the top-3 recommendations of this module are to change the word child to

member, non-member, or student in test step TS7:

64

“Log into the game with a child account”

“... member account”

“... non-member account”

“... student account”

Using the original word child makes the test step unclear (as we are not sure which

type of child account should be used as there are different ones) and would require

further clarification with other QA engineers or developers. For example, replacing

child with non-member, would be more appropriate as the tester would be aware

that an account of the non-member type must be used to verify if a non-member can

purchase the membership.

Module: missing test step analysis

This module analyzes how test steps of the existing test cases appear together to

assess a new test case’s completeness. The module builds a model that recommends

potentially missing test steps for the new test case based on test steps that frequently

appear together across the existing test cases. For test case TC2, this module recom-

mends to add the test step TS2 (“Go to the membership page”):

TC2revised =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Log into the game with a child account

Go to the membership page

Go through the membership flow and become a member

Verify that the user is a member

TS2 (“Go to the membership page”) appears in the test case TC1 but is missing

from the new test case. Adding TS2 to TC2 can help the tester to execute the test

more efficiently as a clearer direction is given (instructing the tester to go to the

membership page).

65

Module: test case similarity analysis

This module trains a model with the pre-processed descriptions of existing test cases

to identify and retrieve test cases that have a testing objective or test steps which are

similar to the ones of a new test case. For test case TC2, this module retrieves TC1

as a similar test case. TC1 has a similar testing objective as TC2 (which is to go

through the membership flow and assure that a user can purchase the membership)

and similar, but more detailed test steps, which can be help to improve the new test

case. Identifying similar test cases that are already in the test suite also helps avoid

adding redundant test cases.

3.3.3 Report generation component

The purpose of this component is to aggregate the outputs of each used analysis

module and present the results in a single report to QA engineers and developers.

3.3.4 Using the framework in practice

All the functionalities of our framework are provided through a web API, which can

be used, for instance, to build other applications that rely on our framework. We

are currently working to integrate our framework with Prodigy’s data warehouse and

cloud infrastructure through a web application that can be easily used by Prodigy’s

QA engineers and developers. The application allows users to perform the auto-

mated analysis and visualize the generated report with the results in a usable way.

Users can also choose which module they want to execute and provide additional

configurations to the techniques used for the analysis (e.g., if our recommendations

of similar test cases are too broad, users can increase the similarity threshold and less

recommendations will be provided). Furthermore, the web application allows users to

automatically apply the recommended changes to the new test case, making the use

of our framework more efficient. We discuss the experiments to train and evaluate

the models for each module in Sections 3.4, 3.5, and 3.6.

66

3.3.5 A description of our dataset

To build the models and perform the experiments for each module that we previously

discussed, we collected all the 3,323 test case descriptions written in natural language

from the Prodigy test suite. The test cases under study were manually designed to

test the Prodigy Math game. In total, the test cases in our data set contain 15,644

steps, with an average of 4.82 test steps per test case and a vocabulary size of 2,701

unique words across all the test cases.

3.4 The terminology improvement analysis mod-

ule

Our approach for recommending terminology improvements consists of using statisti-

cal and neural language models to analyze the description of a test case and identify

words that should be replaced by more likely words. We train unidirectional and

bidirectional n-grams, BERT-based models, and a combination of both types. We

then use the characteristics of the sentences in the test case description to choose

the most suitable model to identify words in the description that can be replaced by

more likely words. Figure 3.2 presents an overview of our approach to recommend

terminology improvements to test cases, which consists of a training phase, evaluation

of the models, and inference phase as we explain below.

3.4.1 Training phase

The test case descriptions in our dataset have sentences with very different lengths,

ranging from 3 words to more than 30 words. Furthermore, even though many test

cases have a similar terminology, as new features are included in the game, new test

cases with a terminology that is different from the existing ones are added to the

test suite. Based on the characteristics of our data, we chose two different types

of language models to be evaluated: statistical models (n-grams) and neural models

67

Pre-
processed

existing
test cases

Pre-
processed

new test case

Build n-grams
with training set

Best
n-grams

Training phase

Pre-trained BERT LMs
Fine-tune BERT LMs

with training set

Compute conditional
probabilities

P(w2|w1) =
P(w1 w2)

P(w1)

w1 w2 w3 w4

w1 w2 w3 w4

w1 w2 w3 w4

Inference phase

Original
word in
top-k?

No recommendations
YES

NO

Recommend word replacement

ŵ2

ŵ1

ŵ3

w2 w3 w4

LM top-k predicted words for
masked words

[mask] w2 w3 w4

w1 [mask] w3 w4

w1 w2 [mask] w4

w1 w2 w3 [mask]

Mask words in a new test step

w1 w2 w3 w4

ŵ1 w2 w3 w4

Split existing
test cases

into training
and testing

Compute
perplexity on

testing set

New model weights

Select most appropriate LM

Condition
n-gram +

BERT

BERT

Compute
perplexity on

testing set

Evaluation

Best BERT-
based LMs

n-gram
+

BERT

n-gram

[CLS]

MLM classifier

Transformer layers
[MASK]w1 w3 w4

[CLS] ŵ1 ŵ2 ŵ3 ŵ4

Figure 3.2: Our approach for recommending terminology improvements with n-grams
and BERT-based language models (LMs).

(BERT-based models).

Statistical models such as the n-gram capture regularities in the corpus used to

build the model and perform well with highly predictable corpora that have repetitive

patterns [77], which often appear in our data. N-gram is a popular generative statisti-

cal language model that estimates the probabilities based on the frequency with which

words appears in the training corpus (a.k.a. the maximum likelihood estimate) [24,

77, 90]. For any sequence s of words: w1w2w3w4 · · ·wn, a common way of estimating

the probability of a word is to use a fixed-size window of (n-1) context words. For

example, using a bigram, the probability of wi depends only on wi−1 and uses the

number of times wi−1wi appeared in the training corpus relative to the number of

times that wi−1 appeared:

p(wi|w1 · · ·wi−1) = p(wi|wi−1) =
count(wi−1wi)

count(wi−1)

N-gram models have been traditionally used for the next word prediction task, in

68

which only the leftward context words are used to predict the next word (unidirec-

tional n-gram) [90, 107]. However, in our work, we also experiment with n-gram

models to perform the fill-in-the-blank task as both leftward and rightward context

words are available (bidirectional n-gram) [38].

Neural models present several benefits over n-grams, such as the ability to handle

longer dependencies in a sentence, which can be an advantage for the longer sentences

in our data. Also, neural models generalize better than statistical models [14, 128],

which can be advantageous for cases with an unseen context (e.g., when a new test

case with new terminology is added to the test suite). In particular, transformer-based

neural language models have shown a higher performance than other types of neural

models (e.g., RNN/LSTM) [100] and have achieved the state-of-the-art performance

in many NLP tasks [107, 143]. In our work, we use transformer-based neural language

models because they outperform other neural architectures and there are several large

pre-trained models available [200].

Training n-gram language models.

We trained unidirectional and bidirectional unigram, bigram, trigram, 4-gram, and

5-gram models. For n-grams with an order above 1 (bigram, trigram, and so on), a

word might appear in a context in the test set that has not appeared in the training

set. To avoid having a zero probability prediction and to have a usable prediction, we

adopt a simple and effective smoothing technique called stupid backoff [23, 77, 90]. In

this case, if the model has not seen a certain 5-gram, for example, it can back off from

the 5-gram and use the probabilities of the 4-gram, and so on. To handle the cases

in which an unknown (out-of-vocabulary) word appears in the test set, we introduce

a new token ⟨unk⟩ in our vocabulary, which replaces rare words (a random sample

of words that occur only once in our corpus). We then estimate the probabilities

for the ⟨unk⟩ token from its counts just like another regular word [26, 90]. Also, an

n-gram model automatically backs off to a lower-order if the length of the context

69

word sequence is smaller than n. For example, when using a unidirectional 4-gram

and analyzing the third word of a sentence, there are only two words on the left,

so the model uses a trigram (two context words plus the target word). Finally, for

the bidirectional n-gram, we estimate the probability of a word wi by averaging the

probability using the leftward words and the probability using the rightward words,

as shown below for a bigram:

p(wi|wi−1wi+1) =
pleft(wi|wi−1) + pright(wi|wi+1)

2

Training BERT-based language models.

To train our BERT-based language model, we used the BertForMaskedLM class from

Huggingface [200] with a pre-trained model. To tokenize the data and format it as

required by BERT, we used BERT’s own tokenizer provided by Huggingface. Fi-

nally, similarly to what was originally performed to train BERT from scratch [46], we

fine-tuned the pre-trained BERT-based models with the masked language modeling

objective by randomly masking 15% of the words in the training data. We evaluated

three pre-trained models: BERT base uncased (trained on lower-cased English text),

DistilBERT base uncased (a light transformer model based on BERT base uncased),

and BERT large uncased whole word masking (which was trained using whole word

masking). For each of the three pre-trained models, we also evaluated their fine-tuned

versions. For simplicity, we will use these names to refer to the used BERT models:

BERT for BERT base uncased, DistilBERT for DistilBERT base uncased, and BERT

whole word for BERT large uncased whole word masking.

70

3.4.2 Evaluation

Evaluation setup

To train and evaluate the language models, we used all the data that we collected (test

case name, objective and steps). We shuffled the data and split it into training (80%)

and testing (20%) sets. For this approach, a preliminary analysis showed that keeping

the stop words and words in their original format (i.e., not performing lemmatization)

increases the language models’ performance as more context information is available.

We used the intrinsic evaluation metric called perplexity [26, 77, 90]. A good language

model can capture the patterns and regularities of the training corpus and should be

able to predict the words in a new sequence W that comes from the same population as

the training one with a high probability. That is, the model should not be “perplexed”

by that new sequence. Perplexity (PP) can be defined as follows:

PP(W) = N

⌜⃓⃓⎷ N∏︂
i=1

1

P (wi | w1 . . . wi−1)
(3.1)

Where W is a sequence of words and P is the conditional probability of wi given

the context words. Since a good model should assign a high probability to a new

sequence of words and the perplexity is inversely related to the probability, the better

the model, the higher the probabilities, and the lower the perplexity, which leads to

a better generalization of the model [21]. We compare the distributions of perplexity

for the different models with the non-parametric Wilcoxon rank-sum test [197] and

compute the magnitude of the distribution difference with Cliff’s delta effect size [109,

156].

Evaluation results

Figure 3.3 presents the distributions of the perplexity metric for all the evaluated

models across the testing set (each data point corresponds to the perplexity of a

71

1

10

100

Un
igr
am
Big
ram

Tri
gra
m
4-g
ram

5-g
ram

N-grams

P
er
pl
ex
ity

Unidirectional Bidirectional

(a) Perplexity of n-gram models.

10
1000

100000
10000000

BERT
DistilBERT

BERT whole word

BERT-based models

P
er

pl
ex

ity

Pre-trained Fine-tuned

(b) Perplexity of BERT models.

Figure 3.3: Distributions of the perplexity* metric of the evaluated language models.
*Log-transformed perplexity for better visualization.

sentence in the testing set). Figure 3.3a shows that for unidirectional n-grams, the

unigram is the worst n-gram as it presents the highest perplexity median (94.95) and

the higher the order of the n-gram, the lower the median perplexity (i.e., the better

the model), with the trigram, 4-gram, and 5-gram presenting very similar median

perplexities (12.41, 12.79, and 12.68, respectively). The bidirectional n-grams present

a similar behavior across different n-gram orders, but with even lower perplexities.

When comparing the unidirectional and bidirectional distributions for each n-gram

order, the Wilcoxon rank-sum test shows that for all of them, except the unigram, the

distributions are significantly different, with a medium Cliff’s delta effect size. This

shows that the bidirectional n-grams indeed achieve better performance. When we

compare the distributions among the bidirectional n-gram models only, the bigram

distribution is significantly different from higher-order n-grams, but with a small

Cliff’s delta effect size. However, there is no statistically significant difference between

the distributions of the trigram, 4-gram, and 5-gram models (all with a negligible

effect size). In practice, a trigram seems enough in our case, but given the low n-

gram computational cost, we use the best-performing model (bidirectional 5-gram)

in our approach for test case terminology improvement.

Figure 3.3b presents the perplexity distribution for the BERT-based models. For

the pre-trained models, DistilBERT presents the highest median perplexity (32k),

followed by BERT (520.64) and BERT whole word which has the lowest median

72

perplexity (76.16). Fine-tuned models present a similar behavior, but with lower

perplexities, with BERT whole word also having the lowest median perplexity (45.97).

Except for DistilBERT, fine-tuning improves the model’s performance by reducing the

perplexity of the model as it sees new sequences. When comparing the distributions

between the pre-trained and fine-tuned models, the Wilcoxon rank-sum test shows

that for all the three types of models there is a statistically significant difference

between the distributions, with a large effect size for DistilBERT, a small effect size

for BERT, and a negligible effect size for BERT whole word.

Comparing N-gram and BERT-based language models

Since we cannot use perplexity to compare models built with different vocabular-

ies [26, 90], we used a recommendation system-like metric (accuracy@k) to compare

the best-performing n-gram (bidirectional 5-gram) to the best-performing BERT-

based model (fine-tuned BERT whole word). We compared their performance for

our task (word recommendation). To compute the accuracy@k, we first translate the

problem of word recommendation to a binary problem. Suppose we are analyzing

a test step composed of a sequence of words w1w2 · · ·wn. We mask one word at a

time (i.e., replace the word by the [mask] token, as shown in Figure 3.2) and get the

top-k most likely words predicted by the language model for each masked word. For

the top-k words predicted by a model for a single masked word, if the original word

is among the k predictions, we consider it a correct recommendation (1), otherwise,

we consider it a wrong recommendation (0). Then, we have a correct (1) or wrong

(0) recommendation for each masked word in a test step sentence, and compute the

accuracy@k for the whole test step sentence as: count(correct suggestions)
count(all suggestions)

. We evaluated

the bidirectional 5-gram and the fine-tuned BERT whole word models on the entire

testing set using top-3, top-5, and top-10 suggestions. Table 3.2 shows the median

accuracy@k for both models across the entire testing set in the Entire testing set col-

umn (we computed the accuracy@k for each test step in the testing set and calculated

73

the median), for which the bidirectional 5-gram performed better than BERT whole

word for k ∈ {3, 5, 10}.

To further understand the scenarios in which the bidirectional 5-gram and fine-

tuned BERT whole word models fail, we manually inspected a sample of test steps

for which either the n-gram has an accuracy@10 of zero and BERT has an accu-

racy@10 of one, or vice-versa. We focused on the cases where one model is totally

unable to provide a correct recommendation (even recommending the top-10) while

the other provides all the recommendations correctly to be able to identify the char-

acteristics that might cause one model to fail but not the other. This allows us to

better understand in which scenarios we can combine both models. We made two

observations: (1) the n-gram model performs very well when context words were seen

during training but the performance degrades when the model needs to back off until

reaching the unigram (because of unseen context) and the n-gram’s prediction prob-

ability is low (even for the first-ranked predicted word) and (2) BERT struggles to

make correct predictions when the test step has very domain-specific terms and is

short (in terms of number of words).

Using those two observations with the fact that BERT usually outperforms other

language models for long sentences, we also evaluated a combination of the bidirec-

tional 5-gram with BERT whole word for different lengths of test steps. Using the

distribution of number of words per test step in our data, we split the testing set

into two groups: short test step sentences (less than 5 words, which correspond to

the bottom 20% of the testing set) and long test step sentences (more than 12 words,

which corresponds to the top 20% of the testing set). To combine the bidirectional

5-gram with BERT whole word, we adopt the following procedure: for each masked

word in a test step sentence, we verify if the n-gram backed-off until the unigram to

make the prediction (i.e., if the n-gram found an unseen context) and if the n-gram

probability for the first-ranked word is lower than 0.5 (empirically defined). If those

conditions occur, we assume that the BERT predictions are more reliable (since in

74

Table 3.2: Median accuracy@k (acc@k) for combinations of different types of language
models. *BERT whole word refers to the BERT large uncased whole word masking
model.

Language model
Entire testing set Short test step sentence Long test step sentence

acc@3 acc@5 acc@10 acc@3 acc@5 acc@10 acc@3 acc@5 acc@10

Bidirectional 5-gram 0.67 0.71 0.75 0.34 0.5 0.5 0.81 0.84 0.86

Fine-tuned

BERT whole word*
0.17 0.22 0.25 0 0 0.17 0.21 0.27 0.30

N-gramunseen-context

+ BERT
0.67 0.70 0.75 0.34 0.5 0.5 0.84 0.85 0.88

an unseen context, more generalizable models, e.g. BERT, perform better) and use

them. Otherwise, we keep the n-gram predictions. Our goal is to evaluate if switching

to the predictions made by BERT whole word boosts the overall performance of word

recommendation for different test step sentence lengths.

Table 3.2 shows the performance of the combined models (N-gramunseen-context +

BERT) and how it compares to each individual model’s performance for all the sen-

tence length scenarios. Using both the entire testing set or only short sentences, the

performance of the bidirectional 5-gram is superior than BERT whole word ’s per-

formance for the top-3, top-5, and top-10 predictions. That is, using the combined

N-gramunseen-context + BERT does not increase the performance. However, for longer

test step sentences, the combined the models increases the performance compared

to each model’s individual performances. For the top-3 predictions, the accuracy@3

increased from 0.81 to 0.84 (almost 4%), while the accuracy@5 increased from 0.84 to

0.85 (around 1.2%) and the accuracy@10 increased from 0.86 to 0.88 (around 2.3%).

3.4.3 Inference phase

Finally, in the inference phase, we apply the best-performing n-gram and BERT-based

models (bidirectional 5-gram and BERT whole word) to analyze the test steps of a

new test case and recommend improvements if necessary. We follow a similar process

75

as we did to compare the n-gram to the BERT model: we mask each word at a time

in the test step sentence and get the top-k predictions from the n-gram. Then, we

verify if (1) the n-gram backed off to the unigram, (2) the n-gram has a prediction

probability less than 0.5 for the first-ranked word, and (3) the sentence length is above

12 words. If all the three conditions occur, we use the bidirectional 5-gram combined

with the BERT whole word model, otherwise we use only the bidirectional 5-gram.

Then, if the original word is among the top-k predicted words, the most appropriated

word is already being used, so we do not recommend any changes. Otherwise, we

present the recommendations to the user. Note that we filter out stop word-related

recommendations as they do not meaningfully improve the test case descriptions.

3.5 The missing test step analysis module

Our approach for recommending test steps that are missing from test cases first trains

a model to identify sets of test steps that frequently appear together in existing test

cases and then builds association rules based on those sets. The high-confidence

rules are then used to recommend test steps that are missing from a new test case.

Figure 3.4 presents an overview of our approach for recommending missing test steps,

which consists of a training phase, evaluation of the model, and inference phase as

we explain below.

3.5.1 Training phase

Named Entity Recognition (NER)

Our approach first trains a Named Entity Recognition (NER) model to identify proper

names of game assets (e.g., in-game items and game zones) in the test steps and

replace the assets’ names by the related entity. In our test cases, similar test steps

are executed to test different assets in the game. For example, suppose the following

steps are used to test if a user can purchase item A: [“Log into the game”, “Purchase

item A”, “Verify item A is part of the student’s asset list”, “Log out of the game”].

76

Pre-
processed

existing test
cases

Pre-
processed

new test case

Named
Entity

Recognition
(NER)

Find frequent
sets of test steps

Build
association rules

Training phase

No recommendations
NO

YES

Recommend
test steps

Evaluation

Compute
confidence and
lift to assess

rules’ strength

Inference phase

confidence = 1
AND

lift > 1

Rules with lhs =
{new test steps}?

NO

YES

Figure 3.4: Our approach for recommending missing test steps using association rules.

Now, suppose that a new item B is added to the game and a new test case is added to

the test suite to test if a user can purchase item B: [“Log into the game”, “Purchase

item B”, “Verify item B is part of the student’s asset list”, “Log out of the game”].

The second and third steps of test cases for A and B are textually different but

have the exact same meaning (the tester performs the same action just with different

items). Those steps are considered different items when we use a frequent itemset

technique. By replacing the item names (A and B) with a placeholder that represents

the entity (e.g., asset item), the second and third steps become the same item for

the mining technique and we can successfully identify the frequent test steps and

association rules. By using the NER model, our approach for recommending missing

steps becomes agnostic to such named entities and flexible to support the evolution

of the game since different assets (e.g., items) are frequently added to the game. Note

that a pure keyword-based search is infeasible since asset names might appear written

differently in test cases (e.g., a mix of lowercase and uppercase, different spacing, etc).

Furthermore, the list of keywords would need to be constantly updated. In contrast,

a trained NER model is capable of identifying asset names with a high accuracy

77

(including newly-added entities) based on the learned textual patterns and sentence

structure. Our trained NER model was obtained by customizing the NER model

provided by Spacy.3

Finding frequent sets of test steps and building test step association rules.

Frequent itemset mining is the process of finding sets of items that occur together

frequently across different transactions [4, 5]. Using frequent itemsets, we can build

association rules which have the form {X} → {Y }, where X (the antecedent) and Y

(the consequent) represent sets of one or more items that occur together. Our goal

is to discover sets of (one or more) test steps that appear together across different

test cases. Therefore, we mapped the transactions to test cases and the items to

test steps. To obtain the frequent sets, and as the majority of the test steps does

not occur very frequently across different test cases, we empirically set the minimum

support (minimum frequency with which the sets must occur in the test cases to be

considered frequent) to 0.005. This means that every test step set that occurs in at

least 0.5% of the test cases is considered a frequent set. Using the sets of test steps

that appear together, we build association rules to recommend missing test steps from

a new test case. In this work, we train a model that uses the popular and efficient

FP-Growth (Frequent Pattern Growth) algorithm [70, 71] to mine frequent itemsets

and association rules. FP-Growth is suitable for our work since we use a low minimum

support threshold, for which FP-Growth is very efficient [70].

3.5.2 Evaluation

Evaluation metric

To evaluate the rules’ strength, we focus on the confidence and lift metrics. The confi-

dence of a rule corresponds to the conditional probability of the consequent occurring

(the right-hand side of the rule) given that the antecedent occurred (the left-hand

3https://spacy.io/

78

https://spacy.io/

side of the rule). The confidence metric might be misleading in scenarios of a highly

frequent consequent, in which the confidence would be misleadingly high. Therefore,

we also use the lift metric to asses the rules’ strength and interestingness [121]. The

lift of a rule {X} → {Y } represents how much the probability of Y occurring with the

knowledge that X occurred (i.e., the conditional probability of Y given X) changes

related to the occurrence frequency of Y alone. In practice, a lift above 1 indicates

that the occurrence of X has a positive effect on the occurrence of Y.

Evaluation setup

Our evaluation setup consists of simulating the process of designing a new test case

and adding it to the test suite. We assume that a certain number of test cases are

already in the test suite and use those test cases to build the association rules. In

our case, we selected the first 2500 test cases in our data (about 75% of the data)

to build the rules. We then applied the built rules to the 2501th test case, which we

suppose is a new one. In the next iteration, we added the 2501th test case to the test

suite, built the rules with those 2501 test cases, and applied the rules to the 2502th

test case. This process continued until we reached the last test case.

For each iteration, we computed the accuracy of the rules’ recommendations for a

new test case to verify how often the recommended test steps are correct. To do this,

for each new test case, we removed one of its test steps at a time, applied the rules

to the remaining test steps, and checked if the removed test step was among the test

steps recommended by the rules. If it was, the rule made a correct suggestion (1),

otherwise it was a wrong suggestion (0). Then, we computed the accuracy (proportion

of correct suggestions) using all the selected rules. We followed this process for every

test step in a new test case and computed the average and median accuracy for the

whole test case. Note that we only selected the rules that have a minimum confidence

(min confidence) and a minimum lift (min lift). For our experiments, we used a min -

confidence of 0.5 and a min lift above 1, and a stricter criteria with a min confidence

79

of 1 (the highest possible) and a min lift above 1 as well.

Evaluation results

Using a min confidence of 0.5 together with a min lift above 1, we obtained 1,060

association rules to recommend missing test steps for a new test case. Those rules

have an average accuracy of 0.72 (and a median of 1) across all the new test cases as

we explained in Section 3.5.2. This means that, on average, the recommendations by

the rules are correct 72% of the time per test case. For a min confidence of 1 with

a min lift above 1, we obtained 475 association rules, which is less than before as

we applied a stricter min confidence. Those rules have an average accuracy of 0.98

(and a median of 1) across all the new test cases, which means that, on average, the

recommendations by the stricter rules were correct 98% of the time per test case.

3.5.3 Inference phase

Finally, we use the built association rules with high confidence and lift metrics with

the test steps of a new test case to recommend test steps that are potentially missing

from the new test case. To be consistent, we also apply the trained NER model to the

test steps of the new test case to identify and replace game assets’ names. We then

use two criteria to select strong rules to be used. First, we only select the rules for

which the antecedent (left-hand side) matches exactly to the set of test steps of the

new test case since we want to suggest other test steps that occurred together with

the newly-specified ones. Second, we select the best-performing rules, i.e., rules with

a confidence of 1 (the highest confidence possible) and a lift metric above 1. These

criteria help us to ensure we are using strong rules to provide suggestions and reduce

false positives.

80

Pre-
processed

existing
test cases

Pre-
processed
new test

case

Training phase

Inference phase

Identify similar
test cases based

on clusters

{TC2, TC3}

Embed new
test steps

[0.53, 1.32 …]
[0.10, 5,36 …]

Update existing
test step clusters

Embed
test steps

Compute text
similarity

Cluster similar
test steps

Pairwise
similarity score

Represent test cases
with test step clusters

Evaluation

Build
ground
truth of

similar test
steps

Compute
F-score for
test step

clustering

Build
ground
truth of

similar test
cases

Compute
F-score for
test case
similarity

[0.53, 1.32 …]
[0.10, 5,36 …]

Figure 3.5: Our approach for recommending similar test cases using text embedding
and clustering techniques.

3.6 The test case similarity analysis module

Our approach for recommending similar test cases was proposed in our prior work [183].

The approach consists of two stages: (1) clustering similar test steps using text em-

bedding, text similarity, and clustering techniques (test step-level stage), which is

based on the work by Li et al. [101] and (2) identifying similar test cases using the

clusters of test steps (test case-level stage). Figure 3.5 gives an overview of how our

approach for identifying similar test cases was integrated as an analysis module which

consists of a training phase, evaluation of the models, and an inference phase as we

explain below. In this section, we give a concise overview of the approach that was

presented in detail in our prior work [183].

81

3.6.1 Training phase

Our approach starts by transforming the test step sentences into one or more nu-

meric vectors (text embedding), which is necessary to apply a machine learning algo-

rithm [194]. The pairwise distance between test step embeddings is then computed,

which we use to capture the similarity between the test steps. In particular, em-

beddings that are close in the embedding space should represent similar test steps.

Finally, our approach leveraged the computed distance to identify clusters of similar

test steps (i.e., test steps that have a small distance between them should belong to

the same cluster).

In the second stage, our approach leverages the obtained clusters of similar test

steps together with the test case name to identify similar test cases. The approach

first obtains a numeric representation (i.e., a vector) for each test case based on the

clusters to which the test steps of that test case belong, as shown in Figure 3.5.

Then, the pairwise similarity between test cases is computed (which we call the test

step cluster-based similarity score since it is computed using the test step clusters).

Next, to incorporate knowledge from the test case name, the approach embeds the

test case names and computes their pairwise similarity (which we call the test case

name-based similarity score since it is compute using the test case names). Finally,

the approach computes a final similarity score which is a weighted average between

the test step cluster-based similarity score and the test case name-based similarity

score. In our prior work [183], we thoroughly evaluated the described approaches

with several different techniques using the data from our industry partner.

3.6.2 Evaluation

Based on our prior work [183], we selected the best performing approach for clus-

tering test steps, which uses Word2Vec [124] to embed the test steps, Word Mover’s

Distance (WMD) [93] to compute the similarity between test step embeddings, and

K-means [50] to cluster the test steps. We also selected the best-performing approach

82

for identifying similar test cases, which uses cosine to compute the similarity between

test cases’ numeric representations with an optimal threshold of 0.65. This means

that if an existing test case has a final cosine similarity score of more than 0.65 with

the new test case, the existing test case is considered a similar test case. Furthermore,

our prior work indicated that the optimal balance between the test step cluster-based

similarity score and the test case name-based similarity score is 90% (i.e., the test

step clusters contribute with 90% and the test case name contributes with 10% to

the final similarity score).

3.6.3 Inference phase

Finally, in the inference phase, we use the best-performing models to cluster similar

test steps (Word2Vec + WMD + k-means) and identify similar test cases to retrieve

the existing test cases that are similar to the new test case. Our approach starts by

embedding the test steps of the new test case using Word2Vec. Then, the existing test

step clusters, obtained with the test step clustering approach, are updated with the

new test steps (using the distance between their embeddings). Finally, the approach

to identify similar test cases is used to retrieve all the existing test cases that have a

cosine similarity score higher than 0.65 compared to the new test case.

3.7 Related Work

In this work, we apply several NLP techniques to automatically analyze and provide

feedback to improve the description of test cases specified in natural language. Prior

work used those techniques in many different ways, as we discuss below.

Wang et al. [189] proposed an approach to automate the generation of executable,

system-level test cases from natural language use case specifications. The approach

relies on a domain model (i.e., a class diagram) and uses several NLP techniques (e.g.,

Named Entity Recognition and part-of-speech tagging). Two industrial case studies

were used to evaluate the approach, which correctly generated test cases that exercise

83

different scenarios manually implemented by experts. Mai et al. [113] proposed an ap-

proach to automatically generate executable test cases from use case specifications

that capture malicious behavior of users. The evaluation through a case study in the

medical domain indicated that the proposed approach can automatically generate test

cases that can detect vulnerabilities. Hemmati and Sharifi [75] proposed an approach

to predict the failure of system-level test cases natural language. The approach relies

only on the test case description in natural language and seeks to enhance the per-

formance of history-based prediction models by including natural language features

(e.g., obtained through Part-of-Speech tagger) weighted with TF-IDF. The approach

evaluation showed that using natural language features improve the performance of

the failure prediction model. Finally, Hemmati et al. [73] investigated approaches

to prioritize test cases described only in natural language. The authors used three

types of heuristics for test case prioritization, including topic coverage-based and

risk-driven heuristics (using the test case risk of detecting a fault based in its fault

detection history).

The aforementioned works used NLP for different tasks, such as to analyze use

cases described in natural language and automatically generate executable test cases.

In contrast, we use several NLP techniques such as text embedding and Named Entity

Recognition as part of an automated framework for automatically analyzing newly-

specified manual test cases and providing feedback to improve the test case descrip-

tions.

Language modeling is another NLP technique that has been used in software en-

gineering, mainly for code completion tasks [107, 133]. For instance, while Nguyen et

al. [133] used program analysis and a statistical language model (n-gram) to develop

a technique to complete code, Liu et al. [107] used a transformer-based neural ar-

chitecture to develop multi-task learning based pre-trained language model for code

understanding and code generation. Differently from those works, we are the first,

to the best of our knowledge, to use language modeling to model test case specifi-

84

cations in natural language and recommend improvements by identifying words in

the description that could be replaced by more likely words, based on word usage in

previous test cases.

3.8 Threats to Validity

A threat to the external validity concerns to the generalizability of our framework

and its evaluations. Our findings rely on the test cases from an educational math game

and using test cases from a different domain might yield different results. Another

threat is that the results might differ if other text embedding or clustering techniques

are used. Future studies should investigate if our modules can be improved using

other techniques. A threat to the internal validity is related to the selection of

the association rules used to recommend missing test steps. First, we only use rules

with either a confidence above 0.5 or exactly 1 and a lift above 1. Second, our

rules only recommend one test step. Future work should investigate a wider range

of those metrics and whether having more than one consequent in a rule is better.

Another threat concerns the choice of only one architecture (transformers) for the

neural language models. Other model architectures (e.g., RNN/LSTM) should also

be investigated. Finally, the evaluations were performed with the existing test cases,

which are unoptimized. Even though the test cases were written by experienced

QA engineers, at this moment, we are focusing on ensuring that new test cases are

improved as much as possible before they are entered into the test suite. In the future,

we will also work on improving the existing test cases.

3.9 Conclusion

In this chapter, we propose an automated framework for automatically analyzing

and providing feedback on how to improve the description of manual test cases. We

discuss three analysis modules that are capable of recommending improvements to

85

the following: (1) the terminology of a new test case, (2) potentially missing test steps

for a new test case, and (3) recommendations of similar test cases that already exist

in the test suite. The three modules were thoroughly evaluated on the data from

our industry partner with the test cases designed to test the Prodigy Math game.

Our evaluation results show that we can achieve a high accuracy (up to 88%) to

recommend terminology improvements with statistical and neural language models.

Also, on average, our association rules can correctly recommend missing test steps

98% of the time per test case. Finally, we can identify similar test cases with a high

performance (an F-score of approximately 83%) using text embedding, text similarity,

and clustering techniques. Our proposed framework uses an innovative and efficient

way of combining traditional and state-of-the-art techniques to automatically analyze

test cases in natural language. The framework is capable of providing actionable

recommendations, which is an important challenge given the widespread occurrence of

test cases that are written in natural language in the software industry (in particular,

the game industry).

86

Chapter 4

Prioritizing Natural Language Test
Cases Based on Highly-Used Game
Features

4.1 Abstract

Software testing is still a manual activity in many industries, such as the gaming

industry. But manually executing tests becomes impractical as the system grows and

resources are restricted, mainly in a scenario with short release cycles. Test case

prioritization is a commonly used technique to optimize the test execution. However,

most prioritization approaches do not work for manual test cases as they require source

code information or test execution history, which is often not available in a manual

testing scenario. In this chapter, we propose a prioritization approach for manual

test cases written in natural language based on the tested application features (in

particular, highly-used application features). Our approach consists of (1) identifying

the tested features from natural language test cases (with zero-shot classification

techniques) and (2) prioritizing test cases based on the features that they test. We

leveraged the NSGA-II genetic algorithm for the multi-objective optimization of the

test case ordering to maximize the coverage of highly-used features while minimizing

the cumulative execution time. Our findings show that we can successfully identify

the application features covered by test cases using an ensemble of pre-trained models

87

with strong zero-shot capabilities (an F-score of 76.1%). Also, our prioritization

approaches can find test case orderings that cover highly-used application features

early in the test execution while keeping the time required to execute test cases

short. QA engineers can use our approach to focus the test execution on test cases

that cover features that are relevant to users.

4.2 Introduction

Software testing is an essential, yet costly, quality assurance activity during the soft-

ware development life cycle [15, 59, 69, 73]. Despite the recent advances in test

automation techniques [111, 140, 145, 173], manual tests are still widely performed

across different industries [69, 140, 145, 180, 196]. In the gaming industry, for ex-

ample, game developers face several challenges to automate tests and, consequently,

manual testing is a predominant practice [140, 145, 180, 183, 184]

Manually executing tests is a tedious activity and requires a large amount of human

effort as testers need to perform several steps to achieve the testing goal [183, 184].

As systems grow and the number of test cases increases, it becomes impractical to

execute all manual test cases, mainly in a scenario with short release cycle [69, 73,

75, 94].

Prior work proposed several approaches to optimize the execution of test cases when

resources are restricted, such as prioritizing test cases during regression testing [52,

73, 116, 134, 136, 146, 147, 166, 191, 217]. However, most proposed approaches do

not work for manual test cases as (1) they depend on test case source code, which

does not exist for manual test cases and (2) the execution history of test cases, which

could be out-of-date or difficult to be accessed [206] or is generally not meaningful

for manual test cases as they tend to be specified at a higher-level. Because of these

two limitations of manual test cases, it is difficult to automatically prioritize their

execution based on a meaningful metric.

In this chapter, we propose an approach for prioritizing manual test cases that

88

are written in natural language based on the application feature(s) that they test. In

particular, we prioritize test cases that test highly-used application features, to ensure

that the limited testing resources are used to test features in which bugs will affect

the largest group of users. Our approach performs a multi-objective optimization

with the widely-used NSGA-II genetic algorithm [44] to find optimal orderings of test

cases according to two objectives: (a) highly-used feature coverage and (b) test case

execution time. For objective (a), we need to identify the link between the test cases

and the application features to identify which features are covered by test cases. We

then collect the feature usage data for each feature. To identify this link, we leverage

the strong zero-shot capabilities of several pre-trained language models.

We evaluated and optimized our approach for the data of a game from our industry

partner (Prodigy Education).1 Our experiments were performed with the test cases

in the test suite of Prodigy Education.

The main contributions of our work are as follows:

• We build an automated mapping between natural language test cases and the

game feature(s) that they cover.

• We propose a novel prioritization technique for natural language test cases based

on the game feature(s) that they cover, in particular, the highly-used game

features.

The source code of our experiments is available online.2 The remainder of this

chapter is structured as follows. Section 4.3 describes our industrial case subject and

Section 4.4 gives an overview of our approach for test case prioritization. Section 4.5

presents the experiments and results to build our zero-shot ensemble model. Sec-

tions 4.6 and 4.7 present and discuss the prioritization experiments and results. We

discuss practical aspects of our approach in Section 4.8, related work in Section 4.9

1https://www.prodigygame.com/main-en/
2https://github.com/asgaardlab/natural-language-test-prioritization

89

https://www.prodigygame.com/main-en/
https://github.com/asgaardlab/natural-language-test-prioritization

and the threats to validity in Section 4.10. Finally, Section 4.11 concludes the chap-

ter.

4.3 Industrial case study subject

In this chapter, we applied our approach to the Prodigy Math game (from Prodigy

Education3), which is a proprietary, online, RPG-style educational math game with

more than 100 million users around the world. The game contains over 50,000 math

questions spanning Grade 1-8. The players play the role of a character (a wizard)

in the Prodigy world and can go to several world zones available in the game. As

the players answer math questions, their wizards can evolve, learn new spells, and

acquire new equipment and in-game items. We use the test cases designed by Prodigy

Education developers, the usage data generated by the players and the features of

the Prodigy Math game as input for our approach.

Dataset characteristics. Our case study subject has 1,146 test cases that are

written in natural language. Each test case contains the following fields:

• a test case name.

• an objective with the main goal of the test case.

• the time required to execute the test case, as provided by developers and QA

engineers.

• one or more steps that the tester must perform.

The total combined execution time of the test cases is 133 hours. In total, the test

cases cover 110 features of the Prodigy Math game. Every test case covers at least one

feature, and a feature may be covered by more than one test case. For example, the

“login” feature is covered by 27 test cases. In our data, a test case covers a median

of 2 game features.

3https://www.prodigygame.com/main-en/

90

https://www.prodigygame.com/main-en/

Test cases

Pre-defined set
of game
features

Test case
execution time

Test case textual
description

Game
execution log

Optimal test
case ordering

Identify game
features from natural
language test cases

Extracting test case information

Extract test case
execution time

Extract test case
textual description

Analyzing game features

Optimizing test case execution

Input

Compute game
feature usage metrics

Game features
ordered by usage

Multi-objective
prioritization of natural

language test cases

Figure 4.1: Overview of our approach for prioritizing natural language test cases.

4.4 Overview of our approach for test case priori-

tization

Our approach for prioritizing natural language test cases consists of two steps: (1) au-

tomatically identifying the tested game feature(s) from natural language test case

descriptions and (2) prioritizing test cases based on the highly-used game features

covered by test cases. Our approach finds the orderings of test cases that maximize

the number of highly-used features covered early in the test execution and minimize

the execution time. Figure 4.1 presents an overview of our approach.

4.4.1 Input

Our approach takes as inputs (1) manual test cases specified in natural language, (2) a

pre-defined set of features of the application under test, and (3) the data generated

from the interaction of users with the system (e.g., an execution log).

91

4.4.2 Extracting test case information

Our approach starts by extracting the execution time and textual descriptions from

test cases. We use the concatenation of the test case name and objective as the

textual description of the test case. We then use several techniques with strong zero-

shot capabilities to identify the game features tested by test cases as we do not have a

mapping between test cases and the game feature(s) that they cover. Since a test case

might cover more than one feature, our approach performs a multi-label classification

of test cases with those techniques. We chose the zero-shot approach because we

do not have labeled data to train a classifier from scratch or even to fine-tune pre-

trained models, as they require large amounts of data. Manually labeling data to

train a classifier is not feasible because we have more than a hundred labels. Also,

a manual classification of all the data is error-prone and infeasible due to the large

number of test cases.

Table 4.1 shows an example test case with the corresponding covered features as

identified by our zero-shot classification techniques. The test case named “Co-op:

Joining a team” verifies whether players can join another player’s team during a

cooperative battle, and therefore, covers the cooperative battles feature (named “co-

op”) and, more specifically, the feature that allows players to join another player’s

team in a cooperative battle (named “co-op join”). We store the features identified

by the zero-shot techniques in a feature coverage vector, which is [co-op, co-op join]

in our example. And after this stage, every test case has a corresponding feature

coverage vector.

4.4.3 Analyzing game features

Our approach uses game feature usage data to prioritize test cases that test highly-

used features. We collect the total number of uses for each feature of the game for a

specific period of time from the execution logs (in our case, the events that are stored

in Prodigy’s data warehouse). As the feature usage metric in our experiments, we

92

Table 4.1: Test case example with the covered features.

Name Co-op: Joining a team

Objective
Verify the functionality of joining an-
other player’s team

Test steps

1. Log into the game

2. Try to join the team of another player

3. Verify that the student joined the
other player’s team

Execution time 1 (minute)

Covered features co-op, co-op join

used the average number of feature uses per week for an entire school year (September

2021 to June 2022).

4.4.4 Optimizing test case execution

Finally, our approach performs a multi-objective optimization with the test case de-

scriptions (with the corresponding feature coverage vector), the feature usage metric

(total number of uses), and the test case execution time. Our approach optimizes the

test case order based on a maximization of the number of highly-used game features

covered by test cases and a minimization of the cumulative test execution time.

4.5 Identifying game features from natural lan-

guage test cases

In our work, we leverage techniques with strong zero-shot capabilities to identify

the link between the manual test cases and the features that they cover. Recently

proposed pre-trained language models (such as BART [98]) have strong zero-shot

capabilities, which means that their knowledge (obtained from very large amounts

of data used during pre-training) can be transferred to a new domain which has no

93

labeled data [25, 46, 98]. As a result, we can apply these pre-trained models to new

data and classes. Prior work has demonstrated the success of zero-shot learning in

different fields, such as computer vision, speech, and natural language processing [35,

42, 45, 148, 173, 205].

4.5.1 Experiment setup

We did experiments to evaluate the performance of each individual zero-shot clas-

sification technique in our dataset. In addition, to have a more robust zero-shot

classification, we experimented with different ensembles of the individual zero-shot

techniques, as we explain below. For all the experiments, we used the 1,146 test cases

of the Prodigy Math game and a list of 110 features that was defined by the game

developers.

Techniques for zero-shot classification. We used three techniques that have

strong zero-shot capabilities as demonstrated by prior work [45, 203, 205, 209]:

BartLargeMNLI

facebook/bart-large-mnli [98] is a model trained on the Multi-Genre Natural Lan-

guage Inference (MNLI) dataset which has been shown to have strong zero-shot ca-

pabilities for text classification [209].

CrossEncoderNLI

cross-encoder/nli-distilroberta-base4 is a model trained with a cross-encoder architec-

ture to learn sentence embeddings [153] using the MNLI and the Stanford Natural

Language Inference (SNLI) datasets, which also has zero-shot capabilities for text

classification. For both BartLargeMNLI and CrossEncoderNLI models, we provide

the textual description of a test case and a list of all the game features of the Prodigy

Math game. The models output the game features sorted by their probability of being

related to the test case.

4https://huggingface.co/cross-encoder/nli-distilroberta-base

94

https://huggingface.co/cross-encoder/nli-distilroberta-base

LatentEmb

This is an unsupervised, similarity-based technique that uses text embedding methods

to embed sentences (to be classified) and the candidate labels and uses a similarity

metric (e.g., cosine) to find the labels that are similar to the sentence [45, 203, 205].

The sentence is then classified into the most similar labels (i.e., labels that are close

to the sentence in the embedding space). We need to use a sentence embedding

model to embed sentences and a word embedding models to embed labels (which

are usually single words). In our work, we use the popular Sentence-BERT (SBERT)

model [153] to embed test case textual descriptions (i.e., sentences), with the sentence-

t5-large pre-trained checkpoint, and the Word2Vec embedding model [124] to embed

the game features (i.e., labels). However, we cannot compute the cosine similarity

directly between the embedding vectors from SBERT and Word2Vec since they have

different scales (SBERT vectors are 768-dimensional, while Word2Vec vectors are 300-

dimensional). To compare the embeddings, we need to have the embeddings from

test case description and game features in the same space. Therefore, we performed

a least-squares linear regression to learn a mapping between the SBERT and the

Word2Vec spaces.5 In practice, the mapping is a “transfer” matrix that can be used

to transfer embeddings from one space to the other. We can then embed test case

descriptions and game features with SBERT, use the matrix to transfer all embeddings

to the Word2Vec space, and compute the consine similarity in the Word2Vec space.

Figure 4.2 shows how we used LatentEmb to identify the game features covered by a

test case example (test case 1).

To build the mapping, we need to embed the same set of words with both SBERT

and Word2Vec and then perform a linear regression with those embedding vectors.

We used the top-20k most frequent words from Word2Vec for the linear regression.

With the computed matrix, we can embed the description of a test case and the game

5https://joeddav.github.io/blog/2020/05/29/ZSL.html

95

https://joeddav.github.io/blog/2020/05/29/ZSL.html

Top-20k
words

(Word2Vec)

SBERT

Word2Vec

Linear
regression

Transfer
matrix

Least-squares linear regression

Test case 1
textual

description

Pre-defined set
of game features

SBERT
Transfer
matrix

dim=[20,000 , 768]

cosine

dim=[20,000 , 300]

dim=[1 , 768]

dim=[1 , 768] dim=[1 , 300]

dim=[1 , 300]

Game feature Similarity

Login 0.95

Co-op 0.58

Battle 0.53

dim=[768 , 300]

Figure 4.2: Overview of our LatentEmb technique for test case 1.

features with the SBERT model and used the matrix to transfer the embeddings to

the 300-dimensional Word2Vec embedding space, where we can compute the cosine

metric between the test case embedding and the game feature embeddings. We per-

formed a preliminary analysis to evaluate other word embedding models (Glove and

Fasttext), but using Word2Vec with the top-20k words achieved the best performance.

We also used the preliminary analysis to determine the optimal classification thresh-

old to be used for the cosine similarity in the LatentEmb approach and for the two

pre-trained models (as their outputs contain the game features along with their prob-

abilities). We used the best thresholds found in our analysis: 0.9 for BartLargeMNLI,

0.6 CrossEncoderNLI, and 0.2 for LatentEmb (we give more details on how we could

evaluate the models in Section 4.5.2 below).

Ensembles of techniques for zero-shot classification. We also experimented

with different ways of aggregating the classifications from each individual zero-shot

technique to build an ensemble. Below, we explain the different aggregation methods

that we explored.

96

Ensemble with majority voting (EnsMajorVoting)

Our initial idea is to use a majority voting approach to obtain the final classifications.

This ensemble uses the sets of labels obtained from each individual zero-shot model

and selects the labels provided by at least two models.

Ensemble with full intersection (EnsFullInters)

Aiming at having more robust and high-confidence classifications, this ensemble uses

only the labels that were provided by all the three models.

Ensemble with back-off using top-2 models (EnsBackOffTwo)

The ensemble above (EnsFullInters) might be too strict sometimes, so we evaluated

an ensemble that first obtained the labels that were provided by all the three models

and, if that results in an empty set, this ensemble backs-off to the intersection of the

two best individual models. Note that this is different from majority voting, which

uses the labels provided by a minimum of any two models (not only the top-2 best

models).

Ensemble with back-off using all models (EnsBackOffComplete)

If the intersection of all three models is empty, our approach backs-off and inspects

the intersection of the two best individual models. Then, if the top-2 intersection

is still an empty set, the approach backs-off again and inspect the intersection of

the best and third best model. At last, if that also results in an empty set, we use

the intersection between the second and third best models. Note that for all the

ensembles, if the final result set is empty, we do not assign any labels to the test case.

Baseline. To have a “sanity check”, we use a keyword search approach as baseline.

We search the feature name in the test description to find if that feature is covered

by that test case.

97

Table 4.2: Example of multi-label classification of test cases. Binary vectors for the
“battle” feature are highlighted in green (true) and orange (predicted).

Test name
True feature
coverage vector

Predicted feature
coverage vector

True binary vector
[battle, login, co-op]

Pred. binary vector
[battle, login, co-op]

Log in on mo-
bile device

[login] [co-op] [0 , 1, 0] [0 , 0, 1]

Start a co-op
battle

[battle, co-op] [login, co-op] [1 , 0, 1] [0 , 1, 1]

Check anima-
tions in battle

[battle] [battle] [1 , 0, 0] [1 , 0, 0]

4.5.2 Evaluation

To evaluate our proposed approaches, we manually labeled a subset of the test cases

in the test suite of Prodigy Education. Please note that we only labeled the data to be

able to evaluate the zero-shot and ensemble models. To use our approach in practice,

no manual data labeling is necessary. To label the test cases, the first author, who

has an extensive knowledge of the Prodigy Math game, randomly selected test cases

until there was at least one labeled example for each label. In total, we labeled 211

test cases and there are, on average, 3 examples for each label. Using the labeled

data, we computed the precision, recall, and F-score for all the evaluated approaches.

As the F-score metric penalizes both the false positives and false negatives, we focus

the discussions on that metric. To compute the evaluation metrics for our multi-

label classification task, we used the scikit-learn package, which computes the

metrics for each individual label and obtains the average. We used a weighted average

because our labels are imbalanced (i.e., the number of labeled examples for each label

is different). To clarify how we computed the F-score for our multi-label classification,

Table 4.2 shows examples of three test cases, their true feature coverage vector, and

the feature coverage vector predicted by a model. We used the MultiLabelBinarizer

from scikit-learn to obtain the binary vectors from the feature coverage vectors.

The binary vectors follow a fixed order of the features, such as [battle, login, co-op]

98

in our example, and contain ‘1’ in case that feature is present and ‘0’ otherwise. We

then compute the evaluation metrics (e.g., F-score) for each label individually (i.e., for

each game feature) and average the per-label metrics. For example, for the “battle”

feature, we use the binary elements that correspond to the position of “battle” in the

ground truth binary vectors (i.e., the first elements, which are highlighted in green),

which gives [0, 1, 1]. We do the same for the predicted binary vectors (elements

highlighted in orange) and obtain [0,0,1]. We then compute the F-score between

those two vectors, which gives an F-score of 0.67. We do the same procedure for all

game features and compute their average weighted by the number of times each game

features appears in the ground truth (e.g., “battle” appears two times, in the second

and third test cases, while “login” appears once, in the first test case).

4.5.3 Results

Table 4.3 presents the results of our experiments with the zero-shot models. All

the ensemble approaches perform better than the individual models and the baseline.

The EnsBackOffComplete approach has the best performance, with an F-score of 76.1,

followed closely by the EnsBackOffTwo approach, with an F-score of 76.0. The best

individual model is the LatentEmb, with an F-score of 72.3, while the BartLargeMNLI

and the CrossEncoderNLI achieved F-scores of 70.5 and 69.9, respectively. Based on

these results, we used the EnsBackOffComplete approach to classify all the test cases

in our dataset.

4.6 Multi-objective prioritization of natural lan-

guage test cases

To optimize the execution of manual test cases, our approach performs a multi-

objective optimization using a genetic algorithm. Below, we explain how we applied

the non-dominated sorted genetic algorithm (NSGA-II) genetic algorithm [44] to test

case prioritization, the performed experiments and the obtained results.

99

Table 4.3: Results of experiments with the zero-shot models.

Zero-shot approach F-score Precision Recall

Baseline (keyword search) 59.8 65.5 60.0

BartLargeMNLI 70.5 69.9 79.9

CrossEncoderNLI 69.9 73.5 75.3

LatentEmb 72.3 71.5 80.9

EnsMajorVoting 74.1 71.5 84.4

EnsFullInters 74.7 74.2 83.1

EnsBackOffTwo 76.0 78.3 78.9

EnsBackOffComplete 76.1 78.0 79.2

4.6.1 Multi-Objective Genetic Algorithms

A genetic algorithm is a search-based heuristic that uses the concept of natural evo-

lution to find the best solutions from a large number of possible solutions [43]. In

our case, a possible solution is a specific test case ordering that is searched among

all possible test case orderings (i.e., all the permutations of orderings). We apply the

NSGA-II algorithm [44] because it has been widely used for multi-objective optimiza-

tion for different purposes in the software engineering field [102, 164, 167, 191]. At

each iteration, the algorithm uses an objective function (i.e., fitness function) to eval-

uate the candidate solutions that we generated. Differently from a single-objective

optimization, in which the candidates are evaluated using a single objective, in a

multi-objective scenario, there is a trade-off between the multiple objectives. NSGA-

II uses the concept of dominance [43, 91] to determine the best solutions. A solution

s1 dominates solution s2 (s1 ⪯ s2) if s1 is no worse than s2 for all the objectives

and s1 is strictly better than s2 for at least one objective. In the end, the algorithm

outputs a set of non-dominated solutions, which are called the Pareto front [91].

100

4.6.2 Test Case Prioritization Using NSGA-II

For our work, a Pareto front consists of a set of test case orderings with the optimal

trade-off between the objectives. To use NSGA-II, we need to define the solution

encoding (i.e., how a solution is represented). In our case, as a solution corresponds

to a specific test case ordering, we assign a unique integer to identify each test case.

Therefore, a solution is represented by an ordered sequence of integers [1, 2, · · · , n],

where n is the total number of test cases in our test suite. We initialize NSGA-

II by randomly sampling a subset of all the possible test case orderings. For the

required genetic operators, we use the default operators provided by the Python

package that we used (pymoo [20]) for permutation problems: binary tournament for

the selection operator, order-based crossover for the crossover operator (order-based

is a crossover operator proper for permutation encoded chromosomes, such as our

case), and inversion mutation for the mutation operator.

4.6.3 Objective functions for NSGA-II

We defined three objective functions that are used during the optimization process in

our experiments. Similarly to prior work [166, 167], we use normalized metrics as the

objective functions to avoid bias of the model towards functions with larger values.

In addition, normalized objective functions are inherently more interpretable.

As we mentioned in Section 4.4, the goal of our prioritization approach is to search

for test case orderings such that (1) highly-used features are covered early in the test

execution and (2) test cases with shorter durations are executed early in the testing.

During our experiments, for comparison purposes, as we explain in Section 4.6.5, we

also performed an optimization such that (3) a large number of features (not neces-

sarily the highly-used features) are covered early in the test execution and (2) test

cases with shorter durations are executed early in the testing. To capture these

three criteria during the test case prioritization, we defined the following objective

functions.

101

Feature ranking similarity (featRankSim)

This metric measures the similarity between two rankings: the feature usage ranking

(in which the features are sorted by their total number of uses) and the feature testing

ranking (in which the features are sorted according to the order in which they are

covered when executing the ordered test cases). Ideally, the feature testing ranking is

the same as the feature usage ranking. To measure the ranking similarity, we used the

normalized discounted cumulative gain (NDCG) metric [85, 192]. NDCG is commonly

used to compute ranking quality in Information Retrieval-based systems [122] and

uses a graded-scale relevance for documents, where the usefulness of a document is

measured based on its position in the ranking (highly-relevant documents should be

at the top of the ranking). The cumulative gain score is computed as we move from

top to bottom in the ranking. The lower the position of a document in the ranking,

the lower the gain that it provides to the final score. Because of this, NDCG gives

greater importance to documents in the top of the ranking. For example, differences

in the top of the ranking have a larger impact on the score than differences in the

bottom of the ranking. We used the scikit-learn implementation of NDCG, which

lies in the range [0,1], with 1 indicating a perfect match between the obtained ranking

and the ideal ranking. In our case, a document is a game feature and we use the total

number of uses of the feature as its relevance score. The ideal ranking is obtained

by sorting the features by their usage (feature usage ranking). Finally, we want to

maximize the featRankSim objective to have the feature testing ranking as similar

to the feature usage ranking as possible (which means that highly-used features are

tested early in the test case ordering).

Cumulative execution time (cumExecTime)

This metric captures how the cumulative execution time of test cases changes as test

cases are executed in a specific order. For each executed test case, its execution time

is added to the partial cumulative execution time. Since we want cumExecTime to

102

increase as slow as possible as we execute the ordered test cases, we use the AUC

obtained as we move along the sequence of ordered test cases as the objective function

(AUCT ime). We normalize AUCT ime with regard to the maximum area (which is the

test case ordering in which the first test case has an execution time that corresponds

to the total execution time of the test suite).

Cumulative feature coverage (cumFeatCov)

This metric captures how the number of covered features increases as test cases are

executed in a specific order. Since one feature might be tested in multiple test cases,

we need to define a minimum number of test cases necessary to consider that a

feature has been covered. We defined a threshold for the percentage of test cases

that is sufficient to consider that a feature was indeed tested and can be counted as

covered (which we call per-feature coverage threshold). For example, if the per-feature

coverage threshold is 0.8, we only consider feature “A” covered after executing 4 out

of 5 test cases that cover that feature. To obtain the cumFeatCov metric, we get

the set of features associated with the test cases as they are executed one at a time

and compute how many features are covered. A feature is considered covered if its

per-feature coverage threshold is met. Since we want cumFeatCov to increase as quick

as possible as we execute the ordered test cases, we use the area under the curve

(AUC) obtained as we move along the sequence of ordered test cases as the objective

function (AUCFeat). We normalize AUCFeat similarly as we do for AUCT ime

Figure 4.3 presents examples of different test case orderings that achieve different

AUCFeat and helps to clarify our goal of maximizing AUCFeat. Figure 4.3a shows a

test case ordering in which a large number of features is covered early in the sequence

(which yields a large AUCFeat of 0.84), while Figure 4.3b shows that the number of

covered features increases slower than in Figure 4.3a (which yields a smaller AUCFeat

of 0.50). Since we want the number of covered features to increase as quick as possible,

the ordering with the larger AUCFeat is preferable.

103

1 2 3 4 5
Test case ID (ordered sequence)

0

50

100

Cu
m

. f
ea

t.
co

ve
ra

ge
AUCFeat = 0.84

(a) Ordering w/ high AUCFeat

1 2 3 4 5
Test case ID (ordered sequence)

0

50

100

Cu
m

. f
ea

t.
co

ve
ra

ge

AUCFeat = 0.50

(b) Ordering w/ low AUCFeat

Figure 4.3: Examples to demonstrate our objective function.

4.6.4 Stopping Criteria for NSGA-II

Lastly, we need to define the stopping criteria for NSGA-II so that the algorithm

can be stopped when no progress is made in the search for the optimal solutions.

Similarly to prior work [167], and to have a systematic way of deciding when to

stop the algorithm execution, we defined two stopping criteria that we used in our

experiments.

T-test: for the non-dominated solutions si of each new generation gi during NSGA-II

execution, we run a t-test [185] for each objective to compare the non-dominated so-

lutions of the new generation with the solutions si−1 of the previous generation gi−1.

For example, if generation gi has 10 solutions, there are 10 non-dominated test case

orderings, i.e., 10 values for each objective: AUCFeat, AUCT ime, and featRankSim.

When the t-tests for all the objectives show that the difference between the two gener-

ations is insignificant (p-value > 0.05) for five consecutive generations, the algorithm

execution is stopped.

Mutual Dominance Rate (MDR): we also use the set of non-dominated solutions

for two consecutive generations gi−1 and gi to compute the mutual dominance rate

(MDR) indicator [64, 118]. Consider a function ∆(gi−1, gi) that returns the set of

solutions in gi−1 that are dominated by at least one solution in gi. We can then

104

formulate the MDR as:

MDR =
|∆(gi−1, gi)|

|gi−1|
− |∆(gi, gi−1)|

|gi|

where |g| is the number of elements in g.

The MDR indicator ranges from -1 to +1, in which an MDR of -1 indicates that the

solutions of the current generation are not better than the solutions of the previous

generation, while an MDR of +1 indicates that the current solutions are completely

better than the previous solutions. An MDR of zero means that no significant progress

has been made [118]. Since the MDR can have alternated signs due to the randomness

of genetic algorithms, we consider that the algorithm can be stopped when MDR lies

within a pre-defined range [-a, a] (as done in prior work [167]) for five consecutive

generations (which is stricter than prior work [167]). We experimented with different

MDR ranges, as we explain below.

4.6.5 Experiment setup

In this section, we describe the experiments that we performed to assess how our

approach works in different scenarios and with different parameters. For all exper-

iments, we used our dataset of 1,146 test cases, with a total execution time of 133

hours and 110 game features covered by test cases. Similarly to prior work [8, 72, 166,

167], we used random-based search approaches as the baselines with which we com-

pare our approaches. We randomly selected 50 test case orderings, named Random50,

and 100 test case orderings, named Random100. The random orderings were selected

without replacement from the entire population of test case orderings. Also, following

the literature guidelines [9, 166], we used a population of 100 in all our experiments.

We executed NSGA-II 50 times during the experiments to mitigate the randomness

involved in genetic algorithms and we report the results from all 50 runs.

Experiment 1: number of covered game features versus test execution

time (without feature usage). In this experiment, we performed a bi-objective

105

optimization for different combinations of per-feature coverage threshold and stop-

ping criteria. We performed the test case prioritization only with the AUCFeat and

AUCT ime objective functions. Our goal is to understand the trade-off between game

feature coverage and execution time when no feature usage information is included.

We evaluated four per-feature coverage thresholds : 50%, 75%, 90%, and 100%. We

consider that 50% is the minimum acceptable threshold to consider that a feature is

covered. For each per-feature coverage threshold, we evaluated three approaches with

different intervals for MDR in the stopping criteria: Stop0.25, Stop0.10, and Stop0.05,

with the following ranges: [-0.25, 0.25], [-0.10, 0.10], and [-0.05, 0.05]. For the stop-

ping criteria, both the t-test (p-value > 0.05) and the MDR criteria must be satisfied

for five consecutive generations.

Experiment 2: number of covered highly-used game features versus test

execution time (with feature usage). In this experiment, we used the game

feature usage in the optimization through the featRankSim objective function instead

of only the number of covered game features. Our goal is to find test case orderings

that test highly-used features early in the test execution in the shortest amount of

time. We evaluated the same stopping criteria as in experiment 1, i.e., the [-0.25,

0.25], [-0.10, 0.10], and [-0.05, 0.05] MDR ranges together with the t-test. For

experiment 2, as we included feature usage, we named the approaches as follows:

Stop0.25 usage, Stop0.10 usage, and Stop0.05 usage.

4.6.6 Evaluation of test case prioritization approaches

For each approach, we report the number of non-dominated solutions obtained, the

number of fitness evaluations of NSGA-II, and the execution time until the algorithm

was stopped. In all cases, we report the median obtained from the 50 runs. The

number of fitness evaluations corresponds to the number of test case orderings that

were inspected during the optimization and represents the speed with which our ap-

proaches converge and their practical applicability. We also report the median of the

106

0.30 0.35 0.40 0.45 0.50 0.55 0.60
AUCTime

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AU
C F

ea
t

Per-feature coverage threshold: 50%

Approach
Stop0.05
Stop0.10
Stop0.25

Random50
Random100

(a)

0.30 0.35 0.40 0.45 0.50 0.55 0.60
AUCTime

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AU
C F

ea
t

Per-feature coverage threshold: 75%

Approach
Stop0.05
Stop0.10
Stop0.25

Random50
Random100

(b)

0.30 0.35 0.40 0.45 0.50 0.55 0.60
AUCTime

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AU
C F

ea
t

Per-feature coverage threshold: 90%
Approach

Stop0.05
Stop0.10
Stop0.25

Random50
Random100

(c)

0.30 0.35 0.40 0.45 0.50 0.55 0.60
AUCTime

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AU
C F

ea
t

Per-feature coverage threshold: 100%
Approach

Stop0.05
Stop0.10
Stop0.25

Random50
Random100

(d)

Figure 4.4: Experiment 1: Trade-off between AUCT ime and AUCFeat for different per-
feature coverage thresholds across our different approaches (without feature usage).

AUCFeat and AUCT ime objective functions for experiment 1, and of the featRankSim

and AUCT ime objective functions for experiment 2. Following the literature recom-

mendations [8], we used the Mann-Whitney U-test [114] and Cliff’s delta d effect

size [109, 156] to statistically compare our approaches. We adopt the thresholds for

d as provided by Hess and Kromrey [76]:

Effect size =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
negligible(N), if |d| ≤ 0.147

small(S), if 0.147 < |d| ≤ 0.33

medium(M), if 0.33 < |d| ≤ 0.474

large(L), if 0.474 < |d| ≤ 1

107

4.6.7 Results

In this section we present the results of the two experiments that we performed. We

report the results from all the 50 executions of the NSGA-II algorithm.

Experiment 1: number of covered game features versus test execution

time (without feature usage). Figure 4.4 shows the non-dominated solutions

found by 50 runs of NSGA-II for our approaches across different per-feature coverage

thresholds. The Stop0.05 approach found a median of 56.5 non-dominated solutions

across all per-feature coverage thresholds, while the Stop0.10 and Stop0.25 approaches

found a median of 34.0 and 18.0 non-dominated solutions. In terms of fitness evalua-

tions (i.e., the number of test case orderings that were inspected until the algorithm

was stopped), the Stop0.05 approach had a median of 37,950 fitness evaluations across

all per-feature coverage thresholds, while Stop0.10 and Stop0.25 had a median of 15,300

and 3,600 evaluations, respectively. As expected, the number of fitness evaluations for

the Stop0.05 approach was higher since the stopping criteria is stricter. The Stop0.05

approach took a median of 85.98 seconds to execute, while Stop0.10 and Stop0.25 took

a median of 32.11 seconds and 8.06 seconds, respectively.

Figure 4.4 shows that all our proposed approaches achieve better solutions than

random search for all per-feature coverage threshold values. The Stop0.25, Stop0.10,

and Stop0.05 approaches found solutions with a better trade-off between the objective

functions, i.e., with lower AUCT ime and larger AUCFeat. For a per-feature cover-

age threshold of 50%, presented in Figure 4.4a, the Stop0.05 approach has a me-

dian AUCT ime of 0.29, while the Stop0.10 and Stop0.25 approaches have larger median

AUCT ime: 0.32 and 0.38, respectively. The Random50 and Random100 approaches

have a median AUCT ime of 0.49 and 0.50, respectively. Regarding the AUCFeat,

Stop0.05 has a median of 0.80, while Stop0.10 and Stop0.25 have medians of 0.77 and

0.69. The Random50 and Random100 approaches have a median AUCFeat of 0.58 and

0.57, respectively. Among our proposed approaches, Stop0.05 found the best solutions

108

since it has the best trade-off between the AUCT ime and AUCFeat. All the proposed

approaches are significantly better than both random search approaches (p-value less

than 0.05) and the Cliff’s delta shows large effect sizes for both objective functions.

Pairwise comparisons between the three approaches also show statistically significant

differences with large effect sizes.

A similar behavior is observed for the per-feature coverage thresholds of 75%, 90%,

and 100%, in Figures 4.4b, 4.4c, and 4.4d. In all these cases, the Stop0.05 found the

best solutions. However, the range in which the AUCFeat lies gets smaller as we

increase the per-feature coverage threshold. This happens because a higher threshold

means that we need to execute more test cases to consider a feature as covered, so the

number of covered features increases more slowly as we execute the ordered test cases,

which yields a smaller AUCFeat (as we explained in Section 4.6.3, in Figure 4.3).

Experiment 2: number of covered highly-used game features versus test

execution time (with feature usage). Figure 4.5 shows the non-dominated so-

lutions found by 50 runs of NSGA-II for our approaches. For this experiment, we

did not use the per-feature coverage threshold since we did not use the AUCFeat ob-

jective function. The Stop0.05 usage approach found a median of 42.5 non-dominated

solutions for all 50 runs, while the Stop0.10 usage and Stop0.25 usage approaches found a

median of 29.0 and 18.0 non-dominated solutions. In terms of fitness evaluations, the

Stop0.05 usage approach had a median of 47,850 fitness evaluations, while Stop0.10 usage

and Stop0.25 usage had a median of 12,800 and 3,650 evaluations, respectively. As ex-

pected, the number of fitness evaluations for the Stop0.05 usage approach was higher

since the stopping criteria is stricter. Also as expected, the Stop0.05 usage approach

took longer to execute until the stopping criteria were satisfied, with a median of

100.16 seconds. The Stop0.10 usage and Stop0.25 usage approaches took a median of

26.36 seconds and 7.47 seconds, respectively. We can see that our best approach

(Stop0.05 usage) is feasible to be used in practice as it can find the best solutions in

less than 2 minutes.

109

0.25 0.30 0.35 0.40 0.45 0.50 0.55
AUCTime

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fe
at

Ra
nk

Si
m

(N
D

CG
)

Approach
Stop0.05_usage

Stop0.10_usage

Stop0.25_usage

Random50
Random100

Figure 4.5: Experiment 2: Trade-off between AUCT ime and featRankSim across our
approaches (with feature usage).

Figure 4.5 shows that all our proposed approaches achieve better solutions than

random search since our approaches present better trade-offs between the objec-

tive functions (i.e., lower AUCT ime and larger featRankSim). The Stop0.05 usage ap-

proach has a median AUCT ime of 0.29, while the Stop0.10 usage and Stop0.25 usage ap-

proaches have larger median AUCT ime: 0.33 and 0.38, respectively. The Random50

and Random100 approaches have a median AUCT ime of 0.49 and 0.50, respectively.

Regarding featRankSim, Stop0.05 usage has the largest median, with a value of 0.96,

while Stop0.10 usage and Stop0.25 usage have medians of 0.90 and 0.82. The Random50

and Random100 approaches have a median featRankSim of 0.56 and 0.55, respectively.

Among our proposed approaches, Stop0.05 usage found the best solutions since it has

the best trade-off between the AUCT ime and featRankSim. This demonstrates that

our Stop0.05 usage approach can find test case orderings that cover highly-used game

features early in the test execution (with a high featRankSim of 0.96) while keeping

the cumulative test execution time small. All the proposed approaches are signifi-

cantly better than the random search approaches (p-value less than 0.05) and the

Cliff’s delta shows large effect sizes for both objective functions. Pairwise compar-

isons between the three approaches also show statistically significant differences with

large effect sizes.

110

Random50

Random100
Stop0.25

Stop0.10
Stop0.05

Stop0.25_usage

Stop0.10_usage

Stop0.05_usage

0.4

0.6

0.8

1.0

fe
at

Ra
nk

Si
m

 (N
DC

G) Random Exp. 1 Exp. 2

Figure 4.6: Distributions of featRankSim (NDCG) for our different approaches.

4.7 Discussion

In this section, we compare the results obtained with our experiments for priori-

tization with and without feature usage. Figure 4.6 shows the distribution of the

featRankSim objective for our random approaches and for the non-dominated solu-

tions obtained with our proposed approaches. In experiment 1, without feature usage,

all the approaches (using a per-feature coverage threshold of 50%) achieve a similar

median featRankSim: 0.55, 0.52, and 0.53 for Stop0.25, Stop0.10, and Stop0.05, respec-

tively. The random approaches achieve similar median values of featRankSim: 0.56

and 0.55 for Random50 and Random100, respectively. In contrast, the approaches

in experiment 2 achieve larger median featRankSim values: 0.82, 0.90, and 0.96 for

Stop0.25 usage, Stop0.10 usage, and Stop0.05 usage, respectively. The larger featRankSim

obtained by our approaches in experiment 2 shows that those approaches, in partic-

ular Stop0.05 usage, can successfully obtain test case orderings that cover highly-used

game features early in the test execution.

Often during regression testing, the main constraint is the time available to execute

test cases. Therefore, we discuss below how (1) the percentage of covered game

features and (2) the percentage of coverage of the top-k most used game features

change for different test execution times. For this analysis, we used the solutions

111

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Test execution time (hours)

40

60

80

100

Fe
at

ur
e

co
ve

ra
ge

 (%
)

Approach
Stop0.05
Stop0.05_usage

Figure 4.7: Comparison of game feature coverage for our best approaches in experi-
ments 1 and 2.

found by our best approaches in experiments 1 and 2 (Stop0.05, with a per-feature

coverage threshold of 50%, and Stop0.05 usage).

Figure 4.7 shows how the percentage of covered game features changes for different

execution times. A large amount of testing time is necessary to achieve large game

feature coverage. For example, to achieve 100% coverage, a median of 55 hours for

the Stop0.05 approach and 70 hours for the Stop0.05 usage approach are necessary. Even

for lower coverage, a large amount of time is necessary. For example, to achieve 90%

of coverage, Stop0.05 requires 35 hours and Stop0.05 usage requires 40 hours. We also

observe that the last 10% of feat coverage requires an extremely large amount of time

(approximately 30 hours additional testing time).

Achieving a high percentage of game feature coverage is not feasible in practice

due to the large amount of time necessary, even for the Stop0.05 approach that was

optimized to achieve a large game feature coverage in the shortest time possible. If

we analyze a more feasible scenario, with an available testing time of 5 hours, for

example, Stop0.05 covers a median of 40% of game features, while Stop0.05 usage covers

a median of 32% of game features. However, despite achieving a slightly smaller

coverage for the same amount of time available, the test case orderings obtained

112

with Stop0.05 usage cover highly-used features earlier in the test execution compared

to the solutions obtained with Stop0.05. For example, if we analyze the coverage of

the top-20% of the most used features (which gives the top-16 most used features) in

5 hours, Stop0.05 covers only 68% of those features, while Stop0.05 usage covers 93%.

With one additional hour, Stop0.05 usage covers all the top-20% most used features,

while Stop0.05 covers 75%. Therefore, with a feature usage-based test prioritization,

we can find test case orderings that cover most of the highly-used features early in the

test execution, which helps to avoid bugs that would affect a large number of users.

Finally, QA engineers can achieve a higher coverage of game features and highly-used

game features by parallelizing the test execution. For example, two QA engineers can

execute independent test cases in parallel to achieve higher coverages within 5 hours.

4.8 Using our prioritization approach in practice

We implemented an internal web application prototype of our approach to collect

initial feedback on the outcome of our approach. We are now integrating the appli-

cation into our industry partner’s cloud infrastructure. Our approach can be used by

QA engineers in an environment where resources (e.g., time) are restricted to obtain

a set of test case orderings with the best trade-off between multiple objectives. Be-

cause of how we performed the optimization, in a situation of an early-stop of test

execution, our approach ensures that the highest number of highly-used features are

covered with the shortest time possible. The tester may also choose one particular

test case ordering among the optimal orderings that maximizes one specific objective

of interest to the detriment of the other. For example, an ordering that maximizes

only the highly-used features may not have the shortest cumulative test execution

time. Another practical aspect concerns a small subset of features that are critical

to the Prodigy Math game of Prodigy Education (such as the “game membership

purchase” feature). These features must be frequently tested during regression re-

gardless of their usage. Therefore, we allow the users of our application to identify

113

the critical features and retrieve the associated test cases before executing the opti-

mization. Those test cases are then removed from the set of test cases that we use in

the optimization (as they will always be executed before the optimized ordering).

4.9 Related work

Optimizing the execution of test cases in a manual testing scenario is of extreme im-

portance [69, 73, 75]. However, only a few works investigated prioritization techniques

for manual test cases which are described only in natural language (i.e., no source

code is associated with them) [73, 94]. Hemmati et al. [73] investigated approaches

to prioritize manual test cases using test execution history and Latent Dirichlet Al-

location (LDA) [21] to find the topics related to test cases. Our approach uses a

pre-defined list of the application features to find the features being tested and lever-

ages zero-shot models for that purpose, which does not require any manual analysis

to further understand which features are covered by test cases (as LDA requires).

Furthermore, our approach does not require the test execution history, which could

be difficult to be accessed or not meaningful for manual test cases [206]. Lachmann

et al. [94] investigated a supervised approach for prioritization of manual test cases

using textual descriptions, test execution history, and the link between test cases

and requirements. Their approach requires an expert to manually label test cases as

(un)important to build the training set. In contrast, our approach does not require

any manual data labeling nor the test execution history. Furthermore, none of the

above mentioned works take into consideration the impact that bugs might have on

users. We include the coverage of highly-used features in our approach, which helps

to test those features more often and avoid impacting a large number of users.

Several works proposed prioritization techniques for test cases with associated

source code [11, 27, 81, 112, 116, 125, 134, 136, 159, 171, 191, 207]. For in-

stance, Marchetto et al. [116] performed test case prioritization with NSGA-II. How-

ever, differently from our work, they used code coverage and the link between re-

114

quirements and source code in their approach. Instead, we do not have source code

test cases and we used the link between natural language test cases and the covered

features. We also include the coverage of highly-used features in our approach. Wang

et al. [191] proposed to use multi-objective search algorithms for a resource-aware

test case prioritization using four objectives. Their goal was to achieve a test case

ordering for a limited time budget while maximizing the usage of the available test

resources. In contrast, we focus on prioritizing manual test cases to maximize the

coverage of the game features and the coverage of highly-used features.

4.10 Threats to validity

A threat to the external validity concerns the generalizability of our zero-shot meth-

ods and prioritization techniques. Using applications from other domains might yield

different results. Another threat regards the used techniques. Using different classi-

fication models and optimization algorithms might achieve different results. Future

studies should investigate if our approaches can be improved with other techniques.

A threat to the internal validity concerns the percentage of test cases that we

consider sufficient to count a feature as covered. To mitigate this threat, we exper-

imented with different percentages (from 50% up to 100%), but using other values

will achieve different results. Also, companies that already have the link between test

cases and covered features might use a different percentage. Another threat is related

to the feature usage metric that we use (total number of uses). Other metrics can also

capture feature usage, such as using the number of unique users who used a feature,

which might achieve different orderings of features based on usage. Finally, using

different conditions to stop the optimization algorithm (e.g., other p-value thresholds

or other MDR ranges) might result in different non-dominated test case orderings.

115

4.11 Conclusion

In this chapter, we propose a novel approach to prioritize natural language test cases.

Our approach leverages zero-shot classification techniques to identify the features

covered by the test cases of a game and uses this information to optimize the execution

of test cases. In particular, we prioritize test cases that cover highly-used game

features, in which bugs would affect a large group of players. Our findings show that

we can successfully identify the game features covered by test cases with an ensemble

of zero-shot models (an F-score of 76.1%). Also, our prioritization approaches can find

test case orderings that cover highly-used game features early in the test execution

while keeping the time required to execute test cases short. In practice, QA engineers

and developers can use our approach to focus the test execution on test cases that

cover game features that are relevant to players.

116

Chapter 5

What Causes Wrong Sentiment
Classifications of Game Reviews?

5.1 Abstract

Sentiment analysis is a popular technique to identify the sentiment of a piece of text.

Several different domains have been targeted by sentiment analysis research, such as

Twitter, movie reviews, and mobile app reviews. Although several techniques have

been proposed, the performance of current sentiment analysis techniques is still far

from acceptable, mainly when applied in domains on which they were not trained. In

addition, the causes of wrong classifications are not clear. In this chapter, we study

how sentiment analysis performs on game reviews. We first report the results of a

large scale empirical study on the performance of widely-used sentiment classifiers on

game reviews. Then, we investigate the root causes for the wrong classifications and

quantify the impact of each cause on the overall performance. We study three existing

classifiers: Stanford CoreNLP, NLTK, and SentiStrength. Our results show that

most classifiers do not perform well on game reviews, with the best one being NLTK

(with an AUC of 0.70). We also identified four main causes for wrong classifications,

such as reviews that point out advantages and disadvantages of the game, which

might confuse the classifier. The identified causes are not trivial to be resolved and

we call upon sentiment analysis and game researchers and developers to prioritize a

research agenda that investigates how the performance of sentiment analysis of game

117

reviews can be improved, for instance by developing techniques that can automatically

deal with specific game-related issues of reviews (e.g., reviews with advantages and

disadvantages). Finally, we show that training sentiment classifiers on reviews that

are stratified by the game genre is effective.

5.2 Introduction

Sentiment analysis is a widely adopted Natural Language Processing (NLP) tech-

nique to obtain the sentiment (expression of positive or negative feeling) from text

data [103, 138]. This technique consists of identifying the sentiment that is present

in a piece of text (words, sentences, or entire documents), which corresponds, in its

most basic form, to finding whether the text has a positive, neutral, or negative sen-

timent [103]. Sentiment analysis is a research topic that has gained attention and

has presented improvements [49, 170, 204], being developed and applied in several

different domains, such as Twitter tweets [12, 16, 22], movie reviews [170], customer

reviews of mobile applications [62, 139], video game reviews [172, 177], and various

aspects of software development [83, 88, 89, 137, 154]. Sentiment analysis is valuable

for game developers because it allows them to capture how players feel about the

game and learn about previous games’ success or failure factors [172]. This knowl-

edge can help game developers improve their game development processes and guide

them in future releases of their game (e.g., by focusing on features that users are more

positive about).

Several studies have been published on sentiment analysis with the purpose of

developing new techniques, improving current techniques, or applying current tech-

niques and classifiers to existing datasets [30, 67, 83, 88, 89, 103, 172, 177]. However,

the performance of such techniques is still far from acceptable, mainly when off-the-

shelf sentiment analysis classifiers are applied out of domain, i.e., a classifier is trained

in one domain and applied in a different domain without any configuration or adjust-

ment. Normally, sentiment analysis techniques must be adapted to the target domain.

118

For instance, Thompson et al. [177] adapted a sentiment analysis technique that was

initially designed for movie reviews to be used in video game chat messages. Despite

the low performance of sentiment analysis, no study has investigated the reason(s)

for the low performance.

In this study, we investigate how different sentiment classifiers perform on game

review data. Game reviews from Steam differ from other types of data to which

sentiment analysis is normally applied. Game reviews contain a more complex text

structure and generally discuss several aspects of the game, such as the game’s story-

line, graphics, audio and controls [211]. Texts from micro-blogging and social media

(e.g., Twitter) are usually very short [54, 132]. In addition, such texts are broader in

scope since they are not necessarily reviewing a game. Prior work [106] also showed

that game reviews are different from mobile app reviews in several aspects. For

instance, game reviews contain game-specific terminology, which is a challenge for

language processing tools.

Although the diversity of game reviews makes them a rich source of data, it also

poses challenges to NLP techniques, such as sentiment analysis. For instance, play-

ers may mention the graphical aspects and the storyline of the game in the same

review [172]. The two pieces of text corresponding to such aspects may have different

sentiments, which could confuse the sentiment classifier when making a classification

of the overall sentiment of the review.

By applying sentiment classifiers on game reviews, we are able to report the sen-

timent classification performance and identify cases where sentiment analysis fails.

For instance, the following review is an example of a difficult classification task for

current sentiment classifiers: “Very nice programmed bugs”. The reviewer makes ref-

erences to a positive word (“nice”), with a stronger intensity due to the use of an

adverb (“very”), which might lead the classifiers to classify this instance as positive.

However, the overall sentiment of this review should be negative as the reviewer is

being sarcastic (the reviewer is pointing out that the game contains bugs). A deeper

119

investigation of wrong classifications (failing cases) allows us to find problematic text

patterns for sentiment classifiers and provide insights for game developers about how

to improve the performance of sentiment analysis.

In this chapter, we first report the results of a large-scale empirical study on the

performance of sentiment analysis on 12 million game reviews. Our goals are (1) to

investigate how existing sentiment classifiers perform on game reviews, (2) identify

which factors impact the performance and (3) quantify the impact of such factors.

Note that we do not aim to propose a new sentiment classification technique. Instead,

we investigate reasons for wrong classifications of existing classifiers. We studied three

widely-used and computationally accessible sentiment classifiers [83, 103]: Stanford

CoreNLP [170], NLTK [19], and SentiStrength [176]. The selected classifiers adopt

different approaches to classify the text, such as rule and machine learning-based

approaches, which gives more confidence to our study and makes the results more

generalizable.

We evaluated these classifiers on all the game reviews collected from the Steam

platform up to 2016. We then selected the reviews of which all classifiers misclassified

the sentiment. We manually analyzed a representative and statistically significant

sample of 382 of these reviews to understand which factors might be causing wrong

classifications. Finally, we performed a series of experiments to quantify the impact

of each identified factor on the performance of sentiment analysis on game reviews.

We address the following three research questions:

RQ1: How do sentiment analysis classifiers perform on game reviews?

Investigating the performance of sentiment analysis on game reviews is the first step

to understand how current sentiment analysis classifiers work on game reviews and

whether they are suitable for this task on such data. We found that sentiment clas-

sifiers do not perform well on game reviews, with AUC values ranging from 0.53

(Stanford CoreNLP), which is slightly better than random guess, up to 0.70 (NLTK).

120

RQ2: What are the root causes for wrong classifications?

Identifying the causes for wrong classifications contributes to obtain important in-

sights about how to improve existing sentiment analysis for game reviews. We found

several causes which mislead the classifiers, such as reviews that make comparisons

to games other than the game under review, reviews with negative terminology (e.g.,

reviews that use the word “kill”) which does not necessarily mean the content has a

negative sentiment, and reviews with sarcasm.

RQ3: To what extent do the identified root causes impact the performance

of sentiment analysis?

Quantifying the impact of each identified root cause to the performance of sentiment

analysis is important to support game developers with the prioritization of causes

to be resolved and a research agenda to address such issues. We found that reviews

which point out advantages and disadvantages of the game have the highest negative

impact on the performance of sentiment analysis, followed by reviews with game

comparisons. In addition, we deepened our investigation and showed that training

sentiment classifiers on reviews stratified by the game genre is effective.

Our study makes three major contributions:

• We evaluate the performance of widely-adopted sentiment analysis classifiers on

game reviews from the Steam platform.

• We identify a set of root causes that can explain the wrong classifications of

sentiment analysis classifiers on game reviews.

• We quantify the impact of each identified cause for wrong classifications on

game reviews and provide a research agenda for addressing these causes.

• We provide access to the data1 (URLs of game reviews from Steam with the

sentiment classification provided by all three classifiers).

1https://github.com/asgaardlab/sentiment-analysis-Steam reviews

121

https://github.com/asgaardlab/sentiment-analysis-Steam_reviews

The remainder of this chapter is organized as follows. Section 5.3 provides a back-

ground on sentiment analysis classification techniques. Section 5.4 discusses related

work and Section 5.5 presents the proposed research methodology. Section 5.6 dis-

cusses the pre-study. In Sections 5.7, 5.8, and 5.9, we discuss the results, while in

Section 5.10 we present our recommendations on how to perform sentiment analysis

on game reviews. Finally, Section 5.11 concludes the chapter.

5.3 Sentiment Analysis

In this section, we present an overview of the main sentiment analysis techniques

along with the most used classifiers that adopt these techniques. In this work, we

use ‘technique’ to refer to the method adopted for the sentiment classification and

‘classifier’ (which can also be understood as ‘tool’ or ‘framework’) to refer to an

implementation of a technique (i.e., an actual instance of the technique). Next, we

discuss each technique and the representative classifier(s) we chose for our work.

For this study, we focus on popular, open source and free-to-use sentiment analysis

classifiers.

Sentiment analysis techniques are responsible for identifying the sentiment present

in a piece of text, which can be either positive, neutral, or negative [103, 138]. Ta-

ble 5.1 presents an overview of the main sentiment analysis techniques and classifiers

which have been proposed in prior studies. This is not an exhaustive list of sen-

timent classifiers and it comprehends the most reported classifiers in prior studies.

The grouping of classifiers under a specific technique category was done based on the

method the classifier uses. Classifier names in bold refer to the ones studied in this

work. The last column shows the type of data on which the classifier was originally

trained. Next, we detail each technique and the corresponding classifier(s) we chose

to use in our study.

122

Table 5.1: Sentiment analysis techniques, corresponding classifiers and default train-
ing dataset.

Technique Classifier Default training set Used by

Machine

Learning

NLTK*[19] Micro-blog texts
[88], [89], [103],

[144], [126]

Stanford CoreNLP [170] Movie reviews
[88], [89], [150],

[115], [199]

IBM Alchemy** —
[88], [89], [168],

[18]

Senti4SD [28] Stack Overflow posts [28], [82]

Rule-based

SentiStrength [176] MySpace
[68] [67], [66],

[88], [89]

SentiStrength-SE [83] JIRA [83], [82]

EmoText [29] Stack Overflow, JIRA [29], [82], [135]

* Note that we use the machine learning version of NLTK instead of its VADER version
(which uses a rule-based approach).
** IBM Alchemy is available as a service within IBM Watson at https://www.ibm.
com/watson/services/tone-analyzer/.

Machine Learning-based Techniques

Machine learning-based classifiers leverage machine learning algorithms, such as Sup-

port Vector Machines, Näıve Bayes, and Neural Networks. Examples of classifiers

that adopt this technique are NLTK [19], Stanford CoreNLP [170], and Senti4SD [28].

For our study, we selected NLTK and Stanford CoreNLP, which are open source, free

to use and very popular [83, 89].

NLTK is part of a larger NLP package that provides many other functions.2 Re-

garding sentiment analysis, NLTK uses a bag of words model. In order to apply NLTK,

we can adopt two different approaches: train a Näıve Bayes classifier on our data and

apply the built model (as we did) or use the VADER (Valence Aware Dictionary and

2https://www.nltk.org/

123

https://www.ibm.com/watson/services/tone-analyzer/
https://www.ibm.com/watson/services/tone-analyzer/
https://www.nltk.org/

True sentiment NLTK classification Sentence

Negative Positive I am so happy the game keeps freezing

Positive Positive
Was blown away by some of the developments in the story in this game,
not gonna spoil but def a must try

(a) Example of classifications made by NLTK.

True sentiment
SentiStrength
classification

Sentence
Positive
strength

Negative
strength

Negative Positive I am so happy the game keeps freezing 2 -1

Neutral Positive The game was nothing special 2 -1

Positive Negative
Was blown away by some of the developments in the
story in this game, not gonna spoil but def a must try

1 -2

(b) Example of classifications made by SentiStrength.

Figure 5.1: Examples of sentiment classifications.

sEntiment Reasoner) model, which was trained on social media texts, such as micro-

blogs [103]. The latter approach provides four scores for each sentence: compound

(varies from very negative to very positive as indicated by a score in the range [-1,

+1]), negative (probability of being negative), neutral (probability of being neutral),

and positive (probability of being positive). In the former approach, we train a Näıve

Bayes model to classify each review (it provides the probability of being positive).

Figure 5.1a presents examples of reviews classified by the machine learning version

of NLTK. As we can see, the positive example is correctly classified. However, NLTK is

not able to capture the negative sentiment of the sentence “I am so happy the game

keeps freezing”, which contains sarcasm.

Stanford CoreNLP was developed by the Stanford Natural Language Processing

Group3 at Stanford University. The authors propose a model called Recursive Neural

Tensor Network, of which the implementation is based on a Recurrent Neural Network

(RNN). The technique consists of parsing the text to be classified into a set of sen-

tences and performing a grammatical analysis to capture the compositional semantics

of each sentence [88, 103, 170]. Then, a score between ‘0’ and ‘4’ is assigned for each

sentence, in which ‘0’ means a very negative sentiment, ‘1’ means negative, ‘2’ refers

3https://nlp.stanford.edu/

124

https://nlp.stanford.edu/

-

-

+

I

killed

the evil enemy

and I

won

-

Figure 5.2: Example of the Recursive Neural Tensor Network predicting the sentiment
in a sentence.

to a neutral sentiment, and ‘3’ and ‘4’ refer to positive and very positive sentiments,

respectively. To classify a game review (composed of more than one sentence), we

adopt the following approach [89]: -2*(#0) - 1*(#1) + 1*(#3) + 2*(#4), in which

#0 refers to the number of sentences with score 0, and so on. If the resulting score is

above zero, the review sentiment is positive; if it is below zero, the review sentiment

is negative; otherwise, the review sentiment is neutral.

In Figure 5.2, we can see an example of how the sentence “I killed the evil enemy

and I won”, which is positive, is wrongly classified using Stanford CoreNLP (the root

node indicates it is a negative sentence). As we can observe, each node in the parse

tree is assigned a score (from negative to neutral to positive) and the final sentiment is

obtained via the compositional structure of the tree. We can see that different nodes

are assigned different sentiments (relative to the partial sentence composed up to

that node) and the sentiment contained in the root is supposed to capture the overall

sentiment of the full sentence, which is opposed to only inspecting the sentiment of

each word individually and summating the scores. This example was obtained from

the Stanford CoreNLP sentiment analysis website with the live demo tool.4

4http://nlp.stanford.edu:8080/sentiment/rntnDemo.html [Accessed online: March 11th, 2020]

125

http://nlp.stanford.edu:8080/sentiment/rntnDemo.html

Rule-based Techniques

Rule-based classifiers are based on a predefined list of words along with their senti-

ment score. The piece of text is split into words, and the scores of each word are

composed into a final score for the entire piece. Examples of rule-based classifiers

are SentiStrength [176], SentiStrength-SE [83], and EmoTxt [29]. In this work, we

apply SentiStrength, which is of one of the most used sentiment classifiers across

different domains, such as social media (e.g., Twitter) [7], and movie reviews [129].

SentiStrength is a rule-based classifier to classify sentences into sentiments based

on a word bank in which each word has a sentiment score associated with it (this is also

called lexical analysis). This classifier is based on a model trained on the MySpace

social media network [103]. The document under analysis must be tokenized into

sentences, which are assigned two scores based on the summation of each word’s

score: a positive strength score (how positive is the text) that ranges from 1 (not

positive) to 5 (very positive), and a negative strength score (how negative is the text)

that ranges from -1 (not negative) to -5 (very negative).

Figure 5.1b presents some examples of classifications made by SentiStrength.

We can see that the classifier’s approach of getting the sentiment score of each word

individually and summating the scores does not work for some cases. The classifier

is not able to capture the negative sentiment in the sentence “I am so happy the

game keeps freezing”, which is sarcastic. This possibly happens due to the presence

of the word “happy”, which is a positive word and misleads the tool to classify the

whole sentence as positive. In addition, SentiStrength is not able to capture the

neutral sentiment in the sentence “The game was nothing special”, possibly due to

the presence of the positive word “special”, which is positive.

126

5.4 Related Work

In this section, we describe prior work on the application of sentiment analysis on

game data and on other types of data. We also discuss empirical studies on game

reviews. Note that, in our work, we do not aim at proposing a new sentiment analysis

technique. Instead, we investigate the performance of existing sentiment classifier on

game reviews and reveal the root causes for wrong classifications. We focus on popular

sentiment classifiers, which are not computationally expensive (e.g., deep learning-

based classifiers).

Sentiment Analysis on Game Data and Reviews. Thompson et al. [177] stud-

ied how to extend a lexicon-based sentiment analysis technique for the purpose of

analyzing StarCraft 2 player chat messages. The authors updated the entries to the

word dictionary and tailored it to the gaming context. The approach was able to

classify sentiment and identify toxicity of instant messages across 1,000 games. The

best fitting model outperformed the baseline (which predicts that every message has

a positive sentiment) for the sentiment classification. The authors also performed a

niche analysis, which showed that the model performances remained relatively sta-

ble across regions, leagues, and different message lengths. Str̊åat and Verhagen [172]

investigated user attitudes regarding previously released video games. The authors

performed a manual aspect-based sentiment analysis on all user reviews from two

game franchises: the PC-version of three games from the Dragon Age franchise and

the three first games from the Mass Effect franchise. The data was collected from

the Metacritic platform. The paper showed that the rating of a user review highly

correlates with the sentiment of the aspect in question, in the case of a large enough

data set. Zagal et al. [213] studied 397,759 game reviews to identify the sentiment

of 723 adjectives used in the context of video games. The authors found that some

words which are generally used with a negative (or positive) connotation have a pos-

itive (or negative) connotation in the game domain. Finally, Chiu et al. [37], Raison

127

et al. [151], and Wijayanto and Khodra [195], and Yauris and Khodra [208] analyzed

the sentiment about specific aspects of the game (such as graphics and storyline) in

reviews. For example, take the following sentence: “An okay game overall, good story

with very bad graphics”. The player has a positive feeling about the game’s storyline,

but a negative feeling about the game’s graphics. An aspect-based sentiment analysis

would compute a different sentiment score for each mentioned aspect.

The aforementioned leveraged different approaches (e.g., lexicon-based and aspect-

based) to perform sentiment analysis on different types of data. In contrast, we

evaluate existing sentiment analysis techniques on game reviews, identify the causes

for misclassifications, and quantify the impact of those causes in the performance of

the classifiers.

Sentiment Analysis on Other Types of Data. Agarwal et al. [3] built different

types of models (a feature based model and a tree kernel based model) to perform two

classification tasks using Twitter data: a binary task to classify tweets into positive

and negative classes; and a 3-way task to classify tweets into positive, negative, and

neutral classes. The authors showed that both models outperform the state-of-the-

art approach by then, which consisted of a unigram model. The proposed models

presented a gain of 4% in performance in comparison to the baseline. Saif et al. [160]

also used Twitter-related data to build sentiment analysis models. The authors added

semantic features into the three different training datasets: a general Stanford Twitter

Sentiment (STS) dataset, a dataset on the Obama-McCain Debate (OMD), and one

on Health Care Reform (HCR). The results showed that combining semantic features

with word unigrams outperforms the baseline (only unigrams) for all datasets. On

average, the authors increased the accuracy by 6.47%.

Lin and He [104] proposed a probabilistic modeling framework based on Latent

Dirichlet Allocation (LDA) to detect sentiment and topic at the same time from a

piece of text. The authors evaluated the model on a movie review dataset and they

only consider two classes: positive and negative. The results showed that the pro-

128

posed approach obtained an accuracy of 84.60%, outperforming some state-of-the-art

approaches. Guzman and Maalej [68] proposed an automated approach to analyze

mobile app reviews. The authors used the NLTK classifier to identify fine-grained app

features in the user reviews. They obtained the sentiment of these features and used

topic analysis to group them into higher-level groups. The authors used 7 apps from

the Apple App Store and Google Play Store and their approach presented a precision

of 59% and a recall of 51%. Rigby and Hassan [154] used a psychometrically-based

linguistic analysis tool called Linguistic Inquiry and Word Count (LIWC) to examine

the Apache httpd server developer mailing list. The authors assessed the personal-

ity of four top developers, including positive and negative emotions present in the

mailing list. Among the results, the authors found out that the two developers that

were responsible for two major Apache releases had similar personalities, which were

different from other developers on the traits of extroversion and openness. Bazelli et

al. [13] analyzed StackOverflow posts to identify and compare developers’ personality

types. They also used the LIWC tool. The results show that, compared to medium

and low reputed users, top reputed post’s authors are more extroverted, indicating

the presence of social and positive LIWC measures as well as the absence of tentative

and negative emotional measures. In addition, authors of up voted posts present less

negative emotions than authors of down voted posts.

The aforementioned works used data from three different sources: Twitter, movie

reviews, and mobile app reviews. On the other hand, we focus on game reviews from

a digital distribution platform (Steam).

Studies on Game Reviews. Zagal et al. [211] analyzed and characterized game

reviews from different websites. The authors used open coding to come up with

the topics present in the reviews. Their findings show that game reviews are rich

and varied in terms of themes and topics covered. For instance, players might post

descriptions of the game under review, their personal experience, advice to other play-

ers who read the review, and suggestions for game improvements. Zagal and Tomuro

129

[212] performed a study on a large body of user-provided game reviews aiming at

comparing the characteristics of the reviews across two different cultures. The au-

thors collected reviews from Famitsu and Game World (Japanese gaming websites)

and from Gamespot and Metacritic (US gaming websites). Among the findings, the

authors mention that American players value the replay of a game, while Japanese

players are more strict towards bugs. The works mentioned above studied the charac-

teristics of game reviews and what are the differences between reviews from different

cultures. Differently, on our work, we use game reviews for the purpose of evaluating

existing sentiment classifiers and come up with the causes for wrong classifications.

As we can see, all the aforementioned works proposed new sentiment analysis mod-

els and explored the characteristics of game reviews with regard to several different

aspects. However, we still lack clarification regarding the performance of existing sen-

timent classifiers on game reviews, which game review text characteristics impact the

performance of sentiment analysis and to what extent they impact it. In our study, we

perform a large-scale study with more than 12 million reviews from Steam to evaluate

existing sentiment classifiers and reveal text characteristics which are problematic for

these classifiers.

5.5 Methodology

In this section, we detail the methodology that is used in our study to evaluate existing

sentiment classifiers on game reviews from Steam and identify the root causes for

wrong classifications. Figure 5.3 presents a complete overview of our methodology,

which is detailed next.

5.5.1 Collecting Game Reviews

We collected the reviews of all 8,025 games that were available in the Steam Store on

March 7th, 2016 using a customized crawler. We removed games that had less than

25 reviews from our initial dataset to reduce a possible bias in our results due to a

130

Evaluating Sentiment Analysis Performance

Stanford
CoreNLP

Run classifier
on x reviews

SentiStrength

Sample x
reviews

Training set

Out-of-sample
bootstrap

Process
output

NLTK Train model

Evaluation
metrics

Evaluation
metrics

Run classifier
on x reviews

Process
output

Evaluation
metrics

Testing setSample another
x reviews

Built model

Collecting Game Reviews

Extract game
reviews

Game reviewsSteam Community

Manually Analyzing Wrong Classifications

Manual analysis of
reviews

Root causesReviews wrongly
classified

Quantifying the Impact of the Root Causes

Select reviews with
and without the

root causes

Evaluate NLTK on
the two review sets

Compare the
evaluation

metrics

Figure 5.3: Study methodology overview.

small number of reviews (e.g., because a large portion of those reviews were posted by

friends of the developers). In total, we collected reviews of 6,224 games. We extracted

all the reviews for each game from the Steam Community and ended up with a total

of 12,338,364 reviews across all supported natural languages. Steam provides a filter

for the language of reviews for a game. We crawled the reviews in each language

separately using this filter, to identify the language of each review. Most reviews

are written in English (6,850,130), but there are also reviews in Russian (1,789,979),

German (525,548), Spanish (469,582), Portuguese (441,145), and French (396,057),

since the classifiers can handle several different languages. Besides the review itself,

we also collected other available data: the recommendation flag (i.e., whether the

reviewer recommended the game or not), early access status (i.e., whether a game is

in the early access stage or not), the number of playing hours, the author ID, the

date when the review was posted, helpful count, not helpful count, funny count, and

131

the URL of the review.

Note that our data consists of Steam game reviews, which is different from Meta-

critic reviews. The Metacritic website5 aggregates game reviews from professionals

and amateurs. While amateur reviews have similarities with Steam reviews (e.g.,

Metacritic amateur reviews contain gameplay and experience descriptions), profes-

sional reviews are much longer and more complex [163]. Therefore, further investiga-

tion is necessary to properly assess whether the sentiment classifiers adopted in our

work can be applied to professional Metacritic reviews.

5.5.2 Evaluating Sentiment Analysis Performance

We evaluated the performance of three sentiment analysis classifiers on game re-

views, namely Stanford CoreNLP (version 3.9.2) [170], NLTK (version 3.4) [19], and

SentiStrength (Windows version) [176]. For the purpose of evaluation of the clas-

sifiers, we consider the game recommendation flag on Steam as the sentiment truth

label in our data, that is, we make the assumption that a review that recommends a

game has a positive sentiment, while a review that does not recommend a game has

a negative sentiment. Our dataset contains 10,603,348 positive reviews (recommen-

dation = 1) and 1,735,016 negative reviews (recommendation = 0).

Although our dataset is imbalanced, we do not fix the imbalance since our goal is to

evaluate existing techniques and reveal the root causes for wrong classifications rather

than proposing a new sentiment analysis technique that outperforms the state-of-the-

art. Furthermore, in the real world, data distribution is often imbalanced [33, 204] and

existing re-sampling techniques have serious defects for text data [204]. Finally, we

adopt the Area Under the Receiver Operating Characteristic Curve (AUC) evaluation

metric, which is a robust metric with imbalanced data [80].

Regarding NLTK, we have the option to train it on our own data using the Näıve

Bayes algorithm. Since it is computationally expensive to train and test it on our

5https://www.metacritic.com/

132

https://www.metacritic.com/

entire data, we adopt the out-of-sample bootstrap technique [51] to perform the train-

ing and testing, since the use of this technique allows us to avoid possible bias in the

training and testing sets as we would have with a simple one-time sampling. In our

work, the out-of-sample bootstrap technique consists of randomly sampling 100K re-

views (sample) with no replacement from the entire set of reviews (population) to

train the classifier. Then, we randomly select another 100K reviews from the pool

of remaining reviews to test the classifier. The sample size (100K) was appropriately

determined in a pre-study (detailed in Section 5.6). The bootstrap process is repeated

1,000 times, which is enough to represent the entire population and reduce a possible

bias in the training and testing sets. Note that for all executions of NLTK, before

performing the classification itself, we have a preprocessing pipeline, which consists

of tokenization, case normalization, and stop word removal. For the SentiStrength

and Stanford CoreNLP classifiers, we also adopted the bootstrap technique and eval-

uated them on the same 1,000 samples used to test NLTK. Note also that we opted for

not changing the configurations of the ready-to-use classifiers, such as SentiStrength

and Stanford CoreNLP, as prior work has mostly used them without changes to their

configuration [68, 88, 89, 103]. Keeping the configuration of classifiers similar to the

configuration previously used allows us to evaluate and compare our results with

existing literature more fairly.

For all the classifiers, we computed the Area Under the Receiver Operating Char-

acteristic Curve (AUC). With the bootstrap process, we are able to obtain the AUC

distribution for all the classifiers (1,000 AUC values corresponding to the 1,000 boot-

strap iterations). The Receiver Operating Characteristic Curve plots the true positive

rate against the false positive rate. The AUC measures the classifier’s capability of

distinguishing between positive and negative sentiments and ranges from 0.5 (random

guessing) to 1 (best classification performance). For the cases in which the classifica-

tion is neutral, we always consider it as a wrong classification since our data has only

two labels: positive (the reviewer recommends the game) and negative (the reviewer

133

does not recommend the game).

We compared the AUC distributions using the Wilcoxon rank-sum test. The

Wilcoxon rank-sum test is an unpaired, non-parametric statistical test, where the

null hypothesis is that two distributions are identical [197]. If the p-value of the ap-

plied Wilcoxon test is less than 0.05, then we can refute the null hypothesis, which

means that the two distributions are significantly different. In addition to checking

whether the two distributions are different, we provide the magnitude of the differ-

ence between the two distributions using Cliff’s delta d [109] effect size. We adopt

the following thresholds for d [156]:

Effect size =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
negligible(N), if |d| ≤ 0.147

small(S), if 0.147 < |d| ≤ 0.33

medium(M), if 0.33 < |d| ≤ 0.474

large(L), if 0.474 < |d| ≤ 1

5.5.3 Manually Analyzing Wrong Classifications

To understand why classifiers are making wrong classifications and come up with

the root causes which might be leading to the poor classification performance, we

performed a manual analysis on the reviews that were wrongly classified by each of

the three sentiment analysis classifiers we use. With this approach, we are more likely

to identify characteristics from the review text itself that might confuse the classifier

rather than wrong classifications due to bias in a classifier.

We adopt an inductive approach similar to the open-coding technique [41] to manu-

ally analyze the reviews. Initially, two authors independently read 100 reviews, being

50 wrongly classified as positive and 50 wrongly classified as negative. They then

came up with causes that might have misled the classifiers. After discussing these

causes and reaching an agreement on four causes (plus two categories in which the

misclassification was unclear), we selected a representative sample with a confidence

level of 95% and a confidence interval of 5%, which corresponds to 382 reviews. This

134

sample was then classified into the set of agreed upon causes by one author so we

could obtain the percentage of reviews for each cause.

5.5.4 Quantifying the Impact of the Root Causes

Based on the previous step, in which we extracted possible causes for wrongly clas-

sified reviews, we conducted a series of experiments to evaluate the impact of the

identified causes, separately, on the performance of the sentiment analysis classifiers.

For each cause, we selected the set of reviews that are affected by that cause (the af-

fected set), the set of the remaining reviews (the unaffected set), computed the AUC

distribution for both sets, and compared the AUC distributions using the Wilcoxon

rank-sum test and the Cliff’s delta effect size.

5.6 Pre-study

We need to find the best sample size to train the NLTK classifier. In this section, we

present our pre-study to investigate the performance of NLTK with different sample

sizes to train and test it.

Training NLTK on our entire dataset would be computationally expensive. We

designed two experiments to determine the proper training and testing set sample

sizes so we can apply the out-of-sample bootstrap technique, as we explained in

Section 5.5.2. In Figure 5.4, we can see the plots regarding our experiments. For

both cases, we used the following values for the sample size (number of reviews): 1K,

10K, 100K, and 200K. Figure 5.4a presents how the training time (in hours) varies

with the sample size. As we can see, the time increases quickly with the increase

in sample size (jumping from 26 hours, for 100K, to 75 hours of training time, for

200K). Therefore, a sample size larger than 200K would be infeasible.

Figure 5.4b presents how the performance of the NLTK classifier (by means of the

median AUC) varies with the increase in the sample size. As we can observe, the plot

plateaus when it reaches 100K (presenting an AUC of 0.67), which means using 100K

135

Sample size

Tr
ai

ni
ng

 ti
m

e
(h

ou
rs

)

0
10

30
50

70

0 50K 100K 150K 200K

(a) Sample size versus training time.

Sample size

P
er

fo
rm

an
ce

 (
A

U
C

)

0
0.

62
0.

64
0.

66

0 50K 100K 150K 200K

(b) Sample size versus AUC.

Figure 5.4: Plots of experiments to determine the sample size for NLTK.

reviews is sufficient for our purpose. Using the result of this experiment together

with the result of the previous experiment, we decided to use a sample of 100K game

reviews to train and test the NLTK classifier. We also used the same sample size to

evaluate the SentiStrength and the Stanford CoreNLP classifiers.

These results provide evidence of the richness of game review data as we do not

need the entire dataset to train our model, indicating that, although the sentiment

classification is a tricky problem, we have a rich dataset for which the model does not

need huge amounts of data to learn from.

5.7 RQ1: How do sentiment analysis classifiers

perform on game reviews?

Motivation: It is important to verify the performance of widely-used sentiment anal-

ysis classifiers on game reviews as this is the first step to understand whether current

sentiment analysis classifiers are suitable for classifying the sentiment of such data.

Approach: For this research question, we applied the out-of-sample bootstrap with

136

Table 5.2: Evaluation metrics (median) for unbalanced and balanced dataset.

Classifier Acc. Precision Recall F-measure AUC

NLTK 0.61 0.60 0.70 0.54 0.70

NLTK (balanced) 0.67 0.73 0.67 0.65 0.67

SentiStrength 0.52 0.56 0.63 0.47 0.63

SentiStrength (balanced) 0.63 0.65 0.63 0.62 0.63

Stanf. Core NLP 0.37 0.52 0.53 0.35 0.53

Stanf. Core NLP (balanced) 0.53 0.54 0.53 0.51 0.53

1,000 iterations to evaluate the NLTK, Stanford CoreNLP and SentiStrength clas-

sifiers on the game review. To evaluate the classifiers, we computed five metrics:

accuracy, precision, recall, F-measure, and AUC. We also performed an experiment

to investigate how the length of the reviews affects the performance of the sentiment

classification. The reviews were split into 51 groups according to their length: re-

views with less than 20 characters, reviews with length between 20 and 40 characters

(exclusive), reviews with length between 40 and 60 characters (exclusive), and so on

up to the last group of reviews with more than 1,000 characters. We evaluated each

classifier with a sample of 10K reviews from each length range. Finally, we compared

the performance of the sentiment classification of game reviews with the sentiment

classification of other three corpora (Stack Overflow posts, Jira issues, and mobile

app reviews), as indicated by prior work [84, 103].

Findings: Table 5.2 presents the metrics for the imbalanced and balanced versions of

the dataset. Note that we provide all these metrics for the purpose of comparisons

with prior (and future) work, but for our discussions, we will focus on the AUC

metric. NLTK achieved the best performance of sentiment analysis (in the

studied configuration) on game reviews while Stanford CoreNLP presented

the worst performance. Figure 5.5 presents the distribution of the AUC metric

137

NLTK SentiStrength Stanf. CoreNLP

A
U

C

0
0.

56
0.

6
0.

64
0.

68
0.

72

Figure 5.5: Distribution of the AUC.

for the classifiers (each value corresponds to an iteration of the bootstrap).

The AUC for NLTK varies from 0.69 up to 0.72, with a median value around

0.70. For SentiStrength, the AUC ranges from 0.60 to 0.61 with a median of 0.60,

while for Stanford CoreNLP, the AUC ranges from 0.53 to 0.54 with a median of

0.53. For all classifier pairs ([NLTK, SentiStrength], [NLTK, Stanford CoreNLP], and

[SentiStrength, Stanford CoreNLP]), the Wilcoxon rank-sum test shows that the

two distributions are significantly different, with a large Cliff’s delta effect size.

Figure 5.6 shows that the performance of the classifiers remains mostly stable across

different review lengths, with the largest changes occurring for reviews with less than

20 characters (AUC of 0.65 for NLTK) and reviews with more than 1,000 characters

(AUC of 0.61 for NLTK). We can also see that NLTK’s performance slightly reduces as

the review length increases. Finally, we computed the distribution of different review

lengths in our dataset. We found that 75% of the reviews are in the range 20-1000

characters (where NLTK performs best), while 20% of the reviews have less than 20

characters, and 5% of the reviews have more than 1,000 characters.

Finally, Table 5.3 presents the F-measure metric of the sentiment classification

138

0.5

0.6

0.7

0.8

0_
20

40
_6

0
80

_1
00

12
0_

14
0

16
0_

18
0

20
0_

22
0

24
0_

26
0

28
0_

30
0

32
0_

34
0

36
0_

38
0

40
0_

42
0

44
0_

46
0

48
0_

50
0

52
0_

54
0

56
0_

58
0

60
0_

62
0

64
0_

66
0

68
0_

70
0

72
0_

74
0

76
0_

78
0

80
0_

82
0

84
0_

86
0

88
0_

90
0

92
0_

94
0

96
0_

98
0

10
00

+

Review length (number of characters)

A
U

C
Classifier

NLTK
SentiStrength
Stanford CoreNLP

Figure 5.6: Performance of classifiers for different length ranges. Note that there is a
data point for every range of 20 characters (0-20, 20-40, and so on). However, for the
purpose of a better visualization, the figure only displays every other range in the x
axis (e.g., the label ‘20 40’ is not shown in the plot, but the corresponding data point
for that range is present in the plot).

Table 5.3: F-measure of sentiment classification across different corpora.

Corpora NLTK SentiStrength Stanford CoreNLP

Game reviews 0.54 0.47 0.35

Stack Overflow posts 0.21 0.34 0.28

Jira issues 0.55 0.62 0.52

Mobile app reviews 0.53 0.64 0.74

across different corpora. The text in bold represents a classification performance

better than for game reviews. As we can see, the classifiers usually perform better

when using a corpus other than game reviews. After training NLTK on game reviews,

it achieves a performance that is similar to the performance on the Jira issues and

mobile app reviews corpora. However, SentiStrength and Stanford CoreNLP work

much better on the Jira issues and mobile app reviews corpora compared to game

reviews.

139

Table 5.4: Root causes for misclassifications in sentiment analysis (each review may
be assigned to more than one root cause).

Root cause Definition Occurrence (%)

Contrast

conjunctions

The review points out both the advantages
and disadvantages of the game, frequently
using contrast conjunctions

30

Game

comparison

The review contains a comparison with an-
other game or with a previous version of
the game itself

25

Negative

terminology

The review contains words such as kill and
evil which are not necessarily bad for spe-
cific game genres (e.g., action games)

23

Unclear It is not clear what might have caused the
wrong classification

21

Sarcasm The review contains sarcastic text 6

Mismatched

recommendation

The user might have entered a wrong rec-
ommendation: positive (negative) recom-
mendation with a negative (positive) re-
view content

6

Overall, sentiment analysis classifiers do not achieve a high performance, perform-
ing worse on game reviews than on other domains. The median AUC ranged from
0.53 (Stanford CoreNLP) to 0.70 (NLTK).

5.8 RQ2: What are the root causes for wrong clas-

sifications?

Motivation: Understanding what is causing sentiment analysis classifier to make

wrong classifications is essential to extract important insights about how to improve

existing sentiment analysis for game reviews. Such knowledge can be used to fix

problems in the classification pipeline and achieve a better performance.

Approach: We start by (1) selecting the reviews that were misclassified by all the three

classifiers simultaneously (i.e., the intersection of misclassified reviews). We then (2)

140

use the pool of all misclassified reviews to select a statistically representative sample

of 382 reviews for the manual analysis. We adopted an open coding-like approach to

identify the root causes which could affect sentiment analysis classifiers’ performance.

Two authors independently analyzed a sample of 100 reviews (50% wrongly classified

as positive and 50% wrongly classified as negative) to identify the root causes that

may confuse the classifiers. Our manual analysis had an agreement of 83% between

the two authors (we consider an agreement when both authors agreed that the root

cause X is related to a review Y). After reaching the agreement, one author analyzed

a statistically representative sample of 382 reviews (which yields a confidence level of

95% with a confidence interval of 5) to compute the frequency of occurrence of each

cause. Note that each misclassification may be assigned to more than one root cause

(if that is the case). The sample of 382 reviews for the manual analysis was obtained

from the reviews that were misclassified by all three classifiers. We focused on reviews

that were misclassified by all classifiers to better identify characteristics of the review

text that affect the sentiment analysis classification, rather than a characteristic of

only a single classifier.

Findings: We revealed four types of possible causes for sentiment misclas-

sifications: use of contrast conjunctions to indicate the advantages and

disadvantages of a game in the same review, comparison to other games,

reviews with negative terminology, and sarcasm. Table 5.4 presents all the

root causes we identified along with their definitions and percentage of occurrence. As

we can see, the most common cause is contrast conjunctions (30%), followed by game

comparison (25%), negative terminology (23%), and sarcasm (6%). Cases for which

we are not able to clearly identify the cause for the wrong classification (unclear)

occurred in 21% of the reviews. Cases in which the review content did not match the

recommendation (mismatched recommendation) occurred in 6% of the reviews.

Next, we present each root cause in detail along with corresponding examples of

141

reviews.

Root cause 1: Contrast conjunctions

Description: The review points out advantages and disadvantages of the game.

Symptoms: This type of review frequently makes use of contrast conjunctions (but,

although, though, even though, and even if) when presenting positive and negative

points about the game. As we can see in the example below, the review contains a

positive view (“I love this game...”) and a negative view (“...it keeps flickering please

help!”) about the game separated by the conjunction but.

Example: “I love this game but it keeps flickering, please help!”.

Root cause 2: Game comparison

Description: The review compares the game with another game or a previous version

of the game itself. Such comparisons might make the sentiment classification more

difficult since positive or negative points might refer to the other game or the game

itself in a previous version instead of the current game version under review.

Symptoms: The review mentions one or more games [A, B...] in a review for another

game [G], or mentions a version 1.x of the game [G] in a review for the version 2.x of

the same game [G]. In the example below, the review for the Terraria game compares

the reviewed version of the game with a previous version.

Example: “Terraria was one of the best games I’ve ever played, but after they released

1.2, I stopped enjoying it!”.

Root cause 3: Negative terminology

Description: The review uses (supposedly) negative terminology (i.e., words with a

negative connotation), which might mislead the classifier towards a negative sentiment

classification even though many times the review text has a positive sentiment (as

indicated by the recommendation of the game).

142

Symptoms: The review contains words that are considered negative in many sit-

uations (e.g., kill, evil), which might not have a negative connotation for games of

specific genres, such as first-person shooter games. The review in the example below

contains supposedly negative words, such as kill, although it is just describing the

role of the player in the game. In fact, the reviewer recommended the game and even

made it explicitly by assigning a score of 10 out of 10 to the game.

Example: “I’ve played like 15 games [...], zombies just go around you, you can’t run,

just keep trying to kill them.”.

Root cause 4: Unclear

Description: We are not able to clearly identify a pattern or characteristic that

might be confusing the classifier.

Symptoms: There is no symptom. We cannot identify a clear possible reason which

might mislead the classifier. The review in the example below was classified as positive

while it should be negative.

Example: “Downloaded Game into steam, Played for 40 Hours total. Game disap-

peared from computer. Redownloaded, Played for a while, Game disappeared again.

As someone with a download cap and 2 other gamers in the house, was. not. im-

pressed”.

Root cause 5: Sarcasm

Description: The review contains sarcastic text. Sarcasm occurs when an apparently

positive text is actually used to convey a negative attitude (or vice-versa) [61]. Prior

work has shown that sarcasm is difficult to automatically identify [138].

Symptoms: The review contains sarcasm, which is observed when the reviewer

writes an (apparently) positive text intending to transmit a negative message (or

vice-versa). The review in the example below contains sarcastic text as the reviewer

makes use of positive words (e.g., great), when the person actually points out a

143

negative aspect about the game.

Example: “Great for uninstalling 11/10 would uninstall again”.

Root cause 6: Mismatched recommendation

Description: It means the reviewer might have entered a wrong recommendation,

which does not match with the review content itself. Note that this root cause

is different from sarcasm (as we cannot clearly identify a positive review intending

to transmit a negative attitude or vice-versa), however both causes are hard to be

automatically identified.

Symptoms: The reviewer is positive about the game, but they did not recommend

the game (or vice-versa). The example below presents a review that was classified as

positive (as expected since the text clearly expresses a positive sentiment). However,

the reviewer did not recommend the game, which we assume was a mistake of the

reviewer.

Example: “I love this GAME!”.

We identified four root causes for wrong classifications of sentiment analysis clas-
sifiers: use of contrast conjunctions (30%), game comparisons (25%), negative
terminology (23%), and sarcasm (6%).

5.9 RQ3: To what extent do the identified root

causes impact the performance of sentiment

analysis?

Motivation: It is important to quantify the impact of each identified root cause to

the overall performance of sentiment analysis on game reviews. Such knowledge will

support the prioritization of the causes to be addressed, the implementation of better

sentiment analysis tools to be deployed in gaming contexts, and a research agenda to

address such issues.

Approach: For this part of the study, we first identified the root causes which are

144

feasible to be automatically identified in reviews. Then, we implemented detection

heuristics to identify reviews affected by each root cause. We focused on the following

root causes for which we can automatically identify reviews: contrast conjunctions,

game comparison, and negative terminology. After identifying such reviews,

we re-ran the NLTK classifier on both groups: the set of identified reviews (affected

set, which is supposedly harder for the classifier) and the set of remaining reviews

(unaffected set, which is supposedly easier for the classifier since they do not contain

the cause for the wrong classification).

Note that, in this last part, we focused only on the NLTK classifier as it presented

the best performance (Section 5.7) and it can be trained on our data. Furthermore,

we also applied the bootstrap technique with 1,000 iterations, as we previously did.

Next, we explain the implemented detection heuristics and the obtained results for

each root cause.

5.9.1 Contrast Conjunctions

Detection heuristic: We noticed that reviews which point out the advantages and

disadvantages of a game usually use contrast conjunctions to transmit the idea of con-

trast between advantages and disadvantages of the game. We defined a list with the

contrast conjunctions we observed in our manual analysis and performed a keyword-

based search in our dataset to identify reviews that contain one or more conjunctions

of the list. Table 5.5 presents the selected conjunctions with examples.

Among the most frequent conjunctions found in the reviews, we have “but” (1,941,535),

“although” (104,295), and “even if” (66,802). After the search, we ended up with

10,187,926 reviews in the remaining set (82% of the original dataset) and 2,150,438

reviews in the detected set (identified by the heuristic).

Findings: Game reviews with contrast conjunctions are indeed more diffi-

cult to classify for NLTK, with a median AUC that is 11% lower than for

reviews without contrast conjunctions. Figure 5.7 presents the distributions

145

Table 5.5: Contrast conjunctions and corresponding examples.

Contrast conjunction Example

But
Nice Matchmaking, but if you are not premium you

have no chance...

Although, though
Although I really enjoy this game, I do think that

PTTM still remains the best in the series...

Even though, even if

Even though it gets progressively difficult and you

won’t get the perfect items each run, you’ll find

yourself coming back for more...

Without contrast With contrast

A
U

C

0
0.

64
0.

68
0.

72
0.

76

Figure 5.7: AUC distri-
bution for reviews with-
out and with contrast.

Without comparison With comparison

A
U

C

0
0.

62
0.

66
0.

7

Figure 5.8: AUC distri-
bution for reviews with-
out and with comparison.

A
U

C

Base
line

Actio
n

Adve
nture

Casu
al

Racin
g

RPG
Sports

Stra
tegy

0
0.

68
0.

7
0.

72
0.

76

Figure 5.9: AUC distri-
bution for reviews of all
the game genres and the
baseline.

of the AUC for the sets of reviews without and with contrast conjunctions. The

Wilcoxon rank-sum test shows that the two distributions are significantly different,

with a large (1.0) Cliff’s delta effect size.

As we can observe, the AUC of reviews without contrast is much higher (large

Cliff’s delta effect size) than the AUC of reviews with the presence of contrast con-

junctions. In fact, we found a median AUC of almost 0.75 for the group without

contrast, while for the group with contrast the median AUC is around 0.67 (11%

lower).

146

5.9.2 Game Comparison

Detection heuristic: We collected the top-500 most played games from Steam and,

based on this list, we performed a keyword-based search in our dataset to identify

reviews that mention other games.

We collected the most played games from the SteamDB platform.6 This list was

obtained based on the peak number of players who have played the game. For in-

stance, the number one game in the list is Playerunknown’s Battlegrounds (3,257,248

players), followed by Dota 2 (1,295,114 players) and Counter-Strike: Global Offen-

sive (854,801 players). This data was collected on January 10th, 2020. Note that,

although the game reviews were collected in 2016, their age does not impact our

analysis.

We performed a keyword-based search on the reviews in our dataset. We ensured

that both the game name being searched and the review text were lower case during

the search. Among the most mentioned games in the reviews, we found Terraria

(31,860), Dota 2 (30,385), and Counter-Strike (21,418). After the search, we ended

up with 11,753,211 reviews in the remaining set (95% of the original dataset) and

585,153 reviews in the detected set (identified by the heuristic).

Findings: Game reviews with comparisons are actually more difficult to

classify for NLTK, with a median AUC that is 8% lower than for reviews

without comparisons. After training NLTK on both sets, we computed the AUC

using the out-of-sample bootstrap with 1,000 iterations, as we did previously. Fig-

ure 5.8 presents the distributions of the AUC for the sets of reviews without and

with comparison. The Wilcoxon rank-sum test shows that the two distributions are

significantly different, with a large (1.0) Cliff’s delta effect size.

As we can see, reviews without comparison present a higher AUC than reviews

with comparison. In fact, we found a median AUC of almost 0.71 for the group

6https://steamdb.info/

147

https://steamdb.info/

without comparison, while for the group with comparison the median AUC is around

0.65 (8% lower), which indicates that, similarly to the case of reviews with contrast

conjunctions, comparisons can also degrade the performance of sentiment analysis.

5.9.3 Negative Terminology

Detection heuristic: We noticed that some game reviews use words with a negative

connotation, such as kill, evil, and death. Although such words might refer to negative

aspects of something in a usual context, within the context of games they might be

used without the negative connotation. For instance, when describing the role of a

character in an RPG (Role-Playing Game) game, one might say they need to defeat

and kill the enemy. Although the review uses (supposedly) negative words, its final

content might be positive towards the game (i.e., the reviewer might recommend the

game even when using negative words).

For this root cause, instead of adopting the approach as we did for the previous

causes, we propose a stratified training process for the sentiment analysis classifier

based on the game genre, which we call per-genre training. We used a customized

crawler to collect the game genre from Steam for each review in our dataset and

grouped reviews by genre so we could train the classifier separately by genre. We

found a list of seven game genres (excluding generic genres reported by Steam, such

as Early Access, Free to Play, and Indie): Action, Adventure, Strategy, RPG, Casual,

Racing, and Sports.

We established a maximum period of one month to collect the game genres for a

randomized version of our data, which resulted in genres for 4 million reviews. It

would be infeasible to collect the genre for our entire dataset in a timely manner due

to restrictions when using a crawler to collect online data (such as the limited number

of requests allowed per a period of time). Furthermore, for some cases, the review or

the profile itself was excluded by the user from the Steam platform. In the case of less

popular genres for which we are not able to sample 100K reviews for the training and

148

testing sets (casual, racing, and sports genres), we adopted a 80/20 percentage split

to train and test with the bootstrap technique. For instance, if we had 10K reviews

for a specific genre, we would use 8K for training (80%) and 2K for testing (20%).

Table 5.6 presents the number of reviews for each genre.

Table 5.6: Game genres and corresponding number of reviews.

Genre Number of reviews

Action 741,569

Adventure 484,236

Strategy 395,595

RPG 372,033

Casual 128,590

Racing 43,899

Sports 33,890

Findings: Per-genre training is effective when performing sentiment anal-

ysis on game reviews. Figure 5.9 presents the distribution of the AUC for all

the genres and also for the baseline, which is the evaluation of NLTK on the entire

dataset (Section 5.7). We can see that, for all the genres except for adventure, the

median AUC is higher than the median AUC for the baseline. In fact, we obtained the

following median AUC values: 0.70 (baseline), 0.71 (action), 0.69 (adventure), 0.71

(casual), 0.74 (racing), 0.72 (RPG), 0.72 (sports), and 0.72 (strategy). The Wilcoxon

rank-sum test shows that the AUC distribution for each genre is significantly different

from the AUC distribution for the baseline with a large effect size.

Reviews that use contrast conjunctions to point out advantages and disadvantages
of the game have the highest negative impact on the performance (11% lower
AUC), followed by reviews with game comparisons (8% lower AUC). Furthermore,
we show that per-genre training is effective for sentiment analysis on game reviews
as it is mostly able to improve the performance of NLTK.

149

5.10 Recommendations and research directions for

sentiment analysis on game reviews

In this section, we provide practical recommendations for performing sentiment anal-

ysis on game review data.

No need for huge amounts of data. Through our pre-study we showed that 100K

reviews is a sufficient sample size to train and test sentiment analysis classifiers on

game reviews. We showed that using more than 100K reviews does not improve the

sentiment analysis performance as it plateaus after 100K reviews. Note that this is

based on a Näıve Bayes classifier as we aim to provide recommendations for compu-

tationally accessible approaches rather than computationally intensive deep learning

algorithms. Furthermore, this recommendation is based on the NLTK configurations

adopted in the study (i.e., the machine learning version of NLTK with the same pre-

processing steps).

Prioritize on studying techniques that can deal with reviews with advan-

tages and disadvantages of the game. Based on the impact that each root

cause has on the sentiment analysis performance, we suggest game developers and

researchers to develop techniques that can analyze reviews which use contrast con-

junctions to point out the advantages and disadvantages of the game under review

as this might confuse the classifier. Secondly, we suggest to develop techniques that

can deal with reviews which make comparison to games other than the game under

review or to previous versions of the game itself. Finally, we suggest the development

of techniques to analyze reviews that contain sarcasm.

Stratify reviews by game genre. Different game genres have different character-

istics in terms of expressions used by reviewers. Therefore, we recommend to stratify

the dataset by genre and train the classifier separately for each genre. This approach

helps to avoid mixing different types of data when training the model. For instance,

negative words (e.g., evil) are used for different purposes in reviews of different gen-

150

res, such as casual (where the reviewer probably uses it with a negative connotation)

and first-person shooter (where the reviewer does not intentionally have a negative

connotation).

5.11 Conclusion

In this chapter, we perform a large-scale study to understand how sentiment analysis

works on game reviews. We collected 12 million reviews from the Steam platform. We

investigate the performance of existing sentiment analysis classifiers on game reviews,

identify which factors might impact such performance and to what extent.

Our study shows that sentiment analysis classifiers do not perform well on game re-

views and we identified root causes for such performance, such as sarcasm and reviews

with negative terminology. Reviews that point out advantages and disadvantages of

a game (through the use of contrast conjunctions) have a high negative impact on the

performance (reducing the median AUC by 11%), followed by reviews that contain

comparisons to games other then the game under review (reducing the median AUC

by 8%). Furthermore, we show that training classifiers on reviews stratified by the

genre is effective and can improve the performance of sentiment analysis. For all gen-

res except adventure, the median AUC was higher than the baseline, with significant

different AUC distributions and large effect sizes.

Our study is the first important step towards identifying what are the root causes

for wrong classifications in sentiment analysis on game reviews and the impact of each

cause. Our study calls upon sentiment analysis and game researchers to further inves-

tigate how the performance of sentiment analysis on game reviews can be improved,

for instance by developing techniques that can automatically deal with specific game-

related issues of reviews (e.g., reviews with contrast conjunctions and reviews with

game comparisons). Another future direction is to explore how user characteristics

affect the performance of the sentiment classification of game reviews.

151

Chapter 6

Leveraging the OPT Large
Language Model for Sentiment
Analysis of Game Reviews

6.1 Abstract

Sentiment analysis is a popular technique to obtain the sentiment from a piece of

text, such as a player-provided game review. Automatically extracting players’ sen-

timents about games can help game developers to better understand the aspects of

their games that players like or dislike. Prior work showed that traditionally widely-

used sentiment analysis techniques do not perform well on game reviews. However,

the NLP field has seen a steep progress in the latest years, with substantial perfor-

mance improvements in many tasks, such as sentiment classification. Therefore, in

this chapter, we investigate how a modern sentiment classifier performs on game re-

views and compare it with the results of prior work using traditional classifiers. In

particular, we use the OPT-175B Large Language Model, the largest model from the

Open Pre-trained Transformer suite. Furthermore, we manually analyze the game

reviews wrongly classified by OPT-175B to better understand the issues that affect

the performance of that model and how those issues compare to the challenges faced

by traditional classifiers. We found that OPT-175B achieves (far) better performance

than traditional sentiment classifiers, with a 72%-increased F-measure and a 30%-

152

increased AUC compared to the best traditional classifier investigated in prior work.

Also, we found that common challenges of traditional classifiers, such as reviews with

game comparisons and negative terminology, have been mostly solved by the OPT-

175B model. The players’ sentiments about games and their features can be used for

several different purposes, such as to guide game testing based on the game features

that players like or dislike.

6.2 Introduction

As discussed in Chapter 5, widely-used traditional sentiment classifiers performed

poorly on game reviews at the time our original study [182] was conducted. However,

in the last 3 years, the NLP field has seen a steep improvement across several NLP

tasks, such as sentiment classification [17, 25, 39, 46, 149, 158, 181, 188, 201]. There-

fore, we perform a follow-up study in which we investigate how a modern sentiment

classifier performs on Steam game reviews and if the issues with traditional sentiment

classifiers are overcome by the modern model. In particular, we used the Open Pre-

trained Transformer language model with 175 billion parameters (OPT-175B), which

is a Large Language Model (LLM) with high performance on several NLP tasks [215].

We address the following research questions:

RQ1: How does OPT-175B perform on the sentiment classification of game

reviews?

We investigate how the OPT-175B model performs on the sentiment classification

of game reviews comparably to the traditional sentiment classifiers in the original

study [182]. We found that OPT-175B achieves a (far) better performance than

traditional classifiers, with an F-measure of 0.93 (72% higher than the best traditional

classifier) and an AUC of 0.91 (30% higher than the best traditional classifier).

RQ2: How do the root causes of wrong classifications made by OPT-175B

compare to the root causes of wrong classifications made by traditional

153

sentiment classifiers?

Just like in our original study, we analyze a representative sample of game reviews

that were misclassified (only in this case, by the OPT-175B model) to reveal the

causes for wrong classifications made by OPT-175B and compare these with the

causes for wrong classifications made by traditional sentiment classifiers. We found

that most of the issues with traditional sentiment classifiers (such as reviews with

game comparisons and reviews with negative terminology) are solved by OPT-175B.

The remainder of this chapter is organized as follows. Section 6.3 presents a back-

ground on the OPT-175B Large Language Model. Section 6.4 presents the method-

ology that we used in this study. Sections 6.5 and 6.6 present and discuss the results

of our study. Section 6.7 discusses the threats to the validity of the work. Finally,

Section 6.8 concludes this chapter.

6.3 The OPT-175B Large Language Model

A language model is a probability distribution over a sequence of words, which, in

summary, predicts the next word based on the previous words [90]. Language models

have a wide variety of applications, such as text classification. In this study, we

evaluate the OPT language model [215], which is a Large Language Model trained

by Meta AI.1 The model used in our evaluation (OPT-175B) is the largest model

available in the OPT model family with 175 billion parameters. Differently from

other models, such as GPT-3 [25] which is paid, OPT-175B is an open-source model.

OPT-175B is a prompt-based language model, which means that we need to define

a proper prompt to get the sentiment classification of a game review with this model.

Prompting consists of manually or automatically designing templates with natural

language instructions which are used by a pre-trained model to solve a task [57, 92,

108, 165]. Figure 6.1 shows an example of the prompt structure that we used with

a game review that contains sarcasm: “Great for uninstalling. 11/10 that I would

1https://github.com/facebookresearch/metaseq

154

https://github.com/facebookresearch/metaseq

Prompt to obtain the sentiment of a game review with OPT-175B

Decide if a game review sentiment is positive, neutral, or negative.

Game review: “Great for uninstalling. 11/10 that I would uninstall again.”

Sentiment: Negative

Figure 6.1: Example of a prompt to determine the sentiment of a game review. The
text highlighted in green was generated by the OPT-175B model.

uninstall again.”. The text highlighted in green corresponds to the sentiment of the

game review, which was generated by OPT-175B. In our prompt, we explicitly tell

the model that the text of which it should identify the sentiment is a game review,

which helps to capture any game knowledge the model has [174] and achieve a higher

performance. We also clearly elicit the possible sentiment options in the prompt:

positive, neutral, or negative.

To use Large Language Models such as OPT, we need to define a few parameters.

We used the following parameters in our study:

• temperature: this parameter controls the randomness involved in the text gen-

eration. Lower temperature values result in less random, more repetitive texts.

We set the temperature to zero to have a deterministic model, since in our task

we expect the model to produce the same output given the same input.

• top p: this parameter also controls the randomness and uniqueness in the text

generated by the model. However, top p corresponds to the inference time

threshold used for sampling the model outputs. If temperature is set to zero, it

is recommended to set top p to one and vice-versa. Since we use a temperature

of zero, we set top p to one.

• max tokens: this parameters corresponds to the maximum number of tokens

generated by the model. We set max tokens to six, which is sufficient to obtain

155

the positive, neutral, or negative sentiments from game reviews.

• stop sequence: this parameter determines when the model stops generating

tokens. The model will stop generating further tokens when a stop sequence

is generated. Due to the prompt structure that we use, the model generates

the game review sentiment and returns to the beginning of the next line. Any

generated text beyond that (within the max tokens) is not important to us,

therefore, we used “\n” as the stop sequence.

• frequency penalty: this parameter penalizes tokens that were already gener-

ated in a sentence by reducing their likelihood. Since we are not interested in

avoiding repetitiveness, we set the frequency penalty to zero.

• presence penalty: similarly to the frequency penalty, this parameter reduces

the likelihood of already-generated tokens. However, the presence penalty

does not use the frequency with which the token appeared, but only if the

token has been already generated or not. Similarly to the previous parameter,

we set presence penalty to zero.

6.4 Methodology

In this section, we explain the methodology that we used in our study. We discuss the

game reviews used to evaluate OPT-175B, the evaluation setup and how we performed

the manual analysis. Figure 6.2 presents an overview of our methodology.

6.4.1 Selecting game reviews

For this study, we used the game reviews collected from the Steam platform in our

prior work [182]. We executed OPT-175B for one week on randomly selected English-

language reviews from the originally used game review dataset. After one week, we

obtained the sentiment classifications for 614,403 game reviews, which we use for all

our analyses and comparisons in this study.

156

Evaluating the performance of OPT-175B

OPT-175B

Run model on
100K testing

set

Out-of-sample bootstrap (1K iterations)

Obtain the
sentiment

generated by
OPT-175B

Selecting Game Reviews

Extract game
reviews

Collected
game reviewsSteam Community

Manually analyzing the wrong classifications made by OPT-175B

Causes for wrong
classifications made

by OPT-175B

Compute
evaluation

metrics

PROMPT

Prompt to get sentiment
from game reviews

Correctly classified
game reviews

Wrongly classified
game reviews

Reviews wrongly classified
by OPT-175B

Reviews correctly classified
by traditional classifiers

382 reviews manually
analyzed in prior work [182] Evaluate OPT-175B Manually analyze

wrong classifications
Compare with prior

work [182]

Select a representative
sample of 100 reviews

Manually analyze
the sample∩

Figure 6.2: Overview of our methodology for evaluating OPT-175B.

6.4.2 Evaluating the performance of OPT-175B

To evaluate the performance of OPT-175B, similarly to our original research study [182],

we consider the game recommendation flag on Steam as the truth label for the senti-

ment in our data. Therefore, we consider that if a review recommends a game, it has

a positive sentiment, while a review that does not recommend a game has a negative

sentiment. In the analyzed subset of 614,403 game reviews, there are 534,916 positive

game reviews (recommendation = 1) and 79,487 negative game reviews (recommen-

dation = 0).

We used the testing set samples generated with an out-of-sample bootstrap ap-

proach [51] in our previous work [182] to evaluate OPT-175B. In the original work,

the bootstrap approach was used to obtain the training and testing sets to train and

evaluate the sentiment classifiers. The use of out-of-sample bootstrap allows us to

avoid possible bias samples as we would have with a simple one-time sampling. We

randomly sampled 100K reviews with replacement from the entire set of reviews to

train the sentiment classifiers. Then, we randomly selected another 100K reviews

157

from the pool of remaining reviews to test the sentiment classifiers. The bootstrap

process was repeated 1,000 times, which is enough to represent the entire population

and reduce a possible bias in the sampled data for evaluation. In the end, we had

1,000 training sets and 1,000 testing sets. In this study, we use the exact same samples

obtained with the bootstrap in the previous work [182] for fair comparisons. How-

ever, since we do not need to train OPT-175B, we used only the testing set samples

to directly evaluate the performance of OPT-175B with the sentiment classification

task. In addition, as we mentioned earlier, we have the OPT-175B classifications for

614,403 game reviews. Therefore, we may not have the sentiment classification for

all the 100K testing set reviews for all the 1,000 bootstrap samples. For example, for

a particular testing set of 100K reviews, we may have the OPT-175B classification

for only 50K reviews. In such cases, we use that subset of 50K reviews to evaluate

OPT-175B.

We computed the distribution of the Area Under the Receiver Operating Charac-

teristic Curve (AUC) obtained using all the bootstrap testing set samples (i.e., the

1,000 AUC values corresponding to the 1,000 bootstrap iterations). In addition, we

report the following evaluation metrics: accuracy, precision, recall, and F-measure.

Similarly to our previous study [182], we focus our discussions on the AUC metric,

which measures the classifier’s power of distinguishing between positive and negative

sentiments and ranges from 0.5 (random guessing) to 1 (best classification perfor-

mance). Also, we consider all the cases in which the OPT-175B classification is

“neutral” as a wrong classification since our data has only two labels (positive and

negative).

6.4.3 Manually analyzing the wrong classifications made by
OPT-175B

To understand the causes of wrong classifications made by OPT-175B and how they

compare to the causes for wrong classifications of traditional sentiment classifiers, we

158

performed two manual analyses. First, we ran OPT-175B with the 382 game reviews

manually analyzed in the original study (for which all the traditional classifiers failed)

and selected the reviews for which OPT-175B fails for manual inspection. Then, we

followed an inductive approach similar to the open-coding technique [41] to analyze a

representative sample of game reviews where OPT-175B fails but all the traditional

sentiment classifiers (originally studied) get correct classifications, to verify whether

OPT-175B is affected by new challenges for sentiment analysis.

6.5 RQ1: How does OPT-175B perform on the

sentiment classification of game reviews?

Approach: We evaluated OPT-175B on the testing set samples obtained with the out-

of-sample bootstrap approach in our prior work [182]. There are 1,000 samples and

each sample contains 100K game reviews. We report the accuracy, precision, recall,

F-measure, and AUC metrics. Similarly to our prior work, we focus our discussions

on the AUC metric and report the AUC distribution for the 1,000 testing set samples.

Findings: Table 6.1 presents the evaluation metrics for OPT-175B. We also included

the metrics for the traditional sentiment classifiers from the original study to facilitate

the comparison. OPT-175B achieves (far) better performance for all the reported

metrics. For instance, the median F-measure for OPT-175B (0.93) is 72% higher than

the best median F-measure of the traditional sentiment classifiers (0.54 for NLTK). In

addition, the median AUC for OPT-175B (0.91) is 30% higher than the best median

AUC of the traditional sentiment classifiers (0.70 for NLTK).

Figure 6.3 presents the distribution of the AUC metric for the modern (OPT-175B)

and traditional (NLTK, SentiStrength, and Stanford CoreNLP) sentiment classifiers

(each value corresponds to an iteration of the bootstrap). OPT-175B presents the

best performance, with an AUC varying from 0.89 up to 0.93 and a median value

of 0.91. In contrast, traditional sentiment classifiers perform worse. The AUC for

159

Table 6.1: Evaluation metrics (median) for traditional and modern sentiment classi-
fiers.

Classifier type Classifier Acc. Precision Recall F-measure AUC

Traditional

NLTK 0.61 0.60 0.70 0.54 0.70

SentiStrength 0.52 0.56 0.63 0.47 0.63

Stanf. CoreNLP 0.37 0.52 0.53 0.35 0.53

Modern OPT-175B 0.92 0.94 0.92 0.93 0.91

OPT-175B NLTK
SentiStrength

Stanford CoreNLP0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Modern

Traditional

Figure 6.3: Comparison of the AUC distribution with bootstrap samples for modern
(OPT-175B) and traditional (NLTK, SentiStrength, and Stanford CoreNLP) senti-
ment classifiers.

the NLTK classifier varies from 0.69 up to 0.71, with a median value of 0.70. For

SentiStrength, the AUC varies from 0.51 up to 0.64, with a median value of 0.63.

Finally, for Stanford CoreNLP, the AUC varies from 0.53 up to 0.54 only, with a

median value of 0.53.

The OPT-175B model performs better than traditional sentiment classifiers for
all the reported evaluation metrics, with a 72%-increased F-measure and a 30%-
increased AUC compared to the best traditional classifier in the original study
(NLTK).

160

6.6 RQ2: How do the root causes of wrong classi-

fications made by OPT-175B compare to the

root causes of wrong classifications made by

traditional sentiment classifiers?

Approach: To compare the root causes of wrong classifications made by OPT-175B

with the causes of wrong classifications made by traditional classifiers, we first exe-

cuted OPT-175B on the representative set of 382 game reviews manually analyzed in

the original study, computed its performance, and manually analyzed the misclassified

game reviews. Then, to better understand if OPT-175B is affected by issues other

than the issues previously identified for traditional sentiment classifiers, we obtained

the set of game reviews correctly classified by all the traditional classifiers but for

which OPT-175B fails. This resulted in 2,136 reviews. We selected a representative

sample of 100 game reviews from that set (with a confidence level of 95% and a con-

fidence interval of 10%) and manually inspected that sample to identify the causes of

wrong classifications.

Findings: The OPT-175B model presents a high accuracy (66%) comparably to the

traditional classifiers (0%) on the set of 382 game reviews for which all those tradi-

tional classifiers fail. Figure 6.4 shows the number of game reviews wrongly classified

by the traditional sentiment classifiers (which sums up to 423 reviews) and by OPT-

175B (which sums up to 129) for each root cause. Note that each review may be

assigned to more than one root cause, which is the reason why the total number

of reviews wrongly classified by traditional classifiers is larger than 382. By ana-

lyzing the 129 game reviews misclassified by OPT-175B, we can see that contrast

conjunctions (which appear in game reviews that discuss several advantages and dis-

advantages of the game under review) is the main issue that affects OPT-175B, with

44 reviews being wrongly classified because of that (which is a much lower number

than the 114 reviews misclassified by the traditional classifiers for that cause). In

161

Constrast conj.

Game comparison

Negative term.
Unclear

Sarcasm

Mismatched recomm.
0

20

40

60

80

100

Nu
m

be
r o

f g
am

e
re

vi
ew

s (
m

isc
la

ss
ifi

ed
)

114

95
89

79

24 22

44

12 10

28

8

27

Sentiment classifier
Traditional
Modern (OPT-175B)

Figure 6.4: Comparison of the number of misclassified game reviews with traditional
sentiment classifiers (SentiStrength, NLTK, and Stanford CoreNLP) and a modern
classifier (OPT-175B).

addition, game reviews for which we could not clearly identify the misclassification

reason (unclear) and for which there is a mismatch between the review and the recom-

mendation (mismatched recommendation) are also common (with 28 and 27 reviews,

respectively). Problems that significantly affect traditional classifiers, such as reviews

with comparisons between different games (game comparison) and reviews with neg-

ative terminology (negative terminology) are mostly addressed by OPT-175B since

only a few game reviews with those characteristics were misclassified by OPT-175B.

To exemplify how the OPT-175B model overcomes one of the issues that affect

traditional classifiers, Table 6.2 shows an example of a game review that contains

sarcasm. The review was wrongly classified by all the three traditional classifiers but

correctly classified by OPT-175B.

Our second manual analysis of 100 game reviews correctly classified by all the tra-

ditional classifiers but wrongly classified by OPT-175B did not show any new reason

that affects OPT-175B that we had not identified before. Contrast conjunctions is still

the most common issue that affects OPT-175B in that analyzed sample, appearing in

52% of the misclassified reviews as shown in Figure 6.5. Furthermore, reviews with an

162

Table 6.2: Example of a game review with sarcasm wrongly classified by traditional
classifiers but correctly classified by OPT-175B.

Game review
True sentiment

about the game

Sentiment

(trad. classifiers)

Sentiment

(OPT-175B)

“The game was really fun,

it was crashing endlessly”
Negative Positive Negative

Constrast conj.

Game comparison

Negative term.
Unclear

Sarcasm

Mismatched recomm.
0

10

20

30

40

50

Pe
rc

en
ta

ge
 (%

)

52

4 5

35

2 2

Figure 6.5: Percentage of root causes for sentiment misclassifications with OPT-175B.

unclear reason occurred in 35%, while negative terminology, game comparison, and

sarcasm appeared only in 5%, 4%, and 2% of the sample, respectively. In a further

analysis, we also observed that for reviews with contrast conjunctions, OPT-175B

often (incorrectly) assigns a positive sentiment, which occurred in 71% of the reviews

with contrast conjunctions. For comparison purposes, traditional sentiment classifiers

(incorrectly) assign a positive sentiment to approximately 55% of game reviews with

contrast conjunctions.

We found that the sentiment classification task with OPT-175B is affected by
game reviews with contrast conjunctions. However, contrast conjunctions have a
much smaller impact in the sentiment classification with OPT-175B compared to
traditional sentiment classifiers. We also found that challenges with the sentiment
analysis of game reviews, such as game comparison and negative terminology, have
been mostly solved by OPT-175B.

163

6.7 Threats to Validity

A threat to the external validity is regarding the generalizability of our findings.

Our findings are based on the evaluation of a single Large Language Model (OPT-

175B) on game reviews from the Steam platform. Future studies should investigate

other pre-trained language models and use other data. A threat to the internal

validity is the time limit that we set to collect the sentiment classifications made by

OPT-175B. OPT-175B is a very large model and computationally expensive, there-

fore, we set a limit of one week to execute it. Future work should execute OPT-175B

for a longer time to obtain the sentiment classifications for a larger number of game

reviews. Another internal threat is the prompt that we used to obtain the senti-

ment of a game review. Even though we performed an informal, minimal evaluation

with other prompts and found that the used prompt achieved the best results, it is

necessary to perform a more thorough evaluation using other prompts for sentiment

classification.

6.8 Conclusion

In this chapter, we presented a research study on the performance of the OPT-175B

Large Language Model on game reviews from the Steam platform. We also investi-

gated the challenges that affect the performance of the sentiment classification task

using that model. We showed that OPT-175B presents a high performance on the

sentiment classification, with an F-measure of 0.93 (an increase of 72% compared to

traditional sentiment classifiers) and an AUC of 0.91 (an increase of 30% compared

to traditional sentiment classifiers). We also found that most issues that affect tra-

ditional classifiers, such as reviews with game comparisons and negative terminology,

have been addressed by OPT-175B. This demonstrates that a model like OPT-175B

can be used to successfully obtain the sentiment of players about games. In the next

chapter, we conclude the thesis and discuss future research directions.

164

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Despite recent advancements in test automation, manual testing is still a prevalent

practice in the gaming industry. And although manual testing is challenging and

costly, mainly in a scenario of short game release cycles, prior research on how to im-

prove and optimize manual game testing is scarce. In this thesis, we conducted five

research studies to investigate how manual game testing can be improved and opti-

mized from different perspectives. In the first research study (Chapter 2), we explored

several unsupervised approaches to identify similar natural language test cases, which

helps to reduce the redundancy in the test suite. In the second research study (Chap-

ter 3), we proposed an automated framework to analyze test case descriptions and

suggest improvements to QA engineers to reduce the manual testing effort of QA en-

gineers by improving the quality of test case descriptions. In the third research study

(Chapter 4), we investigated how we could optimize the execution of game test cases

without source code by prioritizing test cases that cover game features which are used

by players the most. This helps to avoid bugs that could affect a very large number of

players. In the fourth research study (Chapter 5), we performed a large-scale study

to investigate how traditional sentiment classifiers perform on game reviews and what

are the issues with those classifiers. Finally, in the fifth research study (Chapter 6),

we investigated how a state-of-the-art model (the OPT-175B Large Language Model)

165

performs on the sentiment classification of game reviews and how that model’s per-

formance compares to the performance of traditional sentiment classifiers. We also

investigate if OPT-175B solves the issues that affect traditional classifiers. This study

provides important insights to game developers and researchers about whether we can

obtain players’ sentiment about games and integrate that information in the game

testing process. We briefly discuss the approach, main findings and contributions of

our research studies below:

• In Chapter 2, we leveraged text embedding, text similarity, and clustering tech-

niques to identify groups of similar test cases that are specified in natural lan-

guage. Our findings show that we can identify similar test cases with a high

performance (an F-score of 86.13%) using an ensemble of different embedding

techniques (e.g., Word2Vec and Sentence-BERT), the cosine similarity met-

ric, and K-means for clustering. A validation through an industrial case study

showed that our approach has different uses cases in practice, such as to identify

and remove redundant test cases.

• In Chapter 3, we leveraged statistical and neural language models to automat-

ically analyze and suggest improvements to the description of test cases. In

addition, we used a frequent itemset mining algorithm to suggest potentially

missing test steps in a test cases. Our results show that we can successfully sug-

gest improvements to test case descriptions (with an accuracy of up to 88%) and

identify missing test steps with an average accuracy of 98%. Our automated

framework can provide important and actionable recommendations that sup-

port the creation and maintenance of a high-quality, more consistent and more

standardized test suite. In addition, our framework can be particularly useful

for new employees who do not yet have much knowledge about the existing test

suite.

• In Chapter 4, we proposed an approach to (1) identify the game features cov-

166

ered by test cases and (2) prioritize the execution of test cases based on the

game features that they cover. We used an ensemble of zero-shot models to au-

tomatically identify the game features covered by test cases and the NSGA-II

genetic algorithm for the multi-objective optimization of the test case ordering

to maximize the coverage of highly-used features while minimizing the cumula-

tive execution time. Our findings show that we can identify the covered game

features with a high performance (an F-score of 76.1%). In addition, we could

find test case orderings that cover highly-used game features early in the test

execution with a practical test execution time. QA engineers can use our ap-

proach to prioritize test cases that cover game features which are more relevant

to players.

• In Chapter 5, we performed a large-scale study to better understand how three

traditional sentiment classifiers (SentiStrength, Stanford CoreNLP, and NLTK)

perform on game reviews, the causes for the wrong classifications and the impact

of each cause on the overall performance. We found that traditional sentiment

classifiers do not perform well on game reviews, with a maximum AUC of 0.70

(obtained with NLTK). Furthermore, we found four main issues that affect

traditional classifiers, such as reviews that compare the game under review

with other games and reviews with negative terminology (such as the words

“shoot” and “kill”, which are commonly used in reviews of action games).

• In Chapter 6, due to major advancements in the NLP field since we performed

the study discussed in Chapter 5, we investigated how a state-of-the-art tech-

nique, the OPT-175B Large Language Model, performs on the sentiment classi-

fication of game reviews. We also investigated the challenges that might affect

the performance of OPT-175B. We found that OPT-175B achieves a (far) bet-

ter performance compared to traditional sentiment classifiers. For instance,

OPT-175B achieved a median F-measure of 0.93 (which is 72% higher than

167

the median F-measure of the traditional classifiers) and a median AUC of 0.91

(which is 30% higher than the median AUC of the traditional classifiers). Fur-

thermore, most of the challenges faced by traditional sentiment classifiers have

been solved by OPT-175B.

7.2 Future Work

Although we have thoroughly investigated several ways of improving manual game

testing in this thesis and proposed effective and practical approaches, the research

presented here can be extended in different ways. Below we present possible future

research directions:

• Combining clustering with topic analysis techniques to improve the

discovery of redundant test cases in natural language. In Chapter 2, we

investigated unsupervised approaches to identify similar test cases in natural

language in two stages: test step clustering and test case similarity detection.

Future studies should investigate whether combining clustering with other tech-

niques, such as topic analysis, can improve the quality of the clusters of test

steps in the first stage. For instance, (1) a topic analysis technique could be

applied to test steps to identify steps that belong to the same topic and then

(2) a clustering technique would be applied to identify similar test steps within

the same topic. This might improve the quality of the obtained clusters of test

steps and, consequently, improve the test case similarity detection approach.

• Exploring other techniques to improve the description and quality of

natural language test cases for game testing. In Chapter 3, we proposed

an automated framework to automatically analyze and provide recommenda-

tions to improve natural language test cases. Future research should investigate

other NLP techniques that can help to further improve test cases. For instance,

word sense disambiguation techniques can help to make test case descriptions

168

less ambiguous, which makes the testing process more effective and efficient. In

addition, graph-based techniques can improve the discovering of test step occur-

rence patterns across test cases and be used to recommend potentially missing

steps in a new test case.

• Evaluating few-shot techniques and fine-tuned models to identify

game features covered by test cases. One major step of our proposed

prioritization approach in Chapter 4 consists of automatically identifying the

game features that are covered by test cases. Our solution, which is a zero-shot

technique, does not require labeled data or training. However, in case there are

a few labeled examples for each label, few-shot techniques might work better

than zero-shot. In addition, if a large amount of labeled examples is available,

fine-tuning a pre-trained model might also improve the classification perfor-

mance. We encourage future works to investigate how few-shot and fine-tuned

models perform on the identification of game features covered by test cases.

• Evaluating other techniques to prioritize natural language test cases.

In Chapter 4, we adopted the widely-used NSGA-II genetic algorithm to per-

form the multi-objective optimization of test case ordering. Future works should

explore other genetic algorithms and other approaches for the test case prior-

itization, such as Reinforcement Learning, which has shown to be effective to

prioritize test cases.

• Integrating players’ sentiment about game features in the game test-

ing process. In Chapter 6, we showed that a state-of-the-art model (OPT-

175B) performs very well in the sentiment classification of game reviews and

that it overcomes most issues that affect traditional classifiers that were widely-

used in the past. Future research should investigate whether OPT-175B or

other Large Language Models can be used for aspect-based sentiment analy-

sis to capture players’ sentiment about specific game features of interest. This

169

information can be used in the game testing process in a few ways, such as

(1) to prioritize test cases that cover features that players like the most (e.g.,

to avoid harming the player experience or satisfaction with the game) or (2) to

investigate potentially existing bugs on game features that players dislike the

most to improve the overall players’ experience and satisfaction with the game.

170

Bibliography

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A practical eval-
uation of spectrum-based fault localization,” Journal of Systems and Software,
vol. 82, no. 11, pp. 1780–1792, 2009.

[2] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of spectrum-
based fault localization,” in Testing: Academic and Industrial Conference Prac-
tice and Research Techniques-MUTATION (TAICPART-MUTATION 2007),
IEEE, 2007, pp. 89–98.

[3] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. J. Passonneau, “Sentiment
analysis of Twitter data,” in Proceedings of the Workshop on Language in
Social Media (LSM 2011), pp. 30–38.

[4] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between
sets of items in large databases,” in ACM sigmod record, ACM, vol. 22, 1993,
pp. 207–216.

[5] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, “Fast dis-
covery of association rules,” Advances in knowledge discovery and data mining,
vol. 12, no. 1, pp. 307–328, 1996.

[6] M. J. Arafeen and H. Do, “Test case prioritization using requirements-based
clustering,” in IEEE sixth international conference on software testing, verifi-
cation and validation, IEEE, 2013, pp. 312–321.

[7] M. Araújo, P. Gonçalves, M. Cha, and F. Benevenuto, “Ifeel: A system that
compares and combines sentiment analysis methods,” in Proceedings of the
23rd International Conference on World Wide Web, 2014, pp. 75–78.

[8] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering,” Software Testing, Verification
and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[9] A. Arcuri and G. Fraser, “On parameter tuning in search based software engi-
neering,” in International Symposium on Search Based Software Engineering,
Springer, 2011, pp. 33–47.

[10] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank based
fault localization approach using likely invariants,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, 2016, pp. 177–
188.

171

[11] M. Bagherzadeh, N. Kahani, and L. Briand, “Reinforcement learning for test
case prioritization,” IEEE Transactions on Software Engineering, 2021.

[12] D. Bamman and N. A. Smith, “Contextualized sarcasm detection on Twitter,”
in Ninth International AAAI Conference on Web and Social Media, 2015.

[13] B. Bazelli, A. Hindle, and E. Stroulia, “On the personality traits of StackOver-
flow users,” in 2013 IEEE International conference on software maintenance,
pp. 460–463.

[14] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic
language model,” The Journal of Machine Learning Research, vol. 3, pp. 1137–
1155, 2003.

[15] A. Bertolino, “Software testing research: Achievements, challenges, dreams,”
in Future of Software Engineering (FOSE’07), IEEE, 2007, pp. 85–103.

[16] S. K. Bharti, K. S. Babu, and S. K. Jena, “Parsing-based sarcasm sentiment
recognition in Twitter data,” in Proceedings of the 2015 IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis and Mining,
pp. 1373–1380.

[17] BigScience, Bigscience language open-science open-access multilingual (bloom)
language model, International, 2022.

[18] G. Biondi, V. Franzoni, and V. Poggioni, “A deep learning semantic approach
to emotion recognition using the IBM Watson bluemix alchemy language,”
in International Conference on Computational Science and Its Applications,
Springer, 2017, pp. 718–729.

[19] S. Bird, E. Klein, and E. Loper, Natural language processing with Python:
Analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[20] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,” IEEE
Access, vol. 8, pp. 89 497–89 509, 2020.

[21] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” The
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[22] M. Bouazizi and T. Ohtsuki, “Opinion mining in Twitter: How to make use
of sarcasm to enhance sentiment analysis,” in 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, pp. 1594–
1597.

[23] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean, “Large language models
in machine translation,” 2007.

[24] P. F. Brown, V. J. Della Pietra, P. V. Desouza, J. C. Lai, and R. L. Mercer,
“Class-based n-gram models of natural language,” Computational linguistics,
vol. 18, no. 4, pp. 467–480, 1992.

172

[25] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G.
Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C.
Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S.
McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are
few-shot learners,” Advances in neural information processing systems, vol. 33,
pp. 1877–1901, 2020.

[26] C. Buck, K. Heafield, and B. Van Ooyen, “N-gram counts and language models
from the common crawl.,” in LREC, vol. 2, 2014, p. 4.

[27] B. Busjaeger and T. Xie, “Learning for test prioritization: An industrial case
study,” in Proceedings of the 2016 24th ACM SIGSOFT International sympo-
sium on foundations of software engineering, 2016, pp. 975–980.

[28] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment polarity
detection for software development,” Empirical Software Engineering, vol. 23,
no. 3, pp. 1352–1382, 2018.

[29] F. Calefato, F. Lanubile, and N. Novielli, “Emotxt: A toolkit for emotion
recognition from text,” in In 2017 7th International Conference on Affective
Computing and Intelligent Interaction Workshops and Demos), IEEE, pp. 79–
80.

[30] L. V. G. Carreño and K. Winbladh, “Analysis of user comments: An approach
for software requirements evolution,” in 2013 35th International Conference
on Software Engineering (ICSE), IEEE, pp. 582–591.

[31] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M.
Guajardo-Céspedes, S. Yuan, C. Tar, Y.-H. Sung, B. Strope, and R. Kurzweil,
“Universal sentence encoder,” arXiv preprint arXiv:1803.11175, 2018.

[32] C. Chambers, W.-c. Feng, S. Sahu, and D. Saha, “Measurement-based char-
acterization of a collection of on-line games,” in Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement, 2005, pp. 1–1.

[33] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Special issue on learning from
imbalanced data sets,” ACM SIGKDD explorations newsletter, vol. 6, no. 1,
pp. 1–6, 2004.

[34] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using semi-supervised clus-
tering to improve regression test selection techniques,” in Fourth IEEE Inter-
national Conference on Software Testing, Verification and Validation, IEEE,
2011, pp. 1–10.

[35] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for
contrastive learning of visual representations,” in International conference on
machine learning, PMLR, 2020, pp. 1597–1607.

173

[36] N. Chetouane, F. Wotawa, H. Felbinger, and M. Nica, “On using k-means
clustering for test suite reduction,” in 2020 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), IEEE,
2020, pp. 380–385.

[37] C. Chiu, R.-J. Sung, Y.-R. Chen, and C.-H. Hsiao, “App review analytics of
free games listed on Google play,” in Proceedings of the 13th International
Conference on Electronic Business, Singapore, 2013.

[38] T. Y. Chong, R. E. Banchs, and E. S. Chng, “An empirical evaluation of stop
word removal in statistical machine translation,” in Proceedings of the Joint
Workshop on Exploiting Synergies between Information Retrieval and Machine
Translation and Hybrid Approaches to Machine Translation, 2012, pp. 30–37.

[39] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S.
Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prab-
hakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M.
Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H.
Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito,
D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal,
M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira,
R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Fi-
rat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and
N. Fiedel, “Palm: Scaling language modeling with pathways,” arXiv preprint
arXiv:2204.02311, 2022.

[40] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and
psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[41] J. M. Corbin and A. Strauss, “Grounded theory research: Procedures, canons,
and evaluative criteria,” Qualitative sociology, vol. 13, no. 1, pp. 3–21, 1990.

[42] N. Cui, Y. Jiang, X. Gu, and B. Shen, “Zero-shot program representation learn-
ing,” in 2022 IEEE/ACM 30th International Conference on Program Compre-
hension (ICPC), 2022, pp. 60–70. doi: 10.1145/3524610.3527888.

[43] K. Deb, “Multi-objective optimisation using evolutionary algorithms: An in-
troduction,” in Multi-objective evolutionary optimisation for product design
and manufacturing, Springer, 2011, pp. 3–34.

[44] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II,” IEEE transactions on evolutionary
computation, vol. 6, no. 2, pp. 182–197, 2002.

[45] P. Devine and K. Blincoe, “Unsupervised extreme multi label classification of
stack overflow posts,” 2022.

[46] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

174

https://doi.org/10.1145/3524610.3527888

[47] T. G. Dietterich, “Ensemble methods in machine learning,” in International
workshop on multiple classifier systems, Springer, 2000, pp. 1–15.

[48] N. DiGiuseppe and J. A. Jones, “Semantic fault diagnosis: Automatic natural-
language fault descriptions,” in Proceedings of the ACM SIGSOFT 20th Inter-
national Symposium on the Foundations of Software Engineering, 2012, pp. 1–
4.

[49] L. Dong, F. Wei, M. Zhou, and K. Xu, “Adaptive multi-compositionality for
recursive neural models with applications to sentiment analysis,” in Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2014.

[50] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification and scene
analysis. Wiley New York, 1973, vol. 3.

[51] B. Efron and R. J. Tibshirani, An introduction to the bootstrap. CRC press,
1994.

[52] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke, “Empirical eval-
uation of pareto efficient multi-objective regression test case prioritisation,”
in Proceedings of the 2015 International Symposium on Software Testing and
Analysis, 2015, pp. 234–245.

[53] I. Etikan, S. A. Musa, and R. S. Alkassim, “Comparison of convenience sam-
pling and purposive sampling,” American journal of theoretical and applied
statistics, vol. 5, no. 1, pp. 1–4, 2016.

[54] T. Finin, W. Murnane, A. Karandikar, N. Keller, J. Martineau, and M. Dredze,
“Annotating named entities in Twitter data with crowdsourcing,” in Proc. of
the NAACL HLT 2010 Workshop on Creating Speech and Language Data with
Amazon’s Mechanical Turk, pp. 80–88.

[55] Z. P. Fry and W. Weimer, “Fault localization using textual similarities,” arXiv
preprint arXiv:1211.2858, 2012.

[56] Gaming market size, share covid-19 impact analysis, by game type (shooter,
action, sports, role-playing, and others), by device type (pc/mmo, tablet, mobile
phone, and tv/console), by end-user (male and female), and regional forecast,
2021-2028, 2021 (last visited: November 4, 2022). [Online]. Available: https:
//www.fortunebusinessinsights.com/gaming-market-105730.

[57] T. Gao, A. Fisch, and D. Chen, “Making pre-trained language models better
few-shot learners,” arXiv preprint arXiv:2012.15723, 2020.

[58] V. Garousi, S. Bauer, and M. Felderer, “NLP-assisted software testing: A
systematic mapping of the literature,” Information and Software Technology,
vol. 126, p. 106 321, 2020.

[59] V. Garousi and J. Zhi, “A survey of software testing practices in canada,”
Journal of Systems and Software, vol. 86, no. 5, pp. 1354–1376, 2013.

[60] W. H. Gomaa and A. A. Fahmy, “A survey of text similarity approaches,”
International Journal of Computer Applications, vol. 68, no. 13, pp. 13–18,
2013.

175

https://www.fortunebusinessinsights.com/gaming-market-105730
https://www.fortunebusinessinsights.com/gaming-market-105730

[61] R. González-Ibánez, S. Muresan, and N. Wacholder, “Identifying sarcasm in
Twitter: A closer look,” in Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language Technologies: Short
Papers-Volume 2, Association for Computational Linguistics, 2011, pp. 581–
586.

[62] M. Goul, O. Marjanovic, S. Baxley, and K. Vizecky, “Managing the enterprise
business intelligence app store: Sentiment analysis supported requirements en-
gineering,” in 2012 45th Hawaii International Conference on System Sciences,
IEEE, pp. 4168–4177.

[63] J. M. Guarte and E. B. Barrios, “Estimation under purposive sampling,” Com-
munications in Statistics-Simulation and Computation, vol. 35, no. 2, pp. 277–
284, 2006.

[64] J. L. Guerrero, J. Garćıa, L. Mart́ı, J. M. Molina, and A. Berlanga, “A stop-
ping criterion based on kalman estimation techniques with several progress
indicators,” in Proceedings of the 11th Annual conference on Genetic and Evo-
lutionary Computation, 2009, pp. 587–594.

[65] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey,
and N. A. Smith, “Don’t stop pretraining: Adapt language models to domains
and tasks,” arXiv preprint arXiv:2004.10964, 2020.

[66] E. Guzman, O. Aly, and B. Bruegge, “Retrieving diverse opinions from app
reviews,” in 2015 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 1–10.

[67] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit comments
in GitHub: An empirical study,” in Proc. of the 11th Working Conference on
Mining Software Repositories, ACM, 2014, pp. 352–355.

[68] E. Guzman and W. Maalej, “How do users like this feature? A fine grained
sentiment analysis of app reviews,” in 2014 IEEE 22nd International require-
ments engineering conference (RE), pp. 153–162.

[69] R. Haas, D. Elsner, E. Juergens, A. Pretschner, and S. Apel, “How can man-
ual testing processes be optimized? Developer survey, optimization guidelines,
and case studies,” in Proceedings of the 29th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2021, pp. 1281–1291.

[70] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate gen-
eration,” in ACM sigmod record, ACM, vol. 29, 2000, pp. 1–12.

[71] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without candi-
date generation: A frequent-pattern tree approach,” Data mining and knowl-
edge discovery, vol. 8, no. 1, pp. 53–87, 2004.

[72] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineer-
ing: Trends, techniques and applications,” ACM Computing Surveys (CSUR),
vol. 45, no. 1, pp. 1–61, 2012.

176

[73] H. Hemmati, Z. Fang, and M. V. Mantyla, “Prioritizing manual test cases in
traditional and rapid release environments,” in Proceedings of the 8th Inter-
national Conference on Software Testing, Verification and Validation (ICST),
2015, pp. 1–10.

[74] H. Hemmati, Z. Fang, M. V. Mäntylä, and B. Adams, “Prioritizing manual
test cases in rapid release environments,” Software Testing, Verification and
Reliability, vol. 27, no. 6, e1609, 2017.

[75] H. Hemmati and F. Sharifi, “Investigating nlp-based approaches for predicting
manual test case failure,” in Proceedings of the 11th International Conference
on Software Testing, Verification and Validation (ICST), 2018, pp. 309–319.

[76] M. R. Hess and J. D. Kromrey, “Robust confidence intervals for effect sizes:
A comparative study of Cohen’s d and Cliff’s delta under non-normality and
heterogeneous variances,” in annual meeting of the American Educational Re-
search Association, Citeseer, vol. 1, 2004.

[77] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the naturalness
of software,” Communications of the ACM, vol. 59, no. 5, pp. 122–131, 2016.

[78] J. Howarth, How many gamers are there? (new 2022 statistics), 2022 (last vis-
ited: November 8, 2022). [Online]. Available: https://www.fortunebusinessinsights.
com/gaming-market-105730.

[79] A. Huang, “Similarity measures for text document clustering,” in Proceedings
of the sixth new zealand computer science research student conference (NZC-
SRSC2008), Christchurch, New Zealand, vol. 4, 2008, pp. 9–56.

[80] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating learning
algorithms,” IEEE Transactions on knowledge and Data Engineering, vol. 17,
no. 3, pp. 299–310, 2005.

[81] R. Huang, D. Towey, Y. Xu, Y. Zhou, and N. Yang, “Dissimilarity-based test
case prioritization through data fusion,” Software: Practice and Experience,
vol. 52, no. 6, pp. 1352–1377, 2022.

[82] M. R. Islam and M. F. Zibran, “A comparison of software engineering domain
specific sentiment analysis tools,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 487–491.

[83] M. R. Islam and M. F. Zibran, “Leveraging automated sentiment analysis in
software engineering,” in 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pp. 203–214.

[84] M. R. Islam and M. F. Zibran, “Sentistrength-se: Exploiting domain speci-
ficity for improved sentiment analysis in software engineering text,” Journal
of Systems and Software, vol. 145, pp. 125–146, 2018.

[85] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of IR tech-
niques,” ACM Transactions on Information Systems (TOIS), vol. 20, no. 4,
pp. 422–446, 2002.

177

https://www.fortunebusinessinsights.com/gaming-market-105730
https://www.fortunebusinessinsights.com/gaming-market-105730

[86] T. Joachims, “A probabilistic analysis of the rocchio algorithm with TF-IDF
for text categorization.,” Carnegie-mellon univ, Pittsburgh, PA - Dept of com-
puter science, Tech. Rep., 1996.

[87] K. S. Jones, “A statistical interpretation of term specificity and its application
in retrieval,” Journal of documentation, 1972.

[88] R. Jongeling, S. Datta, and A. Serebrenik, “Choosing your weapons: On sen-
timent analysis tools for software engineering research,” in 2015 IEEE Inter-
national Conference on Software Maintenance and Evolution, pp. 531–535.

[89] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative results when
using sentiment analysis tools for software engineering research,” Empirical
Software Engineering, vol. 22, no. 5, pp. 2543–2584, 2017.

[90] D. Jurafsky and J. H. Martin, “Speech and language processing,” 2009.

[91] J. D. Knowles and D. W. Corne, “Approximating the nondominated front us-
ing the pareto archived evolution strategy,” Evolutionary computation, vol. 8,
no. 2, pp. 149–172, 2000.

[92] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language
models are zero-shot reasoners,” arXiv preprint arXiv:2205.11916, 2022.

[93] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word embeddings
to document distances,” in Proceedings of the 32nd International Conference
on Machine Learning (ICML), PMLR, 2015, pp. 957–966.

[94] R. Lachmann, S. Schulze, M. Nieke, C. Seidl, and I. Schaefer, “System-level
test case prioritization using machine learning,” in In Proceedings of the Inter-
national Conference on Machine Learning and Applications (ICMLA), IEEE,
2016, pp. 361–368.

[95] J. R. Landis and G. G. Koch, “The measurement of observer agreement for
categorical data,” biometrics, pp. 159–174, 1977.

[96] Q. Le and T. Mikolov, “Distributed representations of sentences and doc-
uments,” in International conference on machine learning (ICML), PMLR,
2014, pp. 1188–1196.

[97] D. Lee, D. Lin, C.-P. Bezemer, and A. E. Hassan, “Building the perfect game–
an empirical study of game modifications,” Empirical Software Engineering,
vol. 25, no. 4, pp. 2485–2518, 2020.

[98] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V.
Stoyanov, and L. Zettlemoyer, “BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension,”
arXiv preprint arXiv:1910.13461, 2019.

[99] B. Li and L. Han, “Distance weighted cosine similarity measure for text clas-
sification,” in International conference on intelligent data engineering and au-
tomated learning, Springer, 2013, pp. 611–618.

178

[100] K. Li, Z. Liu, T. He, H. Huang, F. Peng, D. Povey, and S. Khudanpur, “An em-
pirical study of transformer-based neural language model adaptation,” in In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 7934–7938.

[101] L. Li, Z. Li, W. Zhang, J. Zhou, P. Wang, J. Wu, G. He, X. Zeng, Y. Deng,
and T. Xie, “Clustering test steps in natural language toward automating test
automation,” in Proceedings of the 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 1285–1295.

[102] Z. Li, Y. Bian, R. Zhao, and J. Cheng, “A fine-grained parallel multi-objective
test case prioritization on GPU,” in International Symposium on Search Based
Software Engineering, Springer, 2013, pp. 111–125.

[103] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto,
“Sentiment analysis for software engineering: How far can we go?” In 2018
IEEE/ACM 40th International Conference on Software Engineering, pp. 94–
104.

[104] C. Lin and Y. He, “Joint sentiment/topic model for sentiment analysis,” in
Proceedings of the 18th ACM conference on Information and knowledge man-
agement, 2009, pp. 375–384.

[105] D. Lin, C.-P. Bezemer, and A. E. Hassan, “An empirical study of early access
games on the steam platform,” Empirical Software Engineering, vol. 23, no. 2,
pp. 771–799, 2018.

[106] D. Lin, C.-P. Bezemer, Y. Zou, and A. E. Hassan, “An empirical study of game
reviews on the Steam platform,” Empirical Software Engineering, vol. 24, no. 1,
pp. 170–207, 2019, issn: 1573-7616.

[107] F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task learning based pre-trained
language model for code completion,” in Proceedings of the 35th International
Conference on Automated Software Engineering (ASE), 2020, pp. 473–485.

[108] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural
language processing,” arXiv preprint arXiv:2107.13586, 2021.

[109] J. D. Long, D. Feng, and N. Cliff, “Ordinal analysis of behavioral data.,” 2003.

[110] J.-F. Lu, J. Tang, Z.-M. Tang, and J.-Y. Yang, “Hierarchical initialization
approach for k-means clustering,” Pattern Recognition Letters, vol. 29, no. 6,
pp. 787–795, 2008.

[111] F. Macklon, M. R. Taesiri, M. Viggiato, S. Antoszko, N. Romanova, D. Paas,
and C.-P. Bezemer, “Automatically detecting visual bugs in HTML5 canvas
games,” in 2022 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2022.

179

[112] M. Mahdieh, S.-H. Mirian-Hosseinabadi, and M. Mahdieh, “Test case prioriti-
zation using test case diversification and fault-proneness estimations,” Auto-
mated Software Engineering, vol. 29, no. 2, pp. 1–43, 2022.

[113] X. P. Mai, F. Pastore, A. Göknil, and L. Briand, “A natural language program-
ming approach for requirements-based security testing,” in Proceedings of the
29th International Symposium on Software Reliability Engineering (ISSRE),
IEEE, 2018.

[114] H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” The annals of mathematical
statistics, pp. 50–60, 1947.

[115] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D.
McClosky, “The Stanford CoreNLP natural language processing toolkit,” in
Proc. of 52nd annual meeting of the association for computational linguistics:
system demonstrations, 2014, pp. 55–60.

[116] A. Marchetto, M. M. Islam, W. Asghar, A. Susi, and G. Scanniello, “A multi-
objective technique to prioritize test cases,” IEEE Transactions on Software
Engineering, vol. 42, no. 10, pp. 918–940, 2015.

[117] M. Marcińczuk, M. Gniewkowski, T. Walkowiak, and M. Bedkowski, “Text
document clustering: Wordnet vs. TF-IDF vs. Word embeddings,” in Proceed-
ings of the 11th Global Wordnet Conference, 2021, pp. 207–214.

[118] L. Mart́ı, J. Garćıa, A. Berlanga, and J. M. Molina, “An approach to stopping
criteria for multi-objective optimization evolutionary algorithms: The mgbm
criterion,” in 2009 IEEE congress on evolutionary computation, IEEE, 2009,
pp. 1263–1270.

[119] S. Masuda, F. Iwama, N. Hosokawa, T. Matsuodani, and K. Tsuda, “Semantic
analysis technique of logics retrieval for software testing from specification
documents,” in Proceedings of the 8th International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), IEEE, 2015, pp. 1–
6.

[120] S. Masuda, T. Matsuodani, and K. Tsuda, “Automatic generation of UTP
models from requirements in natural language,” in Proceedings of the 9th In-
ternational Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), IEEE, 2016, pp. 1–6.

[121] P. D. McNicholas, T. B. Murphy, and M O’Regan, “Standardising the lift of
an association rule,” Computational Statistics & Data Analysis, vol. 52, no. 10,
pp. 4712–4721, 2008.

[122] F. McSherry and M. Najork, “Computing information retrieval performance
measures efficiently in the presence of tied scores,” in European conference on
information retrieval, Springer, 2008, pp. 414–421.

[123] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

180

[124] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed rep-
resentations of words and phrases and their compositionality,” arXiv preprint
arXiv:1310.4546,

[125] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, “Fast approaches to
scalable similarity-based test case prioritization,” in 2018 IEEE/ACM 40th In-
ternational Conference on Software Engineering (ICSE), IEEE, 2018, pp. 222–
232.

[126] P. Mishra, R. Rajnish, and P. Kumar, “Sentiment analysis of Twitter data:
Case study on digital India,” in 2016 International Conference on Information
Technology, IEEE, pp. 148–153.

[127] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal pro-
cessing magazine, vol. 13, no. 6, pp. 47–60,

[128] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network language
model,” in International Workshop on Artificial Intelligence and Statistics,
2005, pp. 246–252.

[129] A. Mudinas, D. Zhang, and M. Levene, “Combining lexicon and learning based
approaches for concept-level sentiment analysis,” in Proceedings of the 1st In-
ternational workshop on issues of sentiment discovery and opinion mining,
2012, pp. 1–8.

[130] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys, ankle sprains,
and keepers of quality: How is video game development different from software
development?” In Proceedings of the 36th International Conference on Soft-
ware Engineering (ICSE), 2014, pp. 1–11.

[131] M. P. Naik, H. B. Prajapati, and V. K. Dabhi, “A survey on semantic document
clustering,” in 2015 IEEE International Conference on Electrical, Computer
and Communication Technologies (ICECCT), IEEE, 2015, pp. 1–10.

[132] P. Nand, R. Perera, and R. Lal, “A HMM POS tagger for micro-blogging
type texts,” in Pacific Rim International Conference on Artificial Intelligence,
2014, pp. 157–169.

[133] S. Nguyen, T. Nguyen, Y. Li, and S. Wang, “Combining program analysis and
statistical language model for code statement completion,” in Proceedings of
the 34th International Conference on Automated Software Engineering (ASE),
2019, pp. 710–721.

[134] T. B. Noor and H. Hemmati, “A similarity-based approach for test case prior-
itization using historical failure data,” in 2015 IEEE 26th International Sym-
posium on Software Reliability Engineering (ISSRE), IEEE, 2015, pp. 58–68.

[135] N. Novielli, F. Calefato, and F. Lanubile, “A gold standard for emotion anno-
tation in Stack Overflow,” in 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR), pp. 14–17.

181

[136] S. Omri and C. Sinz, “Learning to rank for test case prioritization,” in 2022
IEEE/ACM 15th International Workshop on Search-Based Software Testing
(SBST), IEEE, 2022, pp. 16–24.

[137] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and R. Tonelli,
“Are bullies more productive?: Empirical study of affectiveness vs. issue fixing
time,” in Proc. of the 12th Working Conference on Mining Software Reposito-
ries, IEEE Press, 2015, pp. 303–313.

[138] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundations
and Trends in Information Retrieval, vol. 2, no. 1–2, pp. 1–135, 2008.

[139] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C.
Gall, “How can I improve my app? Classifying user reviews for software main-
tenance and evolution,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 281–290.

[140] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli, “How is video game
development different from software development in open source?” In Proceed-
ings of the 15th International Conference on Mining Software Repositories
(MSR), IEEE, 2018, pp. 392–402.

[141] H. Pei, B. Yin, M. Xie, and K.-Y. Cai, “Dynamic random testing with test
case clustering and distance-based parameter adjustment,” Information and
Software Technology, vol. 131, p. 106 470, 2021.

[142] Q. Peng, A. Shi, and L. Zhang, “Empirically revisiting and enhancing ir-based
test-case prioritization,” in Proceedings of the 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, 2020, pp. 324–336.

[143] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” arXiv preprint
arXiv:1802.05365, 2018.

[144] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion: Sentiment
analysis of security discussions on GitHub,” in Proc. of the 11th working con-
ference on mining software repositories, 2014, pp. 348–351.

[145] C. Politowski, F. Petrillo, and Y.-G. Guéhéneuc, “A survey of video game test-
ing,” in 2021 IEEE/ACM International Conference on Automation of Software
Test (AST), IEEE, 2021, pp. 90–99.

[146] D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, “CBGA-ES+: A cluster-
based genetic algorithm with non-dominated elitist selection for supporting
multi-objective test optimization,” IEEE Transactions on Software Engineer-
ing, vol. 47, no. 1, pp. 86–107, 2018.

[147] J. A. do Prado Lima and S. R. Vergilio, “A multi-armed bandit approach for
test case prioritization in continuous integration environments,” IEEE Trans-
actions on Software Engineering, 2020.

182

[148] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G.
Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning
transferable visual models from natural language supervision,” in International
Conference on Machine Learning, PMLR, 2021, pp. 8748–8763.

[149] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving lan-
guage understanding by generative pre-training,” 2018.

[150] M. M. Rahman, C. K. Roy, and I. Keivanloo, “Recommending insightful com-
ments for source code using crowdsourced knowledge,” in 2015 IEEE 15th
International Working Conference on Source Code Analysis and Manipulation
(SCAM), pp. 81–90.

[151] K. Raison, N. Tomuro, S. Lytinen, and J. P. Zagal, “Extraction of user opin-
ions by adjective-context co-clustering for game review texts,” in International
Conference on NLP, Springer, 2012, pp. 289–299.

[152] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

[153] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using
siamese BERT-networks,” in Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing, Association for Computational
Linguistics, Nov. 2019. [Online]. Available: https://arxiv.org/abs/1908.10084.

[154] P. C. Rigby and A. E. Hassan, “What can OSS mailing lists tell us? A pre-
liminary psychometric text analysis of the Apache developer mailing list,” in
Fourth International Workshop on Mining Software Repositories, IEEE, 2007,
pp. 23–23.

[155] L. Rokach and O. Maimon, “Clustering methods,” in Data mining and knowl-
edge discovery handbook, Springer, 2005, pp. 321–352.

[156] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine, “Ex-
ploring methods for evaluating group differences on the nsse and other surveys:
Are the t-test and cohen’sd indices the most appropriate choices,” in Annual
meeting of the Southern Association for Institutional Research, 2006, pp. 1–51.

[157] G. Rothermel, M. J. Harrold, J. Von Ronne, and C. Hong, “Empirical studies
of test-suite reduction,” Software Testing, Verification and Reliability, vol. 12,
no. 4, pp. 219–249, 2002.

[158] S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf, “Transfer learning in
natural language processing,” in Proceedings of the 2019 conference of the
North American chapter of the association for computational linguistics: Tu-
torials, 2019, pp. 15–18.

[159] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information retrieval
approach for regression test prioritization based on program changes,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering,
IEEE, vol. 1, 2015, pp. 268–279.

183

https://arxiv.org/abs/1908.10084

[160] H. Saif, Y. He, and H. Alani, “Semantic sentiment analysis of Twitter,” in
International semantic web conference, Springer, 2012, pp. 508–524.

[161] G. Salton, “Developments in automatic text retrieval,” science, vol. 253, no. 5023,
pp. 974–980, 1991.

[162] G. Salton and C. Buckley, “Term-weighting approaches in automatic text re-
trieval,” Information processing & management, vol. 24, no. 5, pp. 513–523,
1988.

[163] T. Santos, F. Lemmerich, M. Strohmaier, and D. Helic, “What’s in a review:
Discrepancies between expert and amateur reviews of video games on Meta-
critic,” Proceedings of the ACM on Human-Computer Interaction, vol. 3, pp. 1–
22, 2019.

[164] A. S. Sayyad, T. Menzies, and H. Ammar, “On the value of user preferences
in search-based software engineering: A case study in software product lines,”
in 2013 35Th international conference on software engineering (ICSE), IEEE,
2013, pp. 492–501.

[165] T. Schick and H. Schütze, “It’s not just size that matters: Small language
models are also few-shot learners,” arXiv preprint arXiv:2009.07118, 2020.

[166] S. Y. Shin, S. Nejati, M. Sabetzadeh, L. C. Briand, and F. Zimmer, “Test
case prioritization for acceptance testing of cyber physical systems: A multi-
objective search-based approach,” in Proceedings of the 27th acm sigsoft in-
ternational symposium on software testing and analysis, 2018, pp. 49–60.

[167] R. Singh, C.-P. Bezemer, W. Shang, and A. E. Hassan, “Optimizing the
performance-related configurations of object-relational mapping frameworks
using a multi-objective genetic algorithm,” in Proceedings of the 7th ACM/SPEC
on International Conference on Performance Engineering, 2016, pp. 309–320.

[168] V. K. Singh, R. Piryani, A. Uddin, and P. Waila, “Sentiment analysis of movie
reviews: A new feature-based heuristic for aspect-level sentiment classifica-
tion,” in 2013 International Mutli-Conference on Automation, Computing,
Communication, Control and Compressed Sensing), IEEE, pp. 712–717.

[169] P. H. Sneath and R. R. Sokal, Numerical taxonomy. The principles and practice
of numerical classification. 1973.

[170] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C.
Potts, “Recursive deep models for semantic compositionality over a sentiment
treebank,” in Proc. of the 2013 conference on empirical methods in natural
language processing, pp. 1631–1642.

[171] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement learning
for automatic test case prioritization and selection in continuous integration,”
in Proceedings of the 26th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, 2017, pp. 12–22.

184

[172] B. Str̊åat and H. Verhagen, “Using user created game reviews for sentiment
analysis: A method for researching user attitudes.,” in GHITALY@ CHItaly,
2017.

[173] M. R. Taesiri, F. Macklon, and C.-P. Bezemer, “CLIP meets GamePhysics:
Towards bug identification in gameplay videos using zero-shot transfer learn-
ing,” in 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), IEEE, 2022, pp. 46–57.

[174] M. R. Taesiri, F. Macklon, Y. Wang, H. Shen, and C.-P. Bezemer, “Large
language models are pretty good zero-shot video game bug detectors,” arXiv
preprint arXiv:2210.02506, 2022.

[175] S. H. Tan and Z. Li, “Collaborative bug finding for android apps,” in Proceed-
ings of the 42nd International Conference on Software Engineering (ICSE),
2020, pp. 1335–1347.

[176] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, “Sentiment
strength detection in short informal text,” Journal of the American Society
for Information Science and Technology, pp. 2544–2558, 2010.

[177] J. J. Thompson, B. H. Leung, M. R. Blair, and M. Taboada, “Sentiment anal-
ysis of player chat messaging in the video game StarCraft 2: Extending a
lexicon-based model,” Knowledge-Based Systems, vol. 137, pp. 149–162, 2017.

[178] M. D. C. Tongco, “Purposive sampling as a tool for informant selection,”
Ethnobotany Research and applications, vol. 5, pp. 147–158, 2007.

[179] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students learn
better: On the importance of pre-training compact models,” arXiv preprint
arXiv:1908.08962, 2019.

[180] S. Varvaressos, K. Lavoie, S. Gaboury, and S. Hallé, “Automated bug finding
in video games: A case study for runtime monitoring,” Computers in Enter-
tainment (CIE), vol. 15, no. 1, pp. 1–28, 2017.

[181] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[182] M. Viggiato, D. Lin, A. Hindle, and C.-P. Bezemer, “What causes wrong senti-
ment classifications of game reviews?” IEEE Transactions on Games, vol. 14,
no. 3, pp. 350–363, 2022. doi: 10.1109/TG.2021.3072545.

[183] M. Viggiato, D. Paas, C. Buzon, and C.-P. Bezemer, “Identifying similar test
cases that are specified in natural language,” IEEE Transactions on Software
Engineering, 2022.

[184] M. Viggiato, D. Paas, C. Buzon, and C.-P. Bezemer, “Using natural language
processing techniques to improve manual test case descriptions,” in Interna-
tional Conference on Software Engineering-Software Engineering in Practice
(ICSE-SEIP) Track.(May 8, 2022), 2022.

185

https://doi.org/10.1109/TG.2021.3072545

[185] T. Wagner, H. Trautmann, and L. Mart́ı, “A taxonomy of online stopping cri-
teria for multi-objective evolutionary algorithms,” in International Conference
on Evolutionary Multi-Criterion Optimization, Springer, 2011, pp. 16–30.

[186] B. Walter, M. Schilling, M. Piechotta, and S. Rudolph, “Improving test exe-
cution efficiency through clustering and reordering of independent test steps,”
in IEEE 11th International Conference on Software Testing, Verification and
Validation (ICST), IEEE, 2018, pp. 363–373.

[187] X. Wan, “Using bilingual knowledge and ensemble techniques for unsuper-
vised chinese sentiment analysis,” in Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing, 2008, pp. 553–561.

[188] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “Glue: A
multi-task benchmark and analysis platform for natural language understand-
ing,” arXiv preprint arXiv:1804.07461, 2018.

[189] C. Wang, F. Pastore, A. Goknil, and L. Briand, “Automatic generation of
acceptance test cases from use case specifications: An nlp-based approach,”
IEEE Transactions on Software Engineering, 2020.

[190] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, “Automatic gen-
eration of system test cases from use case specifications,” in Proceedings of
the 24th International Symposium on Software Testing and Analysis (ISSTA),
2015, pp. 385–396.

[191] S. Wang, S. Ali, T. Yue, Ø. Bakkeli, and M. Liaaen, “Enhancing test case pri-
oritization in an industrial setting with resource awareness and multi-objective
search,” in Proceedings of the 38th International Conference on Software En-
gineering Companion, 2016, pp. 182–191.

[192] Y. Wang, L. Wang, Y. Li, D. He, W. Chen, and T.-Y. Liu, “A theoretical anal-
ysis of ndcg ranking measures,” in Proceedings of the 26th annual conference
on learning theory (COLT 2013), vol. 8, 2013, p. 6.

[193] S. M. Weiss, N. Indurkhya, and T. Zhang, Fundamentals of predictive text
mining. Springer, 2015.

[194] S. M. Weiss, N. Indurkhya, T. Zhang, and F. Damerau, Text mining: predictive
methods for analyzing unstructured information. Springer Science & Business
Media, 2010.

[195] S. Wijayanto and M. L. Khodra, “Business intelligence according to aspect-
based sentiment analysis using double propagation,” in 2018 3rd International
Conference on Information Technology, Information System and Electrical En-
gineering, IEEE, pp. 105–109.

[196] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, “Impediments for soft-
ware test automation: A systematic literature review,” Software Testing, Ver-
ification and Reliability, vol. 27, no. 8, e1639, 2017.

[197] F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs
in statistics, Springer, 1992, pp. 196–202.

186

[198] W. Witkowski, Videogames are a bigger industry than movies and north amer-
ican sports combined, thanks to the pandemic, 2021 (last visited: November 8,
2022). [Online]. Available: https://www.marketwatch.com/story/videogames-
are - a- bigger - industry- than- sports - and- movies - combined- thanks- to- the-
pandemic-11608654990.

[199] Y. Woldemariam, “Sentiment analysis in a cross-media analysis framework,” in
2016 IEEE International Conference on Big Data Analysis (ICBDA), pp. 1–5.

[200] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, C.
Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and
A. M. Rush, Transformers: State-of-the-Art Natural Language Processing, Oct.
2020. [Online]. Available: https://www.aclweb.org/anthology/2020.emnlp-
demos.6.

[201] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T.
Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,
Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and
A. M. Rush, “Huggingface’s transformers: State-of-the-art natural language
processing,” arXiv preprint arXiv:1910.03771, 2019.

[202] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu,
Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian,
N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals,
G. Corrado, M. Hughes, and J. Dean, “Google’s neural machine translation
system: Bridging the gap between human and machine translation,” arXiv
preprint arXiv:1609.08144, 2016.

[203] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and B. Schiele, “Latent
embeddings for zero-shot classification,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 69–77.

[204] Z. Xiao, L Wang, and J. Du, “Improving the performance of sentiment classi-
fication on imbalanced datasets with transfer learning,” IEEE Access, vol. 7,
pp. 28 281–28 290, 2019.

[205] H. Xie and T. Virtanen, “Zero-shot audio classification via semantic embed-
dings,” IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 29, pp. 1233–1242, 2021.

[206] Y. Yang, X. Huang, X. Hao, Z. Liu, and Z. Chen, “An industrial study of nat-
ural language processing based test case prioritization,” in 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation (ICST),
IEEE, 2017, pp. 548–549.

[207] A. S. Yaraghi, M. Bagherzadeh, N. Kahani, and L. Briand, “Scalable and
accurate test case prioritization in continuous integration contexts,” IEEE
Transactions on Software Engineering, 2022.

187

https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

[208] K. Yauris and M. L. Khodra, “Aspect-based summarization for game review
using double propagation,” in 2017 International Conference on Advanced In-
formatics, Concepts, Theory, and Applications, IEEE, pp. 1–6.

[209] W. Yin, J. Hay, and D. Roth, “Benchmarking zero-shot text classification:
Datasets, evaluation and entailment approach,” arXiv preprint arXiv:1909.00161,
2019.

[210] T. Yue, S. Ali, and M. Zhang, “Rtcm: A natural language based, automated,
and practical test case generation framework,” in Proceedings of the 2015 in-
ternational symposium on software testing and analysis, 2015, pp. 397–408.

[211] J. P. Zagal, A. Ladd, and T. Johnson, “Characterizing and understanding game
reviews,” in Proceedings of the 4th international Conference on Foundations
of Digital Games, 2009, pp. 215–222.

[212] J. P. Zagal and N. Tomuro, “Cultural differences in game appreciation: A
study of player game reviews.,” in FDG, 2013, pp. 86–93.

[213] J. P. Zagal, N. Tomuro, and A. Shepitsen, “Natural language processing in
game studies research: An overview,” Simulation & Gaming, pp. 356–373,
2012.

[214] M. Zalmanovici, O. Raz, and R. Tzoref-Brill, “Cluster-based test suite func-
tional analysis,” in Proceedings of the 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2016, pp. 962–967.

[215] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M.
Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig,
P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer, “Opt: Open pre-trained
transformer language models,” arXiv preprint arXiv:2205.01068, 2022.

[216] Y. Zhang, J. Lu, F. Liu, Q. Liu, A. Porter, H. Chen, and G. Zhang, “Does
deep learning help topic extraction? A kernel K-means clustering method with
word embedding,” Journal of Informetrics, vol. 12, no. 4, pp. 1099–1117, 2018.

[217] Z. Q. Zhou, C. Liu, T. Y. Chen, T. Tse, and W. Susilo, “Beating random test
case prioritization,” IEEE Transactions on Reliability, vol. 70, no. 2, pp. 654–
675, 2020.

188

	Introduction
	Motivation
	Thesis objectives
	Natural language test cases
	Thesis outline

	Identifying Similar Test Cases That Are Specified in Natural Language
	Abstract
	Introduction
	Background
	Text representation
	Clustering techniques
	Game testing

	Related Work
	Clustering techniques for software testing
	Natural Language Processing techniques for software testing

	Proposed approach
	Stage 1: Test case pre-processing
	Stage 2: Test step clustering
	Stage 3: Test case similarity
	Motivational Example

	Dataset and ground truth
	Evaluating our approach for clustering similar test steps
	Evaluated techniques
	Configuration of the word embedding techniques
	Configuration of the sentence embedding techniques
	Computing the test step similarity
	Clustering test steps
	Evaluation metric
	Findings

	Evaluating our approach for identifying similar test cases
	Evaluated techniques
	Evaluation metric.
	Findings

	Discussion
	Threats to Validity
	Conclusion

	Using Natural Language Processing Techniques to Improve Manual Test Case Descriptions
	Abstract
	Introduction
	Our automated framework for analysis and feedback
	Data preparation component
	Analysis component
	Report generation component
	Using the framework in practice
	A description of our dataset

	The terminology improvement analysis module
	Training phase
	Evaluation
	Inference phase

	The missing test step analysis module
	Training phase
	Evaluation
	Inference phase

	The test case similarity analysis module
	Training phase
	Evaluation
	Inference phase

	Related Work
	Threats to Validity
	Conclusion

	Prioritizing Natural Language Test Cases Based on Highly-Used Game Features
	Abstract
	Introduction
	Industrial case study subject
	Overview of our approach for test case prioritization
	Input
	Extracting test case information
	Analyzing game features
	Optimizing test case execution

	Identifying game features from natural language test cases
	Experiment setup
	Evaluation
	Results

	Multi-objective prioritization of natural language test cases
	Multi-Objective Genetic Algorithms
	Test Case Prioritization Using NSGA-II
	Objective functions for NSGA-II
	Stopping Criteria for NSGA-II
	Experiment setup
	Evaluation of test case prioritization approaches
	Results

	Discussion
	Using our prioritization approach in practice
	Related work
	Threats to validity
	Conclusion

	What Causes Wrong Sentiment Classifications of Game Reviews?
	Abstract
	Introduction
	Sentiment Analysis
	Related Work
	Methodology
	Collecting Game Reviews
	Evaluating Sentiment Analysis Performance
	Manually Analyzing Wrong Classifications
	Quantifying the Impact of the Root Causes

	Pre-study
	RQ1: How do sentiment analysis classifiers perform on game reviews?
	RQ2: What are the root causes for wrong classifications?
	RQ3: To what extent do the identified root causes impact the performance of sentiment analysis?
	Contrast Conjunctions
	Game Comparison
	Negative Terminology

	Recommendations and research directions for sentiment analysis on game reviews
	Conclusion

	Leveraging the OPT Large Language Model for Sentiment Analysis of Game Reviews
	Abstract
	Introduction
	The OPT-175B Large Language Model
	Methodology
	Selecting game reviews
	Evaluating the performance of OPT-175B
	Manually analyzing the wrong classifications made by OPT-175B

	RQ1: How does OPT-175B perform on the sentiment classification of game reviews?
	RQ2: How do the root causes of wrong classifications made by OPT-175B compare to the root causes of wrong classifications made by traditional sentiment classifiers?
	Threats to Validity
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

