
Automated Security Testing of AJAX
Web Widget Interactions

Master’s Thesis

Cor-Paul Bezemer

Automated Security Testing of AJAX
Web Widget Interactions

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Cor-Paul Bezemer
born in Den Haag, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Exact International Development B.V.
Poortweg 6

Delft, the Netherlands
www.exactsoftware.com

c© 2008 Cor-Paul Bezemer.

Automated Security Testing of AJAX
Web Widget Interactions

Author: Cor-Paul Bezemer
Student id: 1149601
Email: c.bezemer@student.tudelft.nl

Abstract

Over the years AJAX, a technique for improving the responsiveness of web ap-
plications, has become increasingly popular. One of the results of AJAX is the devel-
opment of a new type of web application component called web widget. Widgets are
mini-applications which are placed next to each other on a web page. This has conse-
quences for their security. In this report two security threats are explained. The first
threat discussed is the case in which a widget changes the DOM of another widget.
The second threat discussed is the case in which a widget steals data from another
widget. We propose a dynamic approach for automatically detecting these issues. Our
approach uses ATUSA, a testing framework capable of crawling AJAX applications, for
which we have developed two security testing plugins. In this report we also evaluate
our approach using three case studies. The first case study is conducted on test wid-
gets, which we created for a simplified widget framework. The second case study is
conducted on the Exact Widget Framework, a widget framework which is being pro-
totyped by the Research and Innovation team of Exact Software. The final case study
is performed on Pageflakes, an industrial, widely used widget framework. The results
of these case studies show that our approach has high violation-detection capabilities
with a low false positive detection rate.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: ir. A. Mesbah, Faculty EEMCS, TU Delft
Company supervisor: T. Hurkmans, Exact International Development B.V.
Committee Members: Dr. M. Pinzger, Faculty EEMCS, TU Delft

Dr. P. Cimiano, Faculty EEMCS, TU Delft

Preface

I started my graduation project in February 2008 at Exact Software. After a good year of
hard work and what turned out to be a very interesting journey, I proudly present to you my
Master’s thesis.

First of all, I would like to thank all the people at Exact for offering a warm and inspiring
environment for doing my research. From day one, all the Research & Innovation team
members have made me feel more than welcome. I would especially like to thank Bart
Platzbeecker, for sharing his knowledge and experience in the field of security, and for his
input in our brainstorm sessions. I would also like to thank Toine Hurkmans for the weekly
progress meetings with Mark and Bart, his feedback and supervision during my project.

Furthermore, I would like to thank Ali Mesbah for his supervision and many feedback
and brainstorm sessions at the TU Delft. His input has always been inspiring and motivating,
which has helped to take my research to a higher level. Finally, I would like to thank Arie
van Deursen, for his feedback, ideas and support throughout my project.

Cor-Paul Bezemer
Delft, the Netherlands

March 9, 2009

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 Background 3
2.1 AJAX . 3
2.2 Web Widgets . 6
2.3 Exact Widget Framework . 8

3 Problem Definition 11
3.1 Same Origin Policy . 11
3.2 Widget SOP Violation Scenarios . 13
3.3 Problem Definition . 15
3.4 Motivation . 17
3.5 Selected Approach for this Project . 17

4 ATUSA 19
4.1 ATUSA Plugin Framework . 20

5 Automatic DOM Change Violation Detection 23
5.1 Concept . 23
5.2 Implementation . 30

6 Automatic HTTP Request Violation Detection 35
6.1 Concept . 35
6.2 Implementation . 40

v

CONTENTS

7 Empirical Evaluation 45
7.1 Questions . 45
7.2 Test Setup . 45
7.3 Case Study 1: A Simplified Widget Framework 46
7.4 Case Study 2: Exact Widget Framework 48
7.5 Case Study 3: Pageflakes . 52
7.6 Evaluation Results . 54

8 Discussion 57
8.1 Completeness . 57
8.2 Security . 59
8.3 Scalability . 60
8.4 Performance . 60
8.5 Threats to Validity . 61
8.6 Different Applications . 61

9 Related Work 63
9.1 Static versus Dynamic Analysis . 63
9.2 Traditional Web Application Security . 63
9.3 AJAX and Widget Security . 66

10 Conclusion 67
10.1 Contributions . 67
10.2 Future Work . 68

Bibliography 69

A Glossary 73

B ATUSA Adjustments Overview 75
B.1 Active Element . 75
B.2 Accessing the Internal Browser DOM . 75
B.3 Plugin Configuration . 75
B.4 Attribute Annotation . 77
B.5 DOM History . 78

C Aspect-Oriented Programming 79

D Vulnerabilities 81
D.1 Cross-site Scripting . 81
D.2 Injection . 82
D.3 Cross-site Request Forgery . 82

E JavaScript Code for AJAX Subversion 83

vi

List of Figures

2.1 Interaction in a traditional and an ajaxified web application, originally taken
from [6]. 4

2.2 View of a SPIAR based architecture, originally taken from [26]. 6
2.3 Exact Widget Framework concept personalized start page MyStartpage. 9
2.4 Exact Widget Framework concept widget catalog. 9

3.1 Changing the background color of an element. 13
3.2 Preferred situation for publishing a widget. 16

4.1 Processing view of ATUSA, originally taken from [29]. 21

5.1 Example DOM tree for a widget framework. 24
5.2 Widget boundary identification process for #p1. 27
5.3 Example scenario: Changing the description of a link. 28
5.4 Example scenario: Changing the description of a link, simplified DOM tree. . . 29
5.5 Rules for widget boundary identification in Figure 5.4. 29
5.6 DOM recording in the crawling process. 31
5.7 Example XmlUnit output. 31

6.1 Example code which causes an HTTP request violation. 36
6.2 Situation with an HTTP proxy between client and server. 37
6.3 Example scenario: Stealing a password using a key logger. 39
6.4 Allowed URL lists for the scenario depicted by Figure 6.3. 39
6.5 Request made by a key logger including the ID of the origin element. 40
6.6 Example annotation of the unique attribute annotation proxy plugin. 41
6.7 Simplified example of code used to subvert AJAX. 42

7.1 Screenshot of a DOM change violation widget pair in the simplified widget
framework. 46

7.2 DOM of the contents section of Figure 7.1. 47
7.3 ATUSA configuration for the simplified widget framework case study. 48

vii

List of Figures List of Figures

7.4 Screenshot of a DOM change violation widget pair in the Exact widget frame-
work. 49

7.5 ATUSA configuration for the EWF case study. 51
7.6 Screenshot of a DOM change violation widget pair in the Pageflakes framework. 53
7.7 ATUSA configuration for the Pageflakes case study. 53

8.1 Example of an HTTP request violation not detected by our approach. 59

B.1 Accessing the internal browser’s DOM using reflection. 76
B.2 Annotating variables during the crawling process. 77

C.1 Solution for the logging problem using AspectJ. 80

E.1 JavaScript code used for subverting AJAX calls in the jQuery framework. . . . 83
E.2 JavaScript code used for subverting Microsoft AJAX.NET calls. 84

viii

Chapter 1

Introduction

Over the last couple of years there has been a shift in web application development. Web
applications have changed from being static to being highly dynamic, using new Web 2.0
techniques. One of these techniques is Asynchronous JavaScript and XML (AJAX) [6], with
which web applications can be made more interactive and user friendly. While in traditional
web applications a complete page needs to be refreshed, AJAX makes it possible to refresh
parts of the page. This contributes to the user experience and gives the user the feeling
similar to a desktop application instead of a web application.

The advantages of AJAX have led to the development of web widgets. Widgets are
mini-applications that run indepently or next to each other on a web page inside a browser.
They can be used for a wide variety of tasks such as showing the latest news headlines or
the weather. Widgets have gained much popularity over the last years because of web sites
like iGoogle1 and social network sites like Facebook2. These web sites allow users to select
widgets from a catalog, configure them and host them on a personalized starting page. Such
a starting page may contain multiple widgets, which makes it a powerful and convenient
way of offering widgets to a user.

The introduction of AJAX and web widgets has had consequences for different areas
of web application development. One of these areas is security. Security in software is
concerned with maintaining the absence of unauthorized access while preserving normal
behaviour for authorized requests [3, 23]. Another point security is concerned with is data
protection. It is important that data which should be secure, such as private data, cannot
be retrieved from the application by another user than the data is intended for. Web wid-
gets are web applications and therefore suffer at least from the same security threats [10].
Unfortunately the nature of web widgets has introduced some new problems. Web widget
frameworks place multiple widgets in the same environment on a web page. This may have
serious consequences for the security and privacy of users of the framework.

In this thesis the security and privacy threats of running multiple web widgets in the
same environment will be discussed. Also a method will be proposed for testing web wid-
gets for these threats. The method uses ATUSA [29], which is based on CRAWLJAX [25],

1iGoogle: http://www.igoogle.com
2Facebook: http://www.facebook.com

1

Introduction

a tool for automated navigation of AJAX applications. In order to explain the proposed
method this report has the following structure. First background information about AJAX,
web widgets and widget frameworks will be given. In Chapter 3 the problem dealt with
in this report is explained in detail. In this chapter a motivation for the selected approach
is given as well. In Chapters 5 and 6 an approach for detecting security threats of running
widgets in the same environment is proposed. This approach is evaluated by three case
studies in Chapter 7. In Chapter 8 a discussion is given of a number of aspects regarding
our approach. After this we give an overview of related work in this research area. Finally
we will draw a conclusion about our research.

2

Chapter 2

Background

2.1 AJAX

Traditional web applications are based on a multi page interface model in which all inter-
actions have to go through the server by means of synchronous requests [26]. The result of
this is that after every interaction the user has to wait for the new web page to be loaded (see
Figure 2.1). This does not give the user the feeling of working with a responsive application
because it lacks the responsiveness of a desktop application [6]. It also wastes bandwidth
because the complete page is sent by the web server, although usually only a small part of
the page changes [38]. To overcome this problem, a new technique called AJAX has been
introduced.

Asynchronous JavaScript and XML (AJAX) is a technique which allows to make asyn-
chronous requests in a web application instead of the synchronous requests used in tradi-
tional web applications [6]. A consequence of this is that the user can continue viewing
the page after a request has been made. The response is sent by the server as XML (or
another format like JSON) and incorporated on the page by the client using JavaScript and
the Document Object Model (DOM). The advantage of this is that parts of the page can be
reloaded rather than only the complete page (see Figure 2.1). This is a serious improvement
of the user experience since the responsiveness can increase compared to traditional web
applications.

2.1.1 Consequences of AJAX for Web Application Development

Because AJAX allows an increase in user experience with minimal effort, many compa-
nies are migrating their pages to AJAX powered pages. This process, sometimes called
ajaxification [27], requires some consideration because the asynchronous nature of AJAX

has some consequences for the development of web applications. Interactions in traditional
web applications require the page to be reloaded completely but with AJAX this is no longer
necessary. Therefore, there is no need to develop complete pages but UI components can
be developed instead [26]. This leads to the component-based structure of AJAX and the
development of web widgets (see Chapter 2.2) rather than web pages.

3

2.1 AJAX Background

Figure 2.1: Interaction in a traditional and an ajaxified web application, originally taken
from [6].

Another consequence is the difference in site navigation. In traditional web applica-
tions navigation is done through hyperlinks and the submission of forms. With AJAX, the
set of clickable elements on a site is not limited to hyperlinks and may change with every
click [28]. This is because the response of the AJAX call may add new content, contain-
ing clickable elements or AJAX calls, to the DOM. This ‘hidden’ content is not reachable
through hyperlinks, but only through the DOM tree or instance of the client that made the
AJAX call. Because not all content of an AJAX page is reachable through a URL, AJAX is
based on a single page model. Software like web crawlers and test frameworks are usually
not prepared for the single page model and do not keep track of the DOM to crawl web
pages [39]. Therefore they need to be adjusted in order to reach the hidden content.

Finally, because AJAX relies heavily on JavaScript the web application must be tested
on a variety of browsers and operating systems. This is because most browsers are known
to have JavaScript compatibility issues as they do not all implement the same subset of
JavaScript features [21, 22]. Various frameworks like the Google Web Toolkit1 and Echo22

exist to help the web application programmer overcome these compatibility issues. These
frameworks allow the developer to create AJAX applications in Java, which more develop-

1Google Web Toolkit: http://code.google.com/webtoolkit/
2Echo Web Framework: http://echo.nextapp.com/site/echo2/

4

Background 2.1 AJAX

ers are familiar with and does not have browser compatibility issues as it is a server-side
language. When such an application is deployed, the framework converts the Java code to
multi-browser JavaScript.

AJAX also introduces changes in the software architecture of an application. An archi-
tectural style for AJAX applications is discussed in the next section.

2.1.2 An Architectural Style for AJAX Applications

Mesbah and van Deursen [26] consider AJAX applications to be hybrids of web and desktop
applications and believe that none of the existing architectural styles are suitable for rep-
resenting them. A typical AJAX application exists of a client-side part, usually written in
JavaScript and a server-side part, for example a Web service. They propose SPIAR [26], an
architectural style for AJAX applications. In SPIAR three types of elements can be identi-
fied:

• Processing elements - The components that perform transformations on the data el-
ements,

– Client browser - The client browser processes the representational model of the
web page and creates the user interface from it;

– AJAX engine - The engine that handles all AJAX requests;

– Server application - The application on the server that handles and responds to
the HTTP requests made by the client browser;

– Service provider - The logic engine of the server application;

– Delta encoder/decoder - The component that encodes/decodes the delta-communication
messages;

– UI components - The set of server components that render the UI on the client;

• Data elements - The data that is used and transformed by the processing elements,

– Representation - Any type of media;

– Representational model - A runtime abstraction of the user interface, for exam-
ple the DOM;

– Delta-communication messages - Messages to exchange state changes between
the server and client;

• Connecting elements - The elements that connect the components and enables them
to communicate,

– Events - An event is caused by a user action. It is propagated to the engine and
the result on the server is the invocation of a service. Events form the basis of
the action model in SPIAR;

– Delta connector - Communication media connecting the server and client;

5

2.2 Web Widgets Background

Figure 2.2: View of a SPIAR based architecture, originally taken from [26].

– Delta update - Updates the representation model on the client and the compo-
nent model on the server.

SPIAR uses delta-communication to model the notifications of the changes in the client
browser and server application. In this type of communication only the state changes are
exchanged instead of the full page. As explained in this chapter, this is typical for commu-
nication in AJAX applications.

2.2 Web Widgets

The asynchronous nature of AJAX, and dynamic DOM of AJAX applications allow for new
possibilities in web applications. It allows developers to update individual user interface
elements rather than allowing full page updates only as in traditional web applications.
A consequence of this is the shift from an application-based approach to a component-
based approach. In this approach components, called web widgets or gadgets, are created
instead of complete applications. Web widgets are AJAX-based components which run
independently from each other inside any HTML-driven page. They are usually placed
on a web page using one of the many available web widget frameworks. A selection of
these frameworks is discussed in the next sections. In addition to placement on a web page,
web widgets can be used on desktops using dashboard software such as the Microsoft Vista
Sidebar or Apple’s Dashboard. Finally, widgets are often convenient applications which
require a small amount of space, both in memory usage and on the screen, which makes
them suitable for usage on a mobile phone. In the remainder of this thesis we will focus on
browser-based web widgets.

A disadvantage of web widgets is that they usually work on the platform they were
developed for only. Web widgets of different platforms are usually not interchangeable.
An exception to this are web widgets that are developed using the Universal Widget API3

(UWA). The UWA was developed by NetVibes4 and offers an interface for creating generic

3NetVibes Universal Widget API: http://dev.netvibes.com
4NetVibes: http://www.netvibes.com

6

Background 2.2 Web Widgets

web widgets that can run on different platforms like NetVibes, iGoogle and the iPhone5.
In most cases web widgets can be developed by users of a framework. Since the intro-

duction of web widgets, thousands of them have been created for a wide variety of tasks.
Some examples are used to display the weather, to show news headlines and to play games.
Often frameworks offer users a catalog where they can download predefined web widgets.

2.2.1 Web Widget Frameworks

Many vendors have been working on web widget frameworks during the last months. Most
of them provide the same functionality and selecting one is a matter of taste. Some of the
more advanced web widget frameworks are iGoogle, NetVibes, Pageflakes6 and MyYahoo7.
Social network sites like Hyves8 and Facebook have also started to allow their users to
create web widgets that can be used on their profile. One similarity these frameworks share
is that the user is allowed to create client-side widgets only. No code written by a user will
be executed on the server. This rule is a limitation for the developer but is established to
improve the level of security of the web widgets that are created.

2.2.2 DIVs versus IFrames

As explained, widgets are placed on a web page next to each other by a widget framework.
This can be done in two ways: using DIV containers and using IFrames. The traditional way
of placing content from multiple external vendors on one page is by using IFrames. The
advantage of IFrames is that they provide an isolated environment for the widgets because
the Same Origin Policy (see Section 3.1) limits them or the framework from accessing each
other’s properties. The main problem with using IFrames is that they do not provide real
integration on the page. IFrames impose limitations on the page layout and their contents
do not use the CSS style sheet of the framework. They also do not allow a user to resize the
widget [41].

A solution for these limitations is to place each widget inside a DIV container. DIV
containers allow the user to resize widgets and they do not impose restrictions on the wid-
get’s layout and style. Unfortunately they do not provide an isolated environment for their
execution. Widgets which are placed next to each other in DIV containers run in the same
execution environment and are therefore allowed to manipulate each other’s properties.

2.2.3 Mashups

A type of web application closely connected to widgets and widget frameworks is the
mashup. The term mashup originates from the music industry, in which a mashup is a track
that is created by combining two existing tracks [24]. In software technology a mashup is
a web application in which multiple data sources and/or services are combined [5, 24, 42].

5Apple iPhone: http://www.apple.com/iphone/
6Pageflakes: http://www.pageflakes.com
7MyYahoo: http://www.myyahoo.com
8Hyves: http://www.hyves.nl

7

2.3 Exact Widget Framework Background

These data sources and services can be accessed through an API. ProgrammableWeb9, one
of the largest online directories for APIs and mashups, lists over 1150 APIs and over 3700
mashups at the time of writing.

One of the first and most famous mashups is HousingMaps10. HousingMaps combines
data from classifieds site CraigsList11 with the Google Maps12 service. Housing offers are
displayed on the map so users can see which offers are available in a certain area. This
was an early example of a mashup and it became famous because of its effectiveness and
simplicity.

Many large software companies are offering a (beta) framework for creating mashups.
Yahoo! Pipes13 is a tool to aggregate and manipulate data sources from the web [44]. A user
can create a pipeline by connecting modules which can perform operations on data. When
a data source is fed to this pipeline, all modules in it perform their operations on the data.
The output contains the manipulated data, which can be used as a data source for other web
applications [11].

While Yahoo! focuses on data manipulation, other companies are offering a more exten-
sive solution for creating mashups. Microsoft and Google offer an online editor for creating
widgets, mashups and web sites with their Popfly14 and Google Mashup Editor (GME)15.
After creating a widget, mashup or web site the owner may publish it so that other users of
the framework can use it [8, 31]. After publishing the element the source code is always
visible to the community. The goal of this is for the community to support itself by creating
a large database of live examples.

Intel takes a different direction with Mash Maker16, a browser extension that can be
used for creating mashups while browsing web sites. Mash Maker is a browser plugin
which notifies users when a mashup for the site they are browsing is found in the database.
Users can then choose to use one of the existing mashups or create their own.

Mashups are closely connected to widgets, because widgets which are placed on a per-
sonal homepage form a mashup. Therefore many of the problems and solutions which apply
to mashups, also apply to widgets and vice versa.

2.3 Exact Widget Framework

The research done for this project was part of a research project at Exact Software17. Exact
Software is a Delft-based company which was founded in 1984 and specializes in business
applications. Exact has over 2500 employees in 40 different countries and their software is
used in 125 countries.

9ProgrammableWeb: http://www.programmableweb.com
10HousingMaps: http://www.housingmaps.com
11CraigsList: http://www.craigslist.com
12Google Maps: http://maps.google.com
13Yahoo! Pipes: http://pipes.yahoo.com
14Microsoft Popfly: http://www.popfly.com
15Google Mashup Editor: http://www.googlemashups.com
16Intel Mash Maker: http://mashmaker.intel.com/
17Exact Software: http://www.exactsoftware.com/

8

Background 2.3 Exact Widget Framework

Figure 2.3: Exact Widget Framework concept personalized start page MyStartpage.

Figure 2.4: Exact Widget Framework concept widget catalog.

Exact is currently researching the possibilities of building software solutions using wid-
gets. The goal of this is to allow to configure an application and the widgets it uses, with
metadata. Because no programming is necessary, the configuration can be done by an ex-
pert without the help of a developer. As a proof of concept, a prototype community solution
is being developed on a prototype widget framework, in which the community is allowed
to read and publish content. Because the framework does not have an official name yet, it
is referred to as the Exact Widget Framework (EWF) throughout this document. The proto-
type framework offers an environment for running and creating web widgets aimed towards
enterprise situations. One of the key components of the prototype framework is be the per-
sonalized start page. Each user will have access to a personalized start page, ‘MyStartpage’,
on which he can place widgets from a catalog using a drag and drop mechanism. A con-
cept MyStartpage page on which widgets are placed is shown in Figure 2.3. On this page
multiple tabs can be created, which help the user to place more web widgets on his page
in an efficient way. The prototype framework also provides the possibility to create hosting

9

2.3 Exact Widget Framework Background

pages, which are pages with a predefined collection of widgets. These hosting pages may,
for example act as the page an anonymous user sees. They may also be placed on one of the
tabs, allowing the user to download hosting pages with, for example only news or games
widgets. A special feature of the prototype framework is the possibility to allow interaction
between web widgets. This feature will allow a web widget to change or control the content
of another web widget. An example is a news headline widget which loads the selected
news item in a document editor widget while remaining active.

A concept widget catalog which was available at the time of writing is shown in Figure
2.4. The goal is to allow engineers to create and publish their own web widgets. At the time
of writing it is unknown whether an API will be available for generating widgets, however
the goal of Exact is to give developers as much freedom as possible, allowing them to create
the client-side and server-side code for a web widget.

In the EWF widgets are placed inside DIV containers. As explained in Section 2.2.2,
this means that the widgets do not execute in an isolated environment. In the next chapter
the risks of this approach are explained.

10

Chapter 3

Problem Definition

Widget frameworks can place their widgets in IFrames or DIV containers. When widgets
are being placed inside IFrames, their behaviour is limited by a browser policy, the Same
Origin Policy [35]. For widgets in IFrames, the main limitation caused by this policy is that
they are not allowed to access each other’s properties. In the EWF, widgets are placed in
DIV containers rather than IFrames, which has consequences for their security and privacy.
When widgets are being placed inside DIV containers, the Same Origin Policy no longer
applies and they are allowed to access and change other widgets’ properties.

In this chapter first the Same Origin Policy is explained. After this, scenarios are given
of security issues which rise when widgets are being placed in DIV containers. This chapter
concludes with the definition of the problem researched in this thesis, and a brief description
of the approach taken to solve this problem.

3.1 Same Origin Policy

In 1996 a browser design principle was introduced in Netscape Navigator 2.0 [35]. This
principle, the Same Origin Policy (SOP), states that two documents with different origins
should not be allowed to view or change each other’s properties. As defined by Mozilla [35]:

”The same origin policy prevents a document or script loaded from one origin
from getting or setting properties of a document from another origin.”

All of the currently available browsers implement this policy in one form or another. Table
3.1 gives an overview of outcomes for origin comparisons.

3.1.1 SOP Constraints

In this section scenarios of dangerous situations which would be possible without the SOP
are described. In the scenarios page A is from a different origin than page B.

Scenario 3.1.1: Browser window manipulation

1. Page A opens a browser window with page B as content.

11

3.1 Same Origin Policy Problem Definition

Table 3.1: Comparing origins with http://store.company.com/dir/page.html, originally taken
from [35].

URL Outcome Reason
http://store.company.com/dir2/other.html Success
http://store.company.com/dir/inner/another.html Success
https://store.company.com/secure.html Failure Different protocol
http://store.company.com:81/dir/etc.html Failure Different port
http://news.company.com/dir/other.html Failure Different host

2. Page A changes the appearance of page B.

3. Page B looks different to the user than intended to by the owner.

Scenario 3.1.2: Frame content manipulation

1. Page A contains a frame with page B as content.

2. Page A changes the appearance of page B.

3. Page B looks different to the user than intended to by the owner.

Scenario 3.1.3: Cookie manipulation

1. Page A sets a cookie with sensitive data.

2. Page B opens the cookie from page A and changes the sensitive data.

Scenario 3.1.4: Data stealing

1. Page A contains a frame with page B as content.

2. Page A reads the data of page B.

3.1.2 JavaScript and the SOP

JavaScript is used on many web pages nowadays. The introduction of AJAX, which heavily
relies on JavaScript as described in Section 2.1, has contributed greatly to this increase.
JavaScript can be used to change the Document Object Model (DOM) of a page. The DOM
is a model of all the elements, including their attributes, of a web page. By changing the
DOM, JavaScript may for example manipulate styling properties or the action URL of a
form. An example of this is displayed in Figure 3.1, in which the background color of an
element is changed using JavaScript.

JavaScript has the ability to access more than just styling properties. Other properties
available to JavaScript are the cookies, location and domain properties of the page. The

12

Problem Definition 3.2 Widget SOP Violation Scenarios

<html>
<head><title>Website</title></head>
<body><div id="div01"></div></body>
<script type="text/javascript">
document.getElementById(‘div01 ’).style.backgroundColor = "green";
</script>
</html>

Figure 3.1: Changing the background color of an element.

way these properties may be changed or accessed is also limited by the SOP. JavaScript
may not access a cookie from google.com when it is running from a page in the domain
tudelft.nl. The domain JavaScript is running in is described by the document.domain
property. JavaScript is allowed to change this property in a very limited way. While it is
allowed to set document.domain to google.com from mail.google.com, it is not allowed
to set the domain to tudelft.nl because of the SOP.

As described in the previous section, JavaScript may not manipulate the DOM of an-
other site. However, it is possible to include external JavaScript files on a page. By doing
this, the included JavaScript becomes part of the same execution environment and is there-
fore no longer restricted by the SOP when trying to access the DOM. The danger of this is
that the developer should fully trust the owner of the external JavaScript file. If the owner
decides to change it, the safety of the including page may be compromised.

3.2 Widget SOP Violation Scenarios

Although it is important to protect and respect the origin of a document, the SOP has its lim-
itations. The most important limitation is the fact that two documents have either no or full
access to each other’s properties. This leaves developers with the difficult choice between
security and functionality. In Chapter 9 a number of methods for controlling JavaScript
DOM access are briefly introduced, but these all have their own problems.

Widgets demonstrate a special case of this limitation of the SOP. Their functionality
requires them to run in the same environment, but their security requires them to run in
different execution environments. This problem has traditionally been addressed in widget
frameworks by running each (untrusted) widget in an IFrame. Another approach is warning
the user that an untrusted widget will be placed on the page and that this may compromise
his security. These approaches are both not desirable because they may limit functionality
or compromise security. Therefore widgets in the EWF are placed inside DIV containers.
In this section a number of realistic scenarios is given of dangerous situations which are
possible when widgets are being placed inside DIV containers and no longer protected by
the SOP. In Section 3.2.2 a generalization of these scenarios is made.

13

3.2 Widget SOP Violation Scenarios Problem Definition

3.2.1 Scenarios of Possible Violations by Widgets

In this section scenarios of possible violations by widgets of the principle implemented by
the SOP are presented. In all these scenarios the assumption exists that a user may publish
his own widgets to the widget framework. Another assumption which is made is that data
stealing is a violation only if the data is communicated to the server. Although data stealing
may happen on the client only, we do not consider this to be a security issue because the
stolen data can never reach the malicious user unless it is sent to the server. Two main actors
play a role: the malicious user who publishes the malicious widget, and the victim user who
downloads and uses the widget. The malicious widget is called MAL and the widget that is
attacked by MAL is called VIC in the scenarios.

Scenario 3.2.1 : Stealing a password using a key logger

1. The malicious user creates MAL, which contains a key logger.

2. The malicious user publishes MAL.

3. The victim user places MAL and VIC on his page.

4. The victim user logs into Gmail using VIC.

5. The key logger in MAL logs the entered login information, saves it in a variable and
sends this information to the malicious user using HTTP requests.

Scenario 3.2.2: Scraping private data without event

1. The malicious user creates MAL, which contains a screen scraper.

2. The malicious user publishes MAL.

3. The victim user puts MAL on his page.

4. MAL immediately scrapes private data from all widgets on the page, saves it in a
variable and sends this data to the malicious user using HTTP requests.

Scenario 3.2.3 Changing the action URL of a form

1. The malicious user creates MAL, which contains code to change the action URL of a
form in VIC.

2. The malicious user publishes MAL.

3. The victim user puts MAL and VIC on his page.

4. MAL changes the action URL of a form in VIC on the page.

5. The victim user enters private data in the form and submits it.

6. The form contents are posted to the URL entered by the malicious user.

14

Problem Definition 3.3 Problem Definition

Scenario 3.2.4 Scraping content after initiating event on VIC

1. The malicious user creates MAL, which contains code to scrape the content of VIC
after a click event in VIC and sends it to the malicious user.

2. The malicious user publishes MAL.

3. The victim user puts MAL and VIC on his page.

4. The victim user performs a click event in VIC.

5. The content of VIC is sent to the malicious user using HTTP requests.

Scenario 3.2.5 Changing the description text of a link

1. The malicious user creates MAL, which contains code to change the description text
of a link in VIC from ‘Delete account’ to ‘Upgrade account for free’.

2. The malicious user publishes MAL.

3. The victim user puts the MAL and VIC on his page.

4. MAL changes the description text of a link in VIC.

5. The victim user clicks the link and executes another action than required.

6. The account is deleted by the victim user.

3.2.2 Generalization of the Scenarios

The scenarios described in the previous section can be generalized. These generalizations
will be used throughout the remainder of this thesis to describe sets of violations. The
generalization can be made as follows:

• G1: MAL changes the DOM of VIC (Scenarios 3.2.3, 3.2.5),

• G2: MAL steals data from VIC and sends it to the server using HTTP requests (Sce-
narios 3.2.1, 3.2.2, 3.2.4).

3.3 Problem Definition

In the future it will be possible for developers to build and publish their own web widgets,
as is the case for many of the currently existing widget frameworks. These widgets may
then be used by other users of the framework. Because the widgets eventually will be
released to the public, it is important that they do not harm the server nor client they are
running on in any way. The scenarios given in the previous section describe realistic cases
of security issues in widgets which are published by malicious developers. Since users will
lose confidence in a framework which does not guarantee their privacy and security, it is
important to prevent the publishing of insecure widgets.

15

3.3 Problem Definition Problem Definition

To guarantee the security of the widgets in the catalog, all widgets must be verified
by Exact before they are being published. This verification process is time-consuming and
therefore it should preferably be automated. Another good reason to automate this process is
to be able to use regression testing after widgets or their security requirements have changed.
The idealized process for verification is demonstrated by the following steps:

1. A developer uploads a widget to a test server.

2. The test server automatically decides if the widget conforms to a set of security
requirements. In the rest of this report a widget will be referred to as ‘accepted’
if it does conform to this set of requirements and as ‘rejected’ if it does not.

3. If the widget is accepted, it is sent to the deployment server and the developer
receives an ACCEPTED message. On the deployment server the widget is
placed in the widget catalog which makes it available for other users of the
framework. If the widget is rejected, an error report is returned to the developer
together with a REJECTED message.

4. The widget is removed from the test server.

Developer

Test server EWF Server

Widget upload

Widget
REJECTED

Error report

ACCEPTED

Figure 3.2: Preferred situation for publishing a widget.

Unfortunately current automated testing solutions are not yet mature enough to replace
manual testing solutions. Therefore it is important to realize that an automated testing ap-
proach will be used to support the manual testing process. This thesis describes the process
and result of making a first step towards such an automated security testing framework for
supporting the security tester.

The goal of this thesis is to research approaches for detecting the violations described in
the previous chapter. In order to come to such an approach, the following research questions
will be addressed:

RQ1: What are the problems and difficulties of detecting these violations?

RQ2: Can we propose an automated approach for detecting these violations?

The goal of this thesis is to propose a method for detecting the violations defined by the
generalized scenarios in Section 3.2.2, while taking the difficulties encountered during the
research for RQ1 into account.

16

Problem Definition 3.4 Motivation

3.4 Motivation

Because web applications are becoming more popular, more security breaches are found
on a regular basis. This is, for example demonstrated by the number of bugs posted to the
Bugtraq1 mailinglist. Detecting and preventing these security breaches is a difficult and
time-consuming process. Automated approaches are being researched but they are far from
replacing manual approaches. Therefore every attempt at improving automated security
solutions can be valuable. This is especially the case for AJAX applications. Because
AJAX is a new technique, relatively few research has been done which focuses on AJAX

security. This research project could deliver one of the first automated security assessment
approaches geared towards AJAX applications.

The focus of this project is on the widget interaction, which is a topic which has not had
a large amount of attention in recent research yet. All existing widget frameworks appear
to be avoiding the problem by completely disallowing inter-widget interaction rather than
disallowing only certain behaviour for published widgets. This research could provide new
insights from a different point of view on the subject.

For Exact the benefits are obvious as the goal of this project is to deliver a prototype
of an automated testing framework, which can be used to assess the security of widgets
before adding them to the widget catalog of the framework they are researching. The testing
framework should be easily extendible so that testing modules for other software quality
attributes will be easy to implement. Furthermore offering only secure widgets in their
catalog can help improve the stability of the widget framework as it is more difficult to
break functionality when widgets are secure. A final improvement is that an automated test
framework is a scalable option: there is no significant number of employees needed to test
the widgets, no matter how many there are being uploaded. Although manual testing will
still be necessary, an automated test framework will help the tester to do the testing in an
easier and faster way.

3.5 Selected Approach for this Project

In order to select the best approach for detecting SOP violations by widgets, a few important
things must be considered. The first is the fact that widgets may heavily rely on the use of
AJAX. As a consequence any techniques used must support AJAX and because AJAX relies
heavily on JavaScript, any techniques used must support JavaScript as well. Unfortunately,
because of the way JavaScript works, static analysis (see Chapter 9) is very difficult to
achieve. JavaScript is a prototype-based language [33]. A prototype based language is
an object-oriented based language without classes. Instead of class instances objects are
clones of existing objects. These objects, called prototypes, may be changed during runtime,
for example by adding or reimplementing methods. Although this offers a great deal of
flexibility to the developer it makes placing constraints for static analysis very difficult and
therefore we have decided to avoid static analysis of JavaScript as much as possible. A final

1Bugtraq mailinglist: http://www.securityfocus.com/archive/1

17

3.5 Selected Approach for this Project Problem Definition

consideration which must be made is that the requirements of the tool state that it should be
automated rather than manual (see Section 3.3).

After taking these considerations into account we have chosen the direction of our ap-
proach to be automated and dynamic (see Chapter 9). In order to use an automated and
dynamic approach it is important to have access to a tool, which is capable of testing AJAX

applications. ATUSA, discussed in Chapter 4, is a tool for automated testing of AJAX ap-
plications. ATUSA can be easily extended by creating plugins which makes it an excellent
candidate. The creation of security-related plugins can also serve as a case study for the
ATUSA plugin structure and as a proof of concept.

18

Chapter 4

ATUSA

Search engines like Google and Yahoo cover the part of the web that is called the ‘publicly
indexable part’, which means the part that is reachable by following hyperlinks [28]. AJAX

pages often contain content that is not reachable through hyperlinks but through other click-
able elements like DIV containers and SPAN elements. Elements may also become clickable
at runtime, for example by attaching an onclick handler. Because search engines do not
index content reachable through these elements it is the responsibility of the programmer
to make the content visible in another way. In addition to search engine visibility, the hid-
den content problem exists in automated testing solutions. AJAX pages can be made more
accessible for search engines and testing solutions in two ways [28]:

• Graceful degradation - Design the web site as desired and add options, like <noscript>
tags, for user-agents that do not support all the options,

• Progressive enhancement - Build the web site as simple as possible and enhance for
users that support the enhanced functionality.

These approaches limit the use of AJAX and preferably a new solution should be found.
Mesbah et al. propose the tool ATUSA [29], designed for automatically testing AJAX appli-
cations. ATUSA uses a crawler, CRAWLJAX [25, 28], to reveal hidden content of AJAX web
sites. CRAWLJAX builds a state-flow graph1 to model the user interface state changes. This
state-flow graph is created incrementally, taking the initial state as root. From this root the
set of candidate clickables is identified. Note that these elements are called clickables but
that any type of event such as onmouseover and onmousedown may be fired at them. This
set may be identified in three ways:

• Full auto scan mode - The candidate clickables are identified based on their HTML
element names, for example all div and span elements,

• Annotation mode - Candidate clickables are identified based on their annotation
crawljax=”true”. This mode allows clickables to be explicitly included or excluded
from the crawling process,

1In this state-flow graph the vertices represent states and the edges represent clickables.

19

4.1 ATUSA Plugin Framework ATUSA

• Configured mode - The crawler is configured to identify certain elements using a
domain-specific language.

After the set of candidate clickables is identified the page is loaded in an embedded browser
and a robot fires an event on each item in the set. For each event the resulting DOM is
compared to the DOM before the click. If the DOM has changed the state is recorded in the
state-flow graph; if it is an existing state a pointer to the corresponding vertex is returned,
otherwise a new state is added. For easy comparison a hash code is calculated for each
DOM state. After the state is recorded in the state-flow graph an edge representing the
clickable that caused the transition is added between the previous and current state.

Although crawlers are used by search engines in particular, they can be useful in other
areas. Another area in which crawlers are being used on a regular basis is security [13, 18].
Many security tools have a crawler equipped to help them detect entry points by crawling
the contents of a web page during the simulation of an attack. Most of these equipped
crawlers should be adapted in order to support AJAX applications. The approach used by
CRAWLJAX may be used as a foundation for adapting these crawlers.

4.1 ATUSA Plugin Framework

The latest version of ATUSA allows for the implementation of validation plugins [29]. These
plugins must be written in Java, like ATUSA, and follow the design guidelines of the Java
Plugin Framework (JPF)2. They have access to the active crawling session maintained by
CRAWLJAX with the goal of validating the application after every event fired. The crawling
session contains session-specific data like a reference to the embedded browser, the DOM of
the current state and the state-flow graph of CRAWLJAX. Figure 4.1 depicts the processing
view of ATUSA, CRAWLJAX and the plugins.

It is possible to create three types of plugins. These three types will be explained in
the following sections. Each plugin must implement the Validation interface. This interface
contains two methods:

• validate(): Perform the validation. This method has access to the current crawl
session,

• getReport(): Returns a report of the actions performed by the plugin.

During this thesis project a number of security-related plugins will be implemented for
ATUSA. They are described in Chapter 5 and 6.

4.1.1 Pre-crawling Validation Plugin

This type of plugin may access the crawling session before the crawling process has started.
This may be required for a number of reasons. One of these reasons is that a website
may require a user to log in before each session. By creating a pre-crawling plugin it is

2Java Plugin Framework project: http://jpf.sourceforge.net/

20

ATUSA 4.1 ATUSA Plugin Framework

Figure 4.1: Processing view of ATUSA, originally taken from [29].

possible to enter the login details into a form on the page and submit that form before the
automated crawling process starts. Another reason could be to initialize a logging system.
The validate() method of this plugin is called once, right before the start of the crawling
process.

4.1.2 In-crawling Validation Plugin

In-crawling plugins have access to the crawling session during the crawling process. After
each DOM change the validate() method of each in-crawling plugin is executed. Possible
applications of in-crawling validation are invariant checking and JavaScript error detection.

4.1.3 Post-crawling Validation Plugin

Post-crawling plugins have access to the crawling session after the crawling process has
finished. The application of this type of plugin is very broad because the crawling session
now contains a complete state-flow graph of the web application. This offers the plugin

21

4.1 ATUSA Plugin Framework ATUSA

developer numerous possibilities like the creation of a sitemap or the analysis of unexpected
paths in the application. Another possibility is to generate test cases from the state-flow
graph [29]. The validate() method of post-crawling plugins is called exactly once, right
after the crawling process has finished.

22

Chapter 5

Automatic DOM Change Violation
Detection

Generalized scenario G1 from Section 3.2.2 describes the set of violations in which a mali-
cious widget changes the DOM of another widget. These violations, in this thesis referred
to as DOM change violations, can be detected on the client-side only. This makes detection
of them difficult, as a user session must be simulated in order to detect the violations. Such
a user session can be simulated with ATUSA, the tool which will be used in our approach to
automatically detect DOM change violations.

In this chapter first the concept of our approach for automatically detecting DOM change
violations will be explained. After this the implementation details of our approach as an
ATUSA plugin will be discussed.

5.1 Concept

To propose an approach for automated detection of DOM change violations, it is important
to define what a DOM change violation exactly is. We propose the following definition:

Definition 1 A DOM change violation occurs when a widget’s DOM tree is changed by
another widget.

To detect a DOM change violation we need to determine the following:

• The widget in which the change was initiated,

• The widget in which the DOM change took place,

• Whether the widget which initiated the change and the changed widget are different
widgets.

In this chapter we propose an approach for determining these issues.

23

5.1 Concept Automatic DOM Change Violation Detection

widget1 widget2

div
 #widget1

image
 #img1

p
 #p1

html

body head

div
 #wi_container

div
 #widget2

image
 #img2

p
 #p2

title

Figure 5.1: Example DOM tree for a widget framework.

5.1.1 Widget Boundary Detection

In order to be able to detect in which widget an action took place, and to be able to decide
whether two detected widgets are the same, we need to define a clear and nonambiguous
way of specifying a widget. To do this, it is important to realize exactly what a widget is.
Figure 5.1 depicts the DOM tree of a simplified widget framework with two widgets. The
elements which belong to widget1 are #widget1 and its child nodes, just as the elements
of widget2 are #widget2 and its child nodes. The elements of widget1 and widget2 can
be grouped by placing a boundary around them. This observation can be generalized into
the following:

• Every widget has a boundary which encloses all its elements,

• Every element may only access the properties of the elements within the boundary of
the widget it belongs to.

The widget boundary can be used as a foundation to decide whether two detected widgets
are the same. We define a widget boundary to be the following:

Definition 2 A widget boundary is the DOM node closest to the root of the DOM tree the
nodes of that widget may manipulate.

Definition 3 The widget boundary of a node Node1 is the same as the widget boundary of
the widget to which Node1 belongs.

24

Automatic DOM Change Violation Detection 5.1 Concept

The widget boundaries in Figure 5.1 are the nodes labeled #widget1 and #widget2. Au-
tomatic detection of these boundaries is not trivial. Although it is possible to determine
these by, for example manually adding attributes in the code this is not preferable since this
would require the tester to have access to the widget framework source code. This would
make testing closed source widget frameworks like iGoogle impossible. A better way is to
exploit the tree structure of the DOM. By exploiting the tree structure of the DOM and the
characteristics of HTML it is possible to make the following assumptions while searching
for the widget boundary of node Node1:

• A node either has only one or no widget boundary,

• If Node1 belongs to a widget, the widget boundary of Node1 always is either Node1
or an ancestor of Node1,

• A widget boundary is likely to be a DIV element.

The first assumption is a consequence of the structure of a widget framework. An
element on a page in a widget framework can either be inside a widget or outside a widget,
for example navigation elements or framework code. Assuming that widgets cannot be
placed inside each other, this means that in the DOM each node also has exactly one or no
widget boundary.

The second assumption is a consequence of the tree structure of the DOM. Because
each widget is a DOM subtree, we know that each widget element is either a node or the
root node of that subtree. This leads to the assumption that the widget boundary of a node,
when it exists, is either the node itself or an ancestor of the node.

The final assumption is a consequence of the structure of HTML and widget frame-
works. As explained in Section 2.2.2, widgets are usually placed inside DIV elements or
IFrames. Since we assume widgets are not placed inside IFrames in the frameworks under
test, we may assume they are being placed inside a DIV element. It is however important
to remain flexible in this assumption because this may change in the future, for example
because of the introduction of new HTML elements [42].

By taking the above mentioned assumptions into account, it is possible to define a
method for deciding to which widget a node belongs by identifying its widget boundary.
In theory the node itself and all its parent nodes may be the widget boundary, but in practice
it is possible to filter out many candidate nodes. In Figure 5.1 it is easy to see that the html,
body and #wi container nodes are not widget boundaries although they are ancestor nodes
of each widget node. By defining rules we can exclude these items from the boundary iden-
tification process. In addition, in most widget frameworks, it is possible to identify a widget
boundary with high confidence. An example of this is the Exact Widget Framework (Sec-
tion 2.3) in which, at the time of writing, a widget boundary always has the class attribute
ex widget. An important consideration when using such rules is that the identification of
a widget boundary may not always be unambiguous. It is possible that more than one node
will be identified as a widget boundary when rules overlap. An example of this is the rule
class=widget, which will match the node <div id=widget1 class=widget> as well as
the node . Therefore identification using rules will result in

25

5.1 Concept Automatic DOM Change Violation Detection

a list of possible widget boundaries. In order to assign the confidence with which a rule
matches a widget boundary, identification strength values can be added. These values can
be one of the following: LOW, MEDIUM, HIGH, VERY HIGH and EXCLUDE. A rule marked with
EXCLUDE indicates that a node which matches it must be excluded from the identification
process.

Applying these ideas results in an algorithm for defining to which widget a node be-
longs, described by Algorithm 1.

Algorithm 1 IdentifyWidgetBoundary(fingerNode)
rules⇐ getIdenti f icationRules()
node⇐ f ingerNode
while node 6= null do

identi f icationStrength⇐ node.match(rules)
if identi f icationStrength 6= null && identi f icationStrength 6= EXCLUDE then

widgetBoundaries.add(node, identi f icationStrength)
end if
node⇐ node.getParent()

end while

Figure 5.2 demonstrates the result of the identification process for node p1 using the
rules as defined in the figure. In the figure #widget1 has been identified as a widget boundary
with very high confidence. By defining a different set of rules for every framework it is
possible to identify widget boundaries in every widget framework with high confidence.

5.1.2 DOM Change Violation Detection

To recall the beginning of this chapter, the following needs to be determined to detect a
DOM change violation:

• The widget in which the change was initiated,

• The widget in which the DOM change took place,

• Whether the widget which initiated the change and the changed widget are different
widgets.

In our approach, we assume a DOM change is initiated by an event fired on a DOM element.
It is also possible to initiate a DOM change with a full page refresh, but this is rarely required
in current single-page web interfaces. Other ways of initiating a DOM change are discussed
in Chapter 8. To determine the widget in which the DOM change was initiated, the node on
which the last event was fired must be determined first. The active element, the element on
which the last event was fired, can be retrieved from CRAWLJAX as described in Appendix
B.1.

Definition 4 The active element is the element on which the last event was fired.

26

Automatic DOM Change Violation Detection 5.1 Concept

Rules:
 tag = html | EXCLUDE
 tag = body | EXCLUDE

 id = wi_container | EXCLUDE
 id = *widget* | VERY_HIGH

widget1
widget2

div
 #widget1

 VERY_HIGH

image
 #img1

p
 #p1

 NULL

html
 EXCLUDE

body
 EXCLUDE

head

div
 #wi_container

 EXCLUDE

div
 #widget2

image
 #img2

p
 #p2

title

Figure 5.2: Widget boundary identification process for #p1.

It is possible to determine the widget boundary of the active element using Algorithm 1.
The node(s) in which the DOM change(s) took place can be determined by comparing the
DOM before the event and the DOM after the event is fired. Using Algorithm 1 with each
changed DOM node as input, the widget(s) in which the DOM change(s) took place can be
determined.

By comparing the widget boundaries of the widget which initiated the DOM change
and the widget(s) in which the DOM took place, we can automatically decide whether a
DOM change violation occurred. We propose Algorithm 2, IsDomChangeViolation, for
automatically deciding whether a DOM change violation occurred. If the detected widget
boundaries are the same, the DOM change was in the same widget as the initiation of the
change, which is allowed. If the detected boundaries are different, the DOM change was in
another widget than it was initiated in, which is a DOM change violation. In Section 5.2 the
implementation of this approach for automatic detection of DOM change violations with

27

5.1 Concept Automatic DOM Change Violation Detection

Figure 5.3: Example scenario: Changing the description of a link.

ATUSA is explained. In the next section an example scenario of a DOM change violation
detection using Algorithms 1 and 2 is given.

Algorithm 2 IsDomChangeViolation(activeElement, changedNode)
eventWidget⇐ Identi f yWidgetBoundary(activeElement)
changedWidget⇐ Identi f yWidgetBoundary(changedNode)
if eventWidget 6= changedWidget then

return true
else

return false
end if

5.1.3 Example Scenario

One of the scenarios from Section 3.2 which describes a DOM change violation is Scenario
3.2.5, in which an event fired on an element in a malicious widget changes the description
of a link in the victim widget. Figure 5.3 demonstrates this scenario. When a user clicks
on the ‘Click me’ button, the description of the link ‘Delete account’ changes to ‘Free gift’.
The (simplified) DOM tree for this situation, before the event is fired, is given in Figure 5.4.

The event will be fired on the button ‘Click me’ node, and the a ‘Delete account’
node will change because of this event. By using Algorithm 2 we can show this is a DOM
change violation. First a set of identification rules for identifying a widget boundary must
be declared. Without these rules it is not possible to automatically detect a DOM change
violation, because the algorithm would not have a notion of widget boundaries in that case.

From inspection of Figure 5.4 can be deduced that the html, body and #wi container
nodes are not to be included in the identification process because they do not belong to

28

Automatic DOM Change Violation Detection 5.1 Concept

widget_d0_mal widget_d0_vic

div
 .widget

div
 .wi_header

div
 .wi_content

button
 ’Click me’

html

body head

div
 #wi_container

div
 .widget

div
 .wi_header

div
 .wi_content

a
 ’Delete account’

title framework_script

Figure 5.4: Example scenario: Changing the description of a link, simplified DOM tree.

tag = html | EXCLUDE
tag = body | EXCLUDE
id = wi_container | EXCLUDE
class = widget | VERY_HIGH

Figure 5.5: Rules for widget boundary identification in Figure 5.4.

widgets. We can also deduce that the nodes labeled .widget are very likely to represent a
widget boundary. Therefore we run Algorithm 2, IsDomChangeViolation, with the rules
defined in Figure 5.5.

The first step is to identify the widget in which the event was fired. This can be done
using Algorithm 1, IdentifyWidgetBoundary, with node button ‘Click me’ as input,
which will result in node div .widget in the #widget d0 mal area. Note that during
the node traversal in the identification process none of the nodes of widget d0 vic were
traversed.

The next step is to identify the widget in which the DOM change took place. The result
of comparing the DOM before and after the event is the node labeled a ‘Free gift’.
Using Algorithm 1 with this node as input, the widget boundary is identified as the div
.widget node in the #widget d0 vic area. This boundary is not equal to the boundary
of the widget in which the event was fired, which means a DOM change violation was
detected.

29

5.2 Implementation Automatic DOM Change Violation Detection

5.2 Implementation

The approach for automatically detecting DOM change violations discussed in 5.1 was im-
plemented as a plugin for ATUSA. In this section the implementation details are discussed.

5.2.1 DOM Handling in CRAWLJAX

To implement Algorithms 1 and 2, for widget boundary detection and DOM change vio-
lation analysis in ATUSA, it is important to consider how CRAWLJAX handles the DOM.
CRAWLJAX has access to three DOM objects:

• realDom - The internal browser DOM,

• domBeforeEvent - A copy of realDom before the event was fired,

• domAfterEvent - A copy of realDom after the event was fired.

These objects are created as depicted in Figure 5.6. The internal browser DOM is not
recorded, but it is directly accessible using reflection as described in Appendix B.2. It is
important to realize that domBeforeEvent and domAfterEvent are both copies of the internal
browser DOM and therefore the following conditions hold:

• A reference to a node in domBeforeEvent does not point to a node in domAfterEvent
and vice versa,

• A reference to a node in domBeforeEvent or domAfterEvent does not point to a node
in the internal browser DOM and vice versa,

• A change made in a DOM object will exist in that specific object only.

5.2.2 Widget Boundary Detection

As described in Algorithm 2, for DOM change violation detection, we need to identify
two widget boundaries. The first, the boundary of the widget which initiated the DOM
change, can be detected using Algorithm 1, IdentifyWidgetBoundary, with the active
element as input. CRAWLJAX returns a reference to the active element, which is a node in
domBeforeEvent.

The second widget to detect is the changed widget. To find this widget, the changed
node(s) must be detected. An excellent library for XML/HTML comparison is XmlUnit1.
XmlUnit takes a control document (domBeforeEvent) and a test document (domAfterEvent)
as input. The test document is compared to the control document, and all nodes in the
test document which differ from the control document are returned. This means that the
result of the comparison of domBeforeEvent and domAfterEvent is a list of nodes, which
are members of the domAfterEvent object. Figure 5.7 shows an example of XmlUnit output
for the comparison of two DOM instances. Note that it is possible to use domAfterEvent

30

Automatic DOM Change Violation Detection 5.2 Implementation

Fire event

Analyze result

Execute plugin

[Yes]

Changes?

Change allowed?Continue crawling

[No]

[Yes]

[No]

Report violation

[Done]

Record domBeforeEvent

Record domAfterEvent

Record active element

Figure 5.6: DOM recording in the crawling process.

Figure 5.7: Example XmlUnit output.

31

5.2 Implementation Automatic DOM Change Violation Detection

as control document and domBeforeEvent as test document, but that this would lead to
confusing and counterintuitive error messages.

Although the two widget boundaries can be identified using Algorithm 1, they are mem-
bers of different objects, which means they cannot be naively compared. A possibility would
be to compare the attributes of the widget boundary nodes. This would work in frameworks
in which each node can be uniquely identified based on its attributes but this is certainly
not always the case. Another problem with this approach is that it would fail if a widget
contains a node with attributes equal to the widget boundary.

This leads to the observation that two boundaries must be references in the same DOM
object to successfully compare them. This can be achieved in two ways: by identifying
the changed element(s) in domBeforeEvent or by identifying the active element in do-
mAfterEvent. The first way often fails because it is likely that the changed node does not
exist nor can be identified in domBeforeEvent. Therefore the best method is to identify the
active element in domAfterEvent. Because this element may also not exist in domAfterEvent,
we decided to identify the widget boundary of the active element in domAfterEvent instead.
The idea is that the widget boundary should exist after firing an event, assuming that widgets
are not being removed during the session.

A way to identify an element in the DOM is by identifying it based on its unique attribute
values. As we have stated, in general not all elements in a widget framework can be uniquely
identified by their attribute values. Therefore such a unique value must be annotated to
use this solution. In CRAWLJAX, it is possible to access and change the realDom. After
annotating a unique attribute value in the widget boundary in realDom, this value will be
copied along when domAfterEvent is recorded. Since the widget boundary now contains a
known unique value, it can be identified in domAfterEvent, and it can be compared to the
widget boundary of the changed widget. The details of attribute annotation implementation
are discussed in Appendix B.4. We define the following for use throughout the rest of this
thesis:

Definition 5 An annotated DOM is a DOM in which one or more unique attributes were
annotated with the purpose of identifying the elements after an event is fired.

Definition 6 An annotated node is a node in which one or more unique attributes were
annotated with the purpose of identifying the elements after an event is fired.

5.2.3 DOM Change Violation Detection

After the annotation of the unique attribute to identify the active element in domAfterEvent,
and the analysis of the changed node(s), the DOM change violation detection algorithm
can be executed. For ease of implementation a small adjustment was made to Algorithm 2.
Instead of identifying the widget boundary for each changed node, and comparing it with
the widget boundary of the active element, the violation analysis is done during the identifi-
cation process. The idea is that, while traversing the DOM tree to the root from a node, the
traversal should come across a node which was annotated during the identification process

1XmlUnit: http://xmlunit.sourceforge.net/

32

Automatic DOM Change Violation Detection 5.2 Implementation

of the widget boundary of the active element. If this is not the case, a DOM change violation
has occurred. Algorithm 3 describes the steps of the implemented method for automatically
detecting DOM change violations.

Algorithm 3 AnalyzeDomChangeViolation(changedNode)
Require: The widget boundary of the active element is annotated in the DOM tree of

changedNode
rules⇐ getIdenti f icationRules()
node⇐ changedNode
while node 6= null do

if node.isAnnotated() then
return noViolation

end if
node⇐ node.getParent()

end while
return violation

To prevent the detection of a high number of false positives, a mechanism for excluding
sets of active elements from the analysis was implemented. This mechanism allows for the
configuration of rules for excluding elements, for example because they belong to the menu
of a widget framework. We define these elements as trusted elements.

Definition 7 A trusted element is an element which belongs to the framework.

An event on such a trusted element may cause a DOM change but since it was not caused
by an inter-widget interaction, our approach does not apply for validating the change. These
rules must be defined using the same format as CRAWLJAX uses for tag exclusion.

5.2.4 Selenium Test Suite Generator

In order to be able to easily replay and inspect a violation, a Selenium test case is generated
for each detected violation. Selenium2 is a web application testing system, which allows
for the recording and replaying of test cases. Test cases are stored in HTML format, which
means they can also be generated in other ways than using the recorder. SeleniumIDE is a
Firefox plugin which allows for easy replay of a Selenium test case. Selenium test cases are
generated using a template and the Apache Velocity3 template engine. When a violation is
detected, a test case is generated using the event sequence, which caused the violation. The
event sequence exists of a list of XPath queries and events fired.

2Selenium: http://seleniumhq.org/
3Apache Velocity: http://velocity.apache.org/

33

Chapter 6

Automatic HTTP Request Violation
Detection

Generalized scenario G2 in Section 3.2.2 describes the set of violations in which a widget
attaches an event, which initiates an HTTP request, to another widget. An example of this
is a key logger, which can be implemented by attaching an onkeydown event to the input
field of a form. As explained in Section 3.2.1, the logged keys must be communicated to
the server. If this does not happen, the data cannot reach the malicious user. Therefore the
action will only be classified as a violation if it results in an HTTP request. In this chapter
this type of violation, called HTTP request violation, and our approach for detecting it will
be explained.

6.1 Concept

In order to propose an approach for automatically detecting HTTP request violations, it is
important to define exactly what an HTTP request violation is. We propose the following
definitions:

Definition 8 An HTTP request violation occurs when an HTTP request originates from a
widget which was not allowed to send that request.

Definition 9 A widget w is the origin of a request r if either an event fired on an element in
w or the src attribute of an element in w triggers r.

An example of code which causes an HTTP request violation is demonstrated in Fig-
ure 6.1. In this example MAL, the malicious widget, attaches an event handler to an input
field in VIC, the victim widget. This event handler sends the key pressed for each key stroke
in that input field to the URL specified by MAL. Based on VIC’s original behaviour, this
could be an HTTP request violation.

To automatically detect the violation described in Figure 6.1, we need to be able to au-
tomatically detect that MAL attaches an event handler to an element of VIC. It is important
to realize that this action does not affect the DOM tree of VIC, and can therefore not be
detected using Algorithm 3, AnalyzeDomChangeViolation.

35

6.1 Concept Automatic HTTP Request Violation Detection

// code in MAL
var url = "http://www.maliciousdomain.com/script.aspx";
var vic = document.getElement("VIC.inputField");
vic.onkeydown = sendData(url, event.getKey());

Figure 6.1: Example code which causes an HTTP request violation.

One method for automatic detection would be to statically analyze the JavaScript of
every widget, but as explained in Section 9.1 this is not preferred. A different method is to
exploit the assumption that data which is never communicated to the server remains safe.
If a malicious user wants to steal the data, it should be sent to the server. This means that
instead of detecting the attachment of an event handler, it is possible to listen for requests
made by a widget. Throughout the remainder of this thesis we assume a widget may make
HTTP requests only, although our approach would be applicable to other request protocols
(such as FTP). After making this assumption, the following must be determined to detect
an HTTP request violation:

• The widget from which the request originates,

• Whether the widget has permission to trigger the request.

In the next sections we propose an approach for automatically detecting HTTP request
violations. First the concept of our approach for identifying the origin widget of an HTTP
request will be explained. Finally we will discuss our approach for deciding whether this
widget was allowed to trigger the request. In Section 6.2 the implementation details of our
approach in ATUSA are explained.

6.1.1 HTTP Request Identification

The main challenge of detecting the origin widget of a request is to couple the request with
the element from which the request originated. This is not trivial because HTTP requests
do not carry any information about the DOM or the element which made the request. In
addition, an HTTP request can be triggered in many ways. The following are the most
important:

• The src attribute of an element, for example in a SCRIPT or IMG element,

• An AJAX call which is attached to an element as an event handler.

The first step to be taken is to intercept all HTTP requests. This can be done using an
HTTP proxy [2], which is placed between the client and web server. Figure 6.2 depicts this
situation. The proxy can provide ATUSA with all requests made by the web application by
maintaining a buffer of all intercepted requests. The challenge is to couple these requests
with the element from which they were triggered.

36

Automatic HTTP Request Violation Detection 6.1 Concept

Server
ATUSA

Web application

(widget framework)
HTTP Proxy

Fire events

Get requests Buffered

requests

Figure 6.2: Situation with an HTTP proxy between client and server.

Because ATUSA only calls its in-crawling plugins after a DOM change, it is not possible
to assume that all requests in the proxy buffer were caused by the last event fired by ATUSA.
Many events which trigger requests may be fired before a DOM change occurs, which
means that the buffer may contain requests which originate from another event than the one
fired last. Therefore another method for identifying requests should be introduced.

The only way to attach information about the DOM to an HTTP request, without affect-
ing the behaviour of the web server which handles the request, is by adding data to its query
string (e.g. ?wid=123&id=widget1). This data should be selected carefully to ensure it
does not interfere with other parameters which are being sent to the server, for example by
using a non-standard variable name. An example of data which could be added to the query
string is the ID of the element that triggered the request. This data could then be extracted
from the request and used by ATUSA, to identify the element from which the request was
sent in the DOM. To be able to unambiguously identify an element, this approach requires
all elements to have a unique ID. If elements are allowed to share IDs, we cannot automati-
cally decide which of the sharing elements triggered the request. We propose Algorithm 4,
IdentifyRequestOriginWidget, for identifying the widget boundary of the widget from
which a request was sent, in a DOM in which all elements have a unique ID. This algorithm
is used to identify the origin widget of each request in the proxy buffer, every time the HTTP
request violation detection plugin is called by ATUSA.

Algorithm 4 IdentifyRequestOriginWidget(request)
Require: All elements in the DOM have a unique ID.

id⇐ request.getQueryString().getElementId()
activeNode⇐ dom.getElement(id)
return Identi f yWidgetBoundary(activeNode)

6.1.2 HTTP Request Validation

After the widget from which the request was sent is identified, the request must be validated
to see if the widget was allowed to trigger it. In order to do this, a method must be defined
for specifying which requests a widget is allowed to make.

37

6.1 Concept Automatic HTTP Request Violation Detection

Our approach uses an idea often applied in firewall technology, in which each applica-
tion has an allowed URL list of URLs which may be requested [20]. In our approach a list
of allowed request URLs is created automatically for each widget by running CRAWLJAX

on that widget in an isolated environment. In this situation every request intercepted by the
proxy can be assigned to that specific widget or the widget framework. At the end of the
crawling process, the proxy buffer should contain all the requests the widget is allowed to
trigger when it is placed on the personal homepage of a user. This list can be saved, and
retrieved during the validation phase of a request. If during validation a request URL does
not exist in the allowed URL list of its origin widget, the widget does not have permission
to trigger the request and an HTTP request violation occurred. Algorithm 5 describes this
idea.

Definition 10 The allowed URL list of a widget contains all the URLs of the requests it is
allowed to trigger throughout its lifetime.

Algorithm 5 AnalyzeHttpRequestViolation(request)
Require: Request contains the unique ID of an element in the DOM.

widget⇐ Identi f yRequestOriginWidget(request)
list⇐ widget.getAllowedUrlList()
if list.contains(request.getUrl()) then

return noViolation
else

return violation
end if

Note that this approach also works for requests which do not originate from a widget, for
example because they are triggered by the framework. By running ATUSA on the framework
with only an empty widget, an allowed URL list can be created for the framework. A request
which originates from an element that does not have a widget boundary will be validated
against the allowed URL list of the overall framework.

6.1.3 Example Scenario

One of the scenarios from Section 3.2 which describes an HTTP request violation is Sce-
nario 3.2.1, in which a malicious widget attaches an onkeydown event handler to an input
field of a form in the victim widget. When characters are entered into the input field, the
event handler captures them and sends them to an URL specified by the malicious user.
Figure 6.3 demonstrates this scenario.

The simplified allowed URL lists for the scenario depicted by Figure 6.3 are displayed
in Figure 6.4. The allowed URL list of the framework was generated by recording all URLs
requested during the execution of ATUSA on the framework with only an empty widget in it.
The allowed URL lists of each widget was generated by recording the URLs while running
ATUSA on them in an isolated framework environment, as explained in Section 6.1.2.

38

Automatic HTTP Request Violation Detection 6.1 Concept

Figure 6.3: Example scenario: Stealing a password using a key logger.

AllowedList framework = {http://www.efw.com/widget_close.jpg,
http://www.efw.com/widget_bg.jpg,
http://www.efw.com/framework.js}

AllowedList widget_h1_vic = {http://www.efw.com/h1_vic/logo.jpg,
http://www.efw.com/h1_vic/widget_h1_vic.js}

AllowedList widget_h1_mal = {http://www.efw.com/h1_mal/logo.jpg,
http://www.efw.com/h1_mal/widget_h1_mal.js}

Figure 6.4: Allowed URL lists for the scenario depicted by Figure 6.3.

When a key is pressed in the input field of widget h1 vic, the event handler attached
by widget h1 mal captures the event and sends the key to a URL specified by the creator
of widget h1 mal. Assuming a DOM change happens during the crawling process, ATUSA

is able to detect this violation using our approach.
In this example scenario we assume each element has a unique ID, which is added

automatically to each request which originates from that element. A simplified request
made by the key logger is depicted by Figure 6.5. When this request is retrieved by ATUSA,
Algorithm 4 for origin widget identification is started. First the ID is extracted from the
query string. This ID is used to find the corresponding DOM element, in this case the
input field in widget h1 vic. Using this element the origin widget can be identified with
Algorithm 1, IdentifyWidgetBoundary. Finally, by checking whether the allowed URL
list for widget h1 vic contains the requested URL, ATUSA can conclude the request is an

39

6.2 Implementation Automatic HTTP Request Violation Detection

POST /widget_h1_mal HTTP/1.1
Content -Type: application/x-www-form -urlencoded
User -Agent: Mozilla/4.0
Host: www.malicious.com
Content -Length: 27
keycode=100&id=input_h1_vic

Figure 6.5: Request made by a key logger including the ID of the origin element.

HTTP request violation because the requested URL is not in the allowed URL list of the
origin widget.

6.2 Implementation

The approach discussed in Section 6.1 was implemented as a number of plugins for ATUSA.
In this section the implementation details of these plugins are discussed.

6.2.1 HTTP Request Identification

In order to automatically identify a HTTP request the following should be implemented:

• HTTP proxy for interception of all HTTP requests,

• Mechanism for the enforcement of unique attributes in each DOM element,

• Attachment of the unique attribute to HTTP requests.

These issues are implemented as a number of plugins for ATUSA. In this section the imple-
mentation details of these plugins are discussed.

HTTP Proxy

An important aspect of Algorithm 4 for identifying the origin widget of a request, is the
ability to intercept all HTTP requests. This requires the implementation of an HTTP proxy.
Many security testing and assessment approaches which use open source HTTP proxies
exist [4, 20, 34, 36]. For the implementation of this project we decided to use the proxy
functionality of WebScarab1, a tool for the analysis of web applications. WebScarab has
a plugin model, which allows for the creation of plugins to handle requests and responses
passing through the proxy. We have integrated WebScarab into ATUSA in such a way that
it can be started and configured through ATUSA.

To allow ATUSA to access the requests which pass the proxy, a request buffer plugin
was implemented. This plugin buffers all requests until ATUSA retrieves the buffer. After
the buffer is retrieved, the contents of the buffer are cleared and the buffer starts buffering

1WebScarab: http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

40

Automatic HTTP Request Violation Detection 6.2 Implementation

// before annotation
<script src="javascript.js"></script>

// after annotation
<script src="javascript.js?requestForProxyId =12345"

requestForProxyId="12345"></script>

Figure 6.6: Example annotation of the unique attribute annotation proxy plugin.

again. In this way the buffer always contains all the requests made since the latest DOM
change in the crawling process of ATUSA.

Attaching unique attributes

In order to decide whether an HTTP request was an HTTP request violation, a mecha-
nism for coupling the request with its origin widget must be implemented. Algorithm 4,
IdentifyRequestOriginWidget, indicates all elements in the DOM must have a unique
ID. As explained in Section 5.1.1 this is not always the case.

To enforce a unique attribute in all DOM elements an annotation mechanism must be
applied. To recall from Section 6.1.1, the most important ways to trigger an HTTP request
are:

• The src attribute of an element, for example in a SCRIPT or IMG element,

• An AJAX call which is attached to an element as an event handler.

To add the unique attribute of the origin element to the request, these types of triggering
HTTP requests should be treated in different ways. In order to avoid collision with existing
attributes the attribute requestForProxyId will be added rather than the id attribute.

HTTP requests which are triggered by the src attribute of an element are usually not
initiated by an event. Examples are the <script>, and <style> elements. When the
browser parses such an element, the corresponding HTTP request is executed immediately.
Therefore, the only way of adding information to such a request is by manipulating the src
attribute before the page reaches the browser. Because ATUSA fetches the page after the
browser is done loading, it is not possible to annotate the value using ATUSA. To avoid
this problem we have implemented a proxy plugin which parses a response and appends the
unique value to all src attributes. For convenience the attribute is also annotated into the
element because this simplifies identification of the element using XPath. Figure 6.6 shows
an example annotation done by the proxy plugin.

HTTP requests made using an AJAX call are the most essential form of sending HTTP
requests during navigation in modern single-page web applications [26], which widget
frameworks are. These requests are often triggered by an event. Although they could be

41

6.2 Implementation Automatic HTTP Request Violation Detection

var oldXhr = XmlHttpRequest;
function XmlHttpRequest(vars){

var qStr = vars + "&requestForProxyId=";
qStr += event.target.getRequesForProxyId();
oldXhr(vars);

}

Figure 6.7: Simplified example of code used to subvert AJAX.

annotated using the same approach as used for src attribute annotations, this has a limita-
tion. Because in this approach annotation is done by the proxy, elements which are added
dynamically on the client-side are not annotated with a unique attribute. It is also difficult
to trace a request back to the original situation from which the request was sent, because the
annotated attributes remain constant throughout the crawling session. Because the DOM is
dynamic in AJAX applications, many DOM changes may have been made before an AJAX

call is triggered. To be able to trace a request back to the exact state from which it was sent,
dynamic annotation is preferable. By using the same annotation technique as used during
widget boundary detection (Section 5.1.1), this can be accomplished. The source code of
ATUSA was extended using aspects in such a way that a unique attribute is annotated into
the next active element, right before the event is fired. This has the advantage that a request
on the proxy can be traced back to the original situation in which it was triggered, because
each unique value exists in one DOM situation only. However, this does require to keep a
history of DOMs (see Appendix B.5).

After annotation of the attribute into the element, the value must be appended to all
HTTP requests the event triggers. We implemented a technique known as Prototype Hi-
jacking [33], in which the AJAX call is subverted using a wrapper function. During the
subversion a variable is added to the query string of the AJAX call. The value of this vari-
able is retrieved, using JavaScript, from the element on which the event that caused the
AJAX call was fired. Figure 6.7 shows a simplified version of the code used to subvert
AJAX.

Di Paola and Fedon [33] propose a method of subverting AJAX by subverting the Xml-
HttpRequest2 prototype. Unfortunately this approach does not work in Internet Explorer
because IE does not allow prototype manipulation of the XmlHttpRequest object. Therefore
an instance of the object should be subverted rather than the prototype itself. The conse-
quence of this is that for every AJAX framework used, different subversion code is required.
We have implemented subversion code for the ASP.NET AJAX3 and jQuery4 frameworks
(see Appendix E). The subversion code is added automatically by a proxy plugin which
adds the code to every HTML response page.

2The XmlHttpRequest is the JavaScript object used to send AJAX calls [6].
3Microsoft ASP.NET AJAX framework: http://www.asp.net/ajax/
4jQuery: http://jquery.com/

42

Automatic HTTP Request Violation Detection 6.2 Implementation

6.2.2 Allowed URL List Generation

An important step of HTTP request violation detection using our approach is the automated
generation of allowed URL lists. The allowed URL list of a widget contains all URLs it may
request during its existence on the page. This list is retrieved and used during the validation
of requests. We have automated the generation of this list with a post-crawling plugin for
ATUSA. This plugin fetches the request buffer from the proxy and generates a list of URLs
from it. For this purpose a complete buffer mode, which buffers all requests since the
beginning of the crawling process, was added to the buffer proxy plugin. By placing every
widget on its own on the page, an allowed URL list can be generated for all widgets in the
framework. These lists can be saved in a variety of ways, as long as they can be retrieved
for a widget using information from the DOM. In our implementation we parse the widget
title and use it as filename for the list. We assume that when a widget has permission to
request a URL, the request is without limitations. Therefore we ignore parameters while
generating the allowed URL list.

6.2.3 HTTP Request Validation

After the identification details are added to the requests, the final step of the HTTP request
violation detection algorithm is validating the request. This process is implemented as an
in-crawling validation plugin for ATUSA. Every time the plugin is started, the proxy buffer
is requested. For each request in the buffer the requestForProxyId is extracted. The
corresponding value is looked up in the DOM history (see Appendix B.5) using XPath,
starting with the latest DOM state. If the element is found, the widget boundary is identified
using Algorithm 1, IdentifyWidgetBoundary, and the allowed URL list for that widget is
retrieved. Finally the retrieved list is used to validate the request.

43

Chapter 7

Empirical Evaluation

In this chapter our approach is evaluated, based on three performed case studies. The first
case study is done on a simplified widget framework-like test suite, which was created with
the purpose of ensuring the correct implementation of our approach. The second case study
is performed on the EWF, the widget framework which is currently researched by Exact.
The third case study is performed on Pageflakes, a popular industrial widget framework.

First the research questions which will be addressed during this evaluation will be stated.
After this the setup of the system during the case studies will be explained. Finally we will
discuss the case studies and their evaluation results.

7.1 Questions

The case studies were performed with the goal of answering the following research ques-
tions:

RQ1: What arei the violation revealing capabilities of the two approaches for DOM change
and HTTP request violation detection?

RQ2: How well does our analysis perform?

RQ3: How scalable is our approach, with respect to the number of widgets that can be
verified at the same time?

7.2 Test Setup

All case studies were performed on an Intel Core 2 6400 2.13 Ghz CPU with 2 GB RAM.
Because ATUSA runs best on Windows XP1, and the EWF runs only in Vista, we decided
to run Windows XP in a virtual machine in Vista using Virtual PC 20072. In this setting,
ATUSA uses the XP version of Internet Explorer 7 as internal browser.

1ATUSA does run on Vista, but the package it uses to interact with the internal browser only works on Vista
if the browser security settings are turned to the lowest level.

2Virtual PC 2007: http://www.microsoft.com/virtualpc

45

7.3 Case Study 1: A Simplified Widget Framework Empirical Evaluation

Figure 7.1: Screenshot of a DOM change violation widget pair in the simplified widget
framework.

The widget frameworks used in the case studies were all implemented in ASP.NET.
The simplified widget framework and the EWF were installed on a local IIS 7 server. The
Pageflakes case study was performed using the production website of Pageflakes3.

7.3 Case Study 1: A Simplified Widget Framework

In order to be able to test the correct behaviour of our implementation, a simplified widget
framework was created. This framework does not allow dragging and dropping of widgets,
but it produces the required structured output pages. Figure 7.1 shows a screenshot of the
simplified framework. All elements in the menu section open two widgets in the contents
section, using an AJAX call. Each widget pair contains a malicious widget (MAL) and a
victim widget (VIC).

7.3.1 DOM Change Violation Widget Pairs

In the DOM change violation test widget pairs, every malicious widget contains an event
handler which changes the DOM of its corresponding victim widget.

The following DOM change violation widget pairs were implemented for the simplified
widget framework:

SD1: An event fired in MAL changes the action URL of a form in VIC

SD2: An event fired in MAL changes the link description of a link in VIC

3Pageflakes: http://www.pageflakes.com

46

Empirical Evaluation 7.3 Case Study 1: A Simplified Widget Framework

<div class="widget" id="widget_image_1">
<div>

</div>
<div class="widget_contents">

<input type="button" onclick="changeLogo();"
value="Click me to change the image!"
style="width: 300px;" />

</div>
</div>
<div class="widget" id="widget_image_2">

<div>

</div>
<div class="widget_contents" id="widget_contents">

</div>

</div>

Figure 7.2: DOM of the contents section of Figure 7.1.

SD3: An event fired in MAL changes the background color of VIC

SD4: An event fired in MAL changes an image in VIC

SD5: An event fired in MAL switches two DOM elements in VIC

Figure 7.1 shows the widget pair for case SD4, in which a click on the button in MAL
changes the image in VIC. Figure 7.2 shows the DOM of the contents section. Widget
boundaries in the simplified widget framework were designed to have the class="widget"
attribute. The elements in the menu section were designed to have the class="menu" at-
tribute. Therefore the rule class=widget|VERY HIGH was added to the ATUSA widget
boundary identification rules, and the class=menu rule was added to the trusted items con-
figuration.

7.3.2 HTTP Request Violation Widget Pairs

To test the HTTP request violation detection, only one widget pair was implemented for the
simplified widget framework. This is because for HTTP request violation detection, it is
necessary to isolate a widget on the page to record its allowed URL list. This is difficult
to achieve without dragging and dropping functionality, and therefore only one widget pair
was implemented for this type of detection in this case study. The following HTTP request
violation widget pair was implemented for the simplified widget framework:

SH1: MAL attaches an event handler to an element in VIC, which fires an HTTP request
when the element is clicked

47

7.4 Case Study 2: Exact Widget Framework Empirical Evaluation

To run this widget pair, first an allowed URL list was generated for VIC by running it
inside an isolated environment. The HTTP request violation widget pair was implemented
as a new framework page, for the reason that if it was included in the DOM change violation
test page, allowed URL lists for all these widgets had to be generated as well to prevent a
high number of reported false positives. After generation of the allowed URL list, MAL
was added to the page and the test was executed.

7.3.3 ATUSA Configuration

To perform the tests, most of the default configuration values of ATUSA were used. The
significant configuration changes which were made are depicted by Figure 7.3. Note that
because the test suite was designed with our approach in mind, there was no need to explic-
itly exclude any elements from the crawling process.

robot.events = onclick , onmouseover , onmousedown , onblur , onfocus ,
onkeydown , onkeypress , onkeyup , onmousemove ,
onmouseup , onselect

crawl.tags = a:{}, input:{}, img:{}, button:{}, label:{}, div:{}
crawl.tags.exclude = {}
atusa.plugins = nl.tudelft.swerl.login ,

for cases SD1-SD5
nl.tudelft.swerl.widgetInteractionDOMValidator
for case SH1
nl.tudelft.swerl.httpRequestValidator

Figure 7.3: ATUSA configuration for the simplified widget framework case study.

7.3.4 Test Results

In order to get an indication of the overhead introduced by our approach, the widget pairs
were first crawled by ATUSA without plugins. The number of candidate clickables (CC),
clickables and states found during this run can also be used as a verification that plugins do
not add states, for example because annotated attributes were not correctly removed. Table
7.1 shows the results of running ATUSA on the simplified framework without plugins. Table
7.2 shows the results of running ATUSA on the framework with plugins. The FP column
depicts the number of reported false positives. For the widget pairs SD1-SD5 the DOM
change violation detection plugin was enabled, for the SH1 widget pair the HTTP request
violation detection plugin was enabled.

7.4 Case Study 2: Exact Widget Framework

As explained in Chapter 2.3, Exact Software is researching the possibilities of using widgets
as building blocks for software solutions. A prototype of the framework was used to conduct
a case study, to verify how our approach works on a framework with a more complex layout
and functionality than our own framework.

48

Empirical Evaluation 7.4 Case Study 2: Exact Widget Framework

Widget pair(s) Time (ms) CC Clickables States
SD1-SD5 753056 267 14 13

SH1 306167 108 5 6

Table 7.1: Results of running ATUSA on the simplified widget framework without plugins.

Widget pair(s) Violations seeded Violations detected Real violations detected FP Time (ms) CC Clickables States
SD1-SD5 5 5 5 0 768438 267 14 13

SH1 1 1 1 0 332024 108 5 6

Table 7.2: Results of running ATUSA on the simplified widget framework with plugins.

Figure 7.4: Screenshot of a DOM change violation widget pair in the Exact widget frame-
work.

Figure 7.4 shows a screenshot of the EWF. Because dragging and dropping is allowed,
testing isolated widget pairs, instead of the complete test suite, is more easily accomplished.
It is very difficult to automatically drag widgets on the page. Therefore the widgets to test
were manually placed on the page. This is possible, because the EWF remembers which
widgets were on the page in the last session of a logged in user.

As in the first case study, all widget pairs contain two widgets, a malicious widget
(MAL) and a victim widget (VIC). The widget pairs were designed by the author and im-
plemented by a member of the Exact Research and Innovation team, to prevent bias of the
test suite towards our approach. To test our approach with multiple widgets on a page, we
have also conducted the test with all widget pairs on the same page.

7.4.1 DOM Change Violation Widget Pairs

The following DOM change violation widget pairs were implemented for the EWF:

D1: An event fired in MAL changes a form URL in VIC

D2: An event fired in MAL changes a link description in VIC

D3: An event fired in MAL changes a link href in VIC

D4: An event fired in MAL changes the background color of an element in VIC

49

7.4 Case Study 2: Exact Widget Framework Empirical Evaluation

D5: An event fired in MAL changes an image in VIC

D6: An event fired in MAL changes a DOM element outside MAL and outside VIC (a
framework element)

Widget boundaries in the EWF have the class="ex widget" attribute. Therefore the
rule class=ex widget|VERY HIGH was added to the ATUSA widget boundary identifica-
tion rules. Because our focus is on inter-widget interactions, all elements in the menu
section were excluded from the crawling process. Other elements which were excluded, are
elements which may remove or hide a widget.

7.4.2 HTTP Request Violation Widget Pairs

Because widgets can easily be dragged and dropped in the EWF, it is easier to test the HTTP
request violation detection. This is because it is possible to isolate a widget on the page to
generate its allowed URL list, when dragging and dropping is allowed. For this controlled
experiment, only the allowed URL lists of the victim widgets were created. The following
HTTP request violation widget pairs were implemented for the EWF:

H1: MAL attaches a key event handler to an input field in VIC

H2: MAL attaches a focus event handler to an input field in VIC

H3: MAL attaches an onsubmit event handler to a form in VIC

H4: MAL attaches an onclick event handler to a button in VIC

H5: MAL attaches a mouse movement event handler to an image in VIC

To run a widget pair, first an allowed URL list was generated for VIC by running it
inside an isolated environment. After generation of the allowed URL list, MAL was added
to the page and the test was executed.

7.4.3 ATUSA Configuration

To perform the tests, most of the default configuration values of ATUSA were used. The
configuration changes which were made are depicted by Figure 7.5. Note that, in compar-
ison with the first case study, DIV tags were not included in the crawling process. Because
the EWF has a very complex page layout with many DIV elements, including them in the
crawling process would add significantly to the crawling time. Because it is known in this
controlled experiment that firing events on DIV elements would not expose violations, we
decided to leave them out of the experiment (also see Section 8.1.4). The elements in the
menu section were also explicitly excluded from the crawling process.

50

Empirical Evaluation 7.4 Case Study 2: Exact Widget Framework

robot.events = onclick , onmouseover , onmousedown , onblur , onfocus ,
onkeydown , onkeypress , onkeyup , onmousemove ,
onmouseup , onselect

crawl.tags = a:{}, input:{}, img:{}, button:{}, label:{}
crawl.tags.exclude = a:{class=buttonedit}, a:{title=Close Layout},

a:{href=home}, a:{href=../home}, a:{href=myhome},
a:{href=person}, a:{href=myworkspace},
a:{id=ctl00_HeaderLoginView_SignOutButton},
a:{class=buttonclose}, a:{href=about}, a:{href=contact},
a:{href=team}, a:{href=privacy}, a:{href=tos},
a:{href=downloads}, a:{href=sitemap}, a:{href=help},
a:{class=buttonminimize}, a:{class=buttonmaximize ,
input:{type=hidden}, input:{id=ctl00_SearchBoxinput},
input:{id=ctl00_SearchBoxbutton},
img:{id=ctl00_MainContent_titlebarViewer_image}

atusa.plugins = nl.tudelft.swerl.login ,
for cases D1-D6 and D1-H5
nl.tudelft.swerl.widgetInteractionDOMValidator
for cases H1-H5 and D1-H5
nl.tudelft.swerl.httpRequestValidator

Figure 7.5: ATUSA configuration for the EWF case study.

Widget pair(s) Time (ms) CC Clickables States
D1 122349 124 3 4
D2 105215 120 3 4
D3 107299 120 3 4
D4 105625 120 3 4
D5 174616 124 3 4
D6 126446 152 4 5

D1-D6 552193 1557 19 20

H1 73538 116 3 4
H2 55071 84 2 3
H3 - - - -
H4 51215 56 1 2
H5 61931 140 4 5

H1-H5 155608 550 10 11

D1-H5 702912 3207 29 30

Table 7.3: Results of running ATUSA on the EWF without plugins.

7.4.4 Test Results

Table 7.3 shows the results of running ATUSA on the EWF without plugins. Table 7.4
shows the results of running ATUSA with plugins. For widget pairs D1-D6 the DOM change
violation detection plugin was enabled, for widget pairs H1-H5 the HTTP request violation
detection plugin was enabled. During the execution of widget pairs D1-H5 both plugins
were enabled.

51

7.5 Case Study 3: Pageflakes Empirical Evaluation

Widget pair(s) Violations seeded Violations detected Real violations detected FP Time (ms) CC Clickables States
D1 3 3 3 0 110362 124 3 4
D2 3 3 3 0 90062 120 3 4
D3 3 3 3 0 92536 120 3 4
D4 3 3 3 0 89962 120 3 4
D5 3 3 3 0 158853 124 3 4
D6 4 4 4 0 109711 152 4 5

D1-D6 19 19 19 0 537829 1557 19 20

H1 1 2 1 1 74740 116 3 4
H2 1 2 1 1 54621 84 2 3
H3 - - - - - - - -
H4 1 2 1 1 51365 56 1 2
H5 1 2 1 1 60950 140 4 5

H1-H5 4 8 4 4 157582 550 10 11

D1-H5 23 43 23+10 10 759685 3207 29 30

Table 7.4: Results of running ATUSA on the EWF with plugins.

7.5 Case Study 3: Pageflakes

The third case study we have performed was on Pageflakes. Pageflakes is a free service,
which allows to place widgets on a personalized home page. Pageflakes is a closed source
framework, which means we were not able to inspect or adapt the framework code. In
Pageflakes, widgets are called flakes. At the time of writing over 240,000 flakes were
available. Figure 7.6 shows a screenshot of a personalized homepage in the Pageflakes
framework. A flake boundary can be detected using the same approach as used for widget
boundary detection.

For our case study we have implemented the same widget pairs as described in Sec-
tions 7.4.1 and 7.4.2 using the Pageflakes API. This API provides convenience JavaScript
methods for event management and DOM manipulation. The tests were run using the same
setup as for the other case studies. Flakes were manually placed on the page, after which
they were tested with ATUSA.

Flake boundaries are DIV containers with the class="flake" attribute. Therefore the
rule class=flake|VERY HIGH was added to the ATUSA widget boundary identification
rules. All elements in the menu section were excluded from the crawling process. Other
elements which were excluded, are elements which may remove or hide a widget.

7.5.1 ATUSA Configuration

The same configuration settings as in the EWF case study were used to conduct the case
study on Pageflakes. The only change which was made was in the excluded elements.
Figure 7.7 depicts the configuration of ATUSA for this case study. All tests were allowed a
maximum crawling time of 1 hour.

52

Empirical Evaluation 7.5 Case Study 3: Pageflakes

Figure 7.6: Screenshot of a DOM change violation widget pair in the Pageflakes framework.

robot.events = onclick , onmouseover , onmousedown , onblur , onfocus ,
onkeydown , onkeypress , onkeyup , onmousemove ,
onmouseup , onselect

crawl.tags = a:{}, input:{}, img:{}, button:{}, label:{}
crawl.tags.exclude = a:{href=%www%pageflakes%com%}, a:{id=confirm%},

a:{href=%Logout%}, a:{id=RssReaderLink},
a:{id=homeProfileLink}, a:{id=SetAsHomePageLink},
a:{id=CommunityButton}, a:{id=Start},
a:{id=NewTabLink}, a:{class=delete_page},
a:{href=%Page%aspx}, a:{href=%Flakes%aspx},
a:{href=%ProfileDirectory%aspx}, a:{class=%icon},
a:{href=%forums%pageflakes%com%},
a:{href=%company%pageflakes%com%tos},
a:{href=%company%pageflakes%com%privacy},
a:{href=%developers%pageflakes%com%}, a:{class=flake_title},
a:{class=confirm%}, a:{class=flake_name%}, a:{class=%tab},
a:{class=rss_number}, img:{id=icon%}, img:{class=logo},
input:{value=Close}, input:{type=hidden},
input:{id=domainSearchBox}, label:{id=confirmDialog%},
input:{id=confirm%}

atusa.plugins = nl.tudelft.swerl.login ,
for cases D1-D6 and D1-H5
nl.tudelft.swerl.widgetInteractionDOMValidator
for cases H1-H5 and D1-H5
nl.tudelft.swerl.httpRequestValidator

Figure 7.7: ATUSA configuration for the Pageflakes case study.

7.5.2 Test Results

Table 7.5 shows the results of running ATUSA on the Pageflakes framework without plugins.
Table 7.6 shows the results of running ATUSA with plugins. For widget pairs D1-D6 the
DOM change violation detection plugin was enabled, for widget pairs H1-H5 the HTTP
request violation detection plugin was enabled. During the execution of widget pairs D1-
H5 both plugins were enabled. The scenario with all widgets on the page (D1-H5) required
more crawling time than the maximum time allowed. Therefore the tests were stopped after
one hour and the output until then was analyzed. For tests which required more crawling
time, we have marked the candidate clickables, clickables and states with * in Tables 7.5

53

7.6 Evaluation Results Empirical Evaluation

Widget pair(s) Time (ms) CC Clickables States
D1 - - - -
D2 263391 1500 29 30
D3 107299 1500 29 30
D4 289375 1500 29 30
D5 358141 1530 29 30
D6 289375 1330 30 31

D1-D6 1675843 16797 149 150

H1 160938 833 16 17
H2 178641 1029 20 21
H3 - - - -
H4 176984 1029 20 21
H5 175328 1029 20 21

H1-H5 907609 7857 80 81

D1-H5 3600000* * * *

Table 7.5: Results of running ATUSA on the Pageflakes framework without plugins.

Widget pair(s) Violations seeded Violations detected Real violations detected FP Time (ms) CC Clickables States
D1 - - - - - - - -
D2 3 3 3 0 229594 1500 29 30
D3 3 3 3 0 222703 1500 29 30
D4 3 3 3 0 387344 1500 29 30
D5 3 3 3 0 368156 1530 29 30
D6 3 3 3 0 279422 1330 30 31

D1-D6 15 15 15 0 2030719 16797 149 150

H1 1 1 1 0 158062 833 16 17
H2 1 1 1 0 177875 1029 20 21
H3 - - - - - - - -
H4 1 1 1 0 177000 1029 20 21
H5 1 1 1 0 179406 1029 20 21

H1-H5 4 4 4 0 919687 7857 80 81

D1-H5 19 19 19 0 3600000* * * *

Table 7.6: Results of running ATUSA on the Pageflakes framework with plugins.

and 7.6.

7.6 Evaluation Results

The evaluation results of the case study on the simplified widget framework show excellent
results. All seeded violations were detected without false positives.

More interesting results were exhibited by the case studies on the EWF and Pageflakes.
After the first run on the EWF a large number of false positives was reported. After in-
spection, we found that the jQuery UI4 library, used in the EWF for dragging and dropping,
attaches onmousedown event handlers to many elements on the page. These handlers cause
DOM changes for each onmousedown event fired on these elements. To avoid these false

4jQuery UI: http://jqueryui.com/

54

Empirical Evaluation 7.6 Evaluation Results

positives, ATUSA was adapted to ignore DOM changes of this type. Tables 7.3 and 7.4 show
the results of running ATUSA with these adaptions.

During the second run, a number of interesting results were found. The first is that
widget pair H3 could not be validated. The widget pair did not contain valid HTML, which
caused a problem after the JavaScript injection. During this process, the HTML is parsed
and serialized. The serialization library converts all input to valid HTML, which breaks
the functionality of the framework for invalid HTML. Therefore widget pair H3 was not
included in the test results. Because the Pageflakes framework does not allow the use of
<form> elements, widget pair D1 was not implemented for that case study.

Another interesting result concerns the crawling time of widget pairs with and without
plugins. In some cases, running ATUSA on widget pairs without plugins requires more
crawling time than with plugins. This is because crawling involves communication with
a server, which may be slow or overloaded. Therefore crawling times should be seen as
an indication only. Note that this result also indicates that our implementation does not
introduce much overhead.

The results of widget pair H1-H5 show a false positive for each widget pair in the EWF
case study. All these false positives were caused by an implementation characteristic of
the EWF and do not represent real false positives. In the EWF, JavaScript for each widget
is loaded in the body section rather than inside the widget boundary. Therefore, although
the JavaScript request will appear in a widget’s allowed URL list, the request is coupled to
the framework rather than to the widget. This is correct with regard to our approach, but
incorrect with regard to the semantics of the framework. The same type of false positives are
being recognized in the test with all widget pairs (D1-H5). The Pageflakes framework adds
JavaScript of a widget inside the widget boundary. Therefore we did not detect such false
positives during the Pageflakes case study. It was interesting to see that more violations
were detected by our plugins than we deliberately seeded in the D1-H5 test in the EWF
case study. This was because widget pairs H1-H5 displayed a message after an HTTP
request was succesfully sent in the EWF case study. This caused the DOM change violation
detection to detect a violation.

Revisiting the questions stated in the first section of this chapter, we can conclude our
approach is succesful in detecting inter-widget interaction violations. Our approach is able
to automatically detect DOM change violations and HTTP request violations, without de-
tecting a high number of false positives. However, it is important to keep framework im-
plementation decisions, such as usage of the jQuery UI library, in mind while analyzing the
results.

All widget pairs were completed within reasonable time. This is also true for tests with
more than twenty widgets on the page. However, it is important to consider that not all
types of elements were included in the crawling process. Although including all elements
in the crawling process may add considerably to the crawling time, this should not cause
performance problems in a dedicated testing environment.

We have tested our approach with more than twenty widgets at the same time, which
did not cause any problems. An observation is that combining widget pairs is faster than
running each widget pair on its own. This is because framework elements which were not
explicitly excluded have to be crawled only once, rather than for each widget pair. The test

55

7.6 Evaluation Results Empirical Evaluation

results show that our approach does not introduce much overhead compared to crawling
without validation. Although this is promising for the scalability of our approach, more
testing should be done to be able to draw a definitive conclusion about the scalability.

56

Chapter 8

Discussion

In Chapter 3 we have introduced a number of security issues in AJAX applications, widgets
in particular. We have proposed and implemented an approach for automatically detecting
two of such issues, DOM change violations and HTTP request violations, with ATUSA. In
this chapter we discuss issues regarding our approach and its implementation.

8.1 Completeness

A security testing approach which is not complete may have limited applicability, as it
may miss many security violations while testing. In this section completeness issues of our
approach are discussed.

8.1.1 Crawler Usage

The first fact to consider is that our approach uses a crawler. Therefore, if ATUSA is not able
to find a certain state, our approach is not able to test that state. This problem is inherent to
dynamic approaches which use a crawler.

8.1.2 Valid (X)HTML

Our current implementation is capable of testing widgets which contain valid (X)HTML
only. This is caused by the HTML serializer used during the JavaScript injection process, as
explained in Section 7.6. Future research should include research on the HTML serialization
mechanism to use.

8.1.3 Timers

The usage of timers in JavaScript may form a problem for our approach. Because we use the
element on which the last event was fired to analyze a violation, it is important that effects
of that event are applied before the next event is fired. If this is not the case, an effect may
be coupled to another event than it was caused by, resulting in invalid analysis. Timers may

57

8.1 Completeness Discussion

cause this because they can delay the effect of an event until the event is fired. Future work
should contain more research on the effect of timers on our approach.

8.1.4 Item Exclusion

In our empirical evaluation we have excluded a number of elements from the crawling
process. In addition, we have used a list of trusted items. In a controlled experiment this
causes no problem, because it is known that those elements are not altered. However, in
a production testing environment, it is necessary to check those elements and their effects,
to ensure none of them have been altered by a malicious widget. An example of such
a violation is the attachment of a key logger to the search field in the trusted section in
Figure 7.4.

8.1.5 Discovery of Widget Pairs

In our test cases all widget pairs were known. In an industrial framework, many widgets
may be available and placing only widgets on the page, that will be violated by the widget
under test, is a difficult task. One possibility would be to place all widgets in the catalog on
the page, but this may lead to performance problems.

8.1.6 Cross-site Request Forgery

In our approach for detecting HTTP request violations we use an allowed URL list for every
widget. Using such a list means that another widget can still attach an event handler, which
sends a request to a URL in the allowed URL list, to a widget. An example is depicted
by Figure 8.1. Because http://www.efw.com/post.php is in the allowed URL list of
VIC, the request triggered by the event attached by MAL is not detected as an HTTP request
violation. This may lead to a similar vulnerability as the type of vulnerability known as
cross-site request forgery (see Appendix D.3). This is a problem that should be handled by
the widget developer rather than by our approach.

8.1.7 Multiple Browser Support

It is important for an automated testing approach to support multiple browsers, because of
the browser incompatibilities discussed in Section 2.1.1. The current implementation of our
approach supports Internet Explorer 7 only. Future plans are an implementation for Firefox,
although there is one thing to consider regarding our approach. The implementation of our
approach relies on the use of window.event, which holds the last event fired. This is the
IE-specific way of event handling. Firefox uses a different way of event handling1, which
requires each event to be explicitly propagated as a function parameter in order to use it in a
function. Although this does not affect the applicability of our approach, it requires changes
in implementation.

1Firefox event handling: https://developer.mozilla.org/En/DOM:element

58

Discussion 8.2 Security

<div id="VIC" class="widget">
<form id="vicForm" onsubmit="send(’http://www.efw.com/post.php’, this)">
<input type="text" name="code">
</form>

</div>

<div id="MAL" class="widget">
<script type="text/javascript">
var url = "http://www.efw.com/post.php";
var form = getMaliciousFormContents ();
document.getElement("VIC.vicForm").onsubmit = send(url, form);
</script>

</div>

AllowedList vic = {http://www.efw.com/post.php}

Figure 8.1: Example of an HTTP request violation not detected by our approach.

8.1.8 CSS Dispositioning

CSS dispositioning is a form of hacking in which elements are dispositioned in such a way
that they appear in front of other elements. An example is a widget which creates a login
form, and positions it using CSS on top of a form in another widget. Although the visible
form appears exactly the same to the user, it is in fact the form created by the malicious
widget. Our approach cannot detect such behaviour, as the DOM of the other widget does
not change. A possible solution for this would be to extend the DOM change violation
detection algorithm with a collision detection algorithm, to detect overlapping elements on
the page. The detected elements can be used as input for the widget boundary detection
algorithm, after which the boundaries can be used to validate the collision.

8.2 Security

In addition to completeness of a security approach, it is important that it cannot easily
be bypassed. The first observation is that widgets execute mostly on the client-side of an
application using JavaScript. As explained in Chapter 4, testing the client-side of AJAX

applications is a difficult and new research area. This is especially the case for testing
client-side security of widgets.

A possible security threat in our approach could be that a malicious user creates a wid-
get, which contains code to attach a node to another widget, with the goal of bypassing our
widget boundary identification algorithm. Because this requires a DOM change in the other
widget, this action should be recognized by our DOM change violation detection algorithm.

Another possibility is that a widget tries to steal and move the requestforproxyid
attribute, with the goal of bypassing the origin widget detection algorithm. A possible
solution for this could be to implement a verification mechanism in ATUSA, which verifies
that a node is annotated before and after an event is fired. This could stop a malicious widget
from removing the requestforproxyid attribute. The malicious widget may try to place

59

8.3 Scalability Discussion

the unique value of requestforproxyid in another element. In this case the XPath query
which is used to locate the element based on the value in the HTTP request will return more
than one element, which is a violation by default.

Another possible security issue could be that JavaScript on the page subverts AJAX

again. An example of this is a subversion, in which the requestforproxyid of another
element than the active one is added to the HTTP request. This is a difficult problem and
should be addressed in further research.

8.3 Scalability

In Section 7.6 we have shown our approach works when more than twenty widgets are on
the same page. In an industrial framework, many more widgets may require testing. Our
approach requires all widgets to be on the same page. An expectation is that the maximum
number of widgets on the page is limited by either the framework or browser memory. A
solution to this problem may be the creation of subsets of widgets to test, for example by
grouping them based on their functionality, or on the number of users who have the widget
on their personal homepage.

Another aspect of scalability is the number of testers which can use our approach at
the same time. Because ATUSA and our plugins require client-side installation only, our
approach does not limit the number of concurrent users. Therefore this number is limited
by the number of allowed concurrent users in the framework, or by the web server. In
addition, it is important to consider that two testers may share pages under test, which can
lead to problems. If every tester uses his own framework account, and places the widgets
under test on his own personal page, there are no scalability issues regarding the number of
concurrent testers imposed by our approach.

8.4 Performance

In Chapter 7 we have measured the performance of our approach. Although the measured
crawling times are indications only because of server delay, the results are promising. A
problem inherent to crawler-based approaches is that they use runtime information, and
therefore have to deal with slow servers. In addition, ATUSA can crawl content which can
only be made visible through asynchronous calls. In order to do this, ATUSA waits a short
period of time after firing an event, to see if the event has had an effect. During a crawling
session many events are fired, which means ATUSA is idle during a considerable portion of
the crawling time. This negatively affects the performance of our approach. In Section 7.6
we have shown that the overhead introduced by our approach is small, which indicates our
performance can be closely tied to the performance of ATUSA.

60

Discussion 8.5 Threats to Validity

8.5 Threats to Validity

To ensure the internal validity of our experiment we have tested our plugins with a JUnit2

test suite. In addition, we have used the simplified widget framework described in Section
7.3 to validate the behaviour and functionality of our plugins.

The requirements of the widget pairs used in the case studies were designed based upon
known exploits in web application security research, for example by analyzing the effects
of cross-site scripting or phishing attacks. For example, many phishing attacks try to lure
a user into sending the contents of a form to a URL specified by the malicious user, which
corresponds with widget pair D1, ‘Changing the action URL of a form’.

To improve the external validity of our case studies, we have tested equal scenarios on
different frameworks, including an industrial, widely used framework (Pageflakes).

A threat to the validity of our experiment is the complexity of the widget pairs im-
plemented for the case studies. Although the pairs exhibit realistic behaviour, the event
sequences required to reach a violated state are short. A future case study should be done
either with more complex or real, published widgets.

A final validity threat is that we have explicitly excluded elements from the crawling
process. This may have led to considerably shorter crawling times. In addition, excluding
elements may cause false positives to be hidden from the reports generated by the plugins.

8.6 Different Applications

Although our approach is described with a bias towards AJAX widgets, its applicability is
not limited to it. In fact, inter-element interactions between any type of elements can be
tested by changing the configuration settings for widget boundary detection. In addition,
our approach is not limited to AJAX applications, but can be used to test the security of any
web application in which inter-element interactions are an issue.

In addition to the security testing field, our approach has proved to be useful in other
areas. Many developers who start working the jQuery library make mistakes, and because of
its powerfulness, these mistakes may affect the whole page instead of one element. Because
our DOM change violation detection approach can detect such mistakes, our plugin can
help developers ensuring their jQuery actions only affect the desired widget.

For our HTTP request violation detection plugin we have added an HTTP proxy to
ATUSA. This proxy can be used in a variety of ways. Some examples are the detection
of external JavaScript usage and the detection of links to external domains. Our approach,
when slightly altered, can also be used to explicitly deny access to certain domains or URLs,
for example because they are known to contain phishing pages. A final application of the
proxy in combination with ATUSA, is the possibility of checking for dead links, or broken
AJAX calls. Traditional dead links checkers cannot handle AJAX applications because they
cannot crawl all content. ATUSA can verify the validity of links and AJAX calls by analyzing
the HTTP response code for each request on the proxy.

2JUnit: http://www.junit.org/

61

Chapter 9

Related Work

In this chapter an overview of research related to our work will be given. First the difference
between static and dynamic approaches will be explained. After this an overview of research
on traditional web application security and security in AJAX applications will be given.
Finally SOP-related research will be discussed.

9.1 Static versus Dynamic Analysis

A classification of security tools can be made based upon the analysis approach they use. A
security tool can use dynamic analysis, static analysis or a combination of those. Static an-
alyzers parse and analyze the source code of an application [15]. Because this process may
take a long time, a model of the application is often used instead. A static analysis method
which is often used is type checking. Because static analysis tools cannot understand the
semantics of source code they often report a high number of false positives [30].

Dynamic analyzers execute the application and observe its runtime behaviour [13]. The
advantage of this is that they are suitable for more applications because they have no re-
quirement on the implementation language. Another advantage of dynamic analyzers is
that they create execution traces of what went wrong. A disadvantage of using dynamic
analysis for web applications is that a dynamic analyzer must be able to expose all content
on a web page [28].

Static analyzers are often integrated early, while dynamic analyzers are mostly used later
in the development cycle, simply because it may be difficult to retrieve runtime information
from incomplete applications. A security tool may also use both analysis methods to achieve
a higher level of security testing [15].

9.2 Traditional Web Application Security

Over the years many research on the security of web applications has been done. Every
year the Open Web Application Security Project (OWASP)1 releases a top ten of the types
of vulnerabilities which occurred most in the wild [32]. The most occurring vulnerabilities

1OWASP: http://www.owasp.org

63

9.2 Traditional Web Application Security Related Work

by far are those which are caused by weak input validation, such as cross-site scripting
(XSS) and SQL injection [32, 40]. These vulnerabilities are explained in Appendix D.

A key difference between our approach and existing security testing methods is that
these are often not applicable to AJAX web sites. Existing methods use crawlers which
are not capable of keeping track of the DOM during the crawling process. Therefore they
usually cannot be used to test AJAX applications. However, these methods contain valuable
ideas and processes, which is why they are discussed here.

9.2.1 Black-box Security Scanners

An important group of security tools are black-box security scanners. Black-box security
scanners dynamically access the web application using public interfaces only, like a ma-
licious user would [14]. They are used after the development and before the deployment
cycle [4]. The reason for this is that they try to detect vulnerabilities by entering mali-
cious input and analyzing the response of the application, a process known as fault injection
[13, 14, 18]. This means they require a fully functional application and therefore using them
before this stage would be less effective.

A black-box security scanner is SecuBat [18]. SecuBat detects SQL injection and XSS.
It does this by extracting all forms from a web page. These forms are injected with faults
and submitted. To detect SQL injection, the response page is analyzed and checked for the
existence of SQL error indications such as ‘sqlexception’ or ‘error’. SecuBat’s crawler is
not capable of sending JavaScript events. SecuBat has a plugin model which allows for
extension of the application.

Huang et al [13, 14] propose another black-box security scanner called WAVES. WAVES
is an open source automated security scanner for web applications, which aims at detecting
SQL injection and XSS. It contains a crawler which is capable of crawling a web site by
following links, filling out forms and executing JavaScript events. Filling out forms is an im-
portant aspect of a crawler as forms hide a large part of the content on the web [14]. WAVES
uses the topic model to fill out forms. The goal of the topic model is to provide semanti-
cally and syntactically correct values, to make acceptance of input more likely. This is done
by maintaining a list of input field names and correct values, for example {‘company’,
‘compName’:‘IBM’, ‘Microsoft’, ‘Exact’}. When an input field is found in a form,
a value which is likely to be correct for it will be selected from the list.

WAVES and SecuBat are both tools for the detection of SQL injection and XSS. Because
they do not keep track of the DOM it is difficult to validate the security of inter-widget
interactions with them. These interactions exist at the client-side only, which results in the
fact that a black-box security scanner should be able to inspect the client-side. Our approach
fulfills this requirement and therefore does not have the problem existing scanners have.

9.2.2 Proxy Approaches

Another group of dynamic security approaches are those which use a proxy. A proxy is
placed between the client and server, with the goal of getting more information about what

64

Related Work 9.2 Traditional Web Application Security

is being sent to the server. Other purposes of using a proxy are injecting data into a request
or response, or validating HTTP requests.

Noxes [20] demonstrates the use of a proxy. Noxes is a client-side firewall, which
has access rules for browser connections instead of applications. Every page has a list of
allowed domains it may access. Because AJAX applications follow the single-page model,
only one list can be used for each application. Our approach allows for the specification
of such lists on widget level rather than application level, which makes our approach better
applicable for AJAX applications, especially widget frameworks. In addition, our approach
is a detection approach, whereas Noxes is a prevention approach.

BrowserShield [34] is a tool for protecting users against known vulnerabilities during
the time between the publication of the vulnerability and the release of the security patch.
BrowserShield protects against browser vulnerabilities rather than against application-level
vulnerabilities. It uses a proxy to inject and rewrite JavaScript which is sent to the client.

Another approach which uses a proxy is proposed by Scott et al. [36]. Their approach
allows for the definition of security policies to validate or transform the parameters of HTTP
requests. The requests are validated, for example using type checking, or transformed, for
example using strong input validation, on the proxy. This approach differs from ours in the
way that security policies must be defined manually for each parameter, while our approach
does not require the definition of such policies, but uses a generic detection mechanism
instead.

A final approach which uses a proxy is UsaProxy [2], which is not a security approach
but an approach for tracking the usability of AJAX applications. UsaProxy injects JavaScript
to each page which tracks all user actions on the page. At certain intervals the data is sent
to the server, where it is logged. UsaProxy does not couple HTTP requests and the origin
element, which our approach does.

9.2.3 Static Approaches

Static analysis on applications which are a hybrid of client and server-side is difficult. Ex-
isting approaches focus on either the client or the server-side. Most static approaches for
detecting XSS and SQL injection use information flow analysis [15]. In this type of analysis
all paths from entry points to output points are extracted and verified to check whether input
reaches an output point in its original, non-validated, form. If this is the case, a vulnerability
was found.

An example of such a server-side static approach for PHP is Pixy [17]. Pixy is an
open source tool for statically detecting XSS vulnerabilities. Because PHP is a server-side
language, Pixy is only applicable to the server-side of AJAX applications.

WebSSARI [15] is another static analysis tool for PHP. Huang et al. [15] realize that
static analysis often does not give a satisfactory approximation of runtime behaviour. There-
fore they propose a hybrid approach, which uses both static and dynamic analysis. Using
static analysis they point out code requiring runtime checks, and automatically insert those
checks which allow for runtime protection. Because our approach has access to the DOM
at all times during crawling, we do not have the need for insertion of runtime checks using
static analysis, as we can analyze the application at all times during runtime.

65

9.3 AJAX and Widget Security Related Work

Another static approach is proposed by Wasserman et al. [43]. The authors propose a
method for analyzing the possible output of a validation function and verify whether this
possible output would allow a user to access the browser’s JavaScript interpreter.

Static analysis of AJAX is difficult because of the interaction between client and server-
side in AJAX applications. To our knowledge no static analysis method for AJAX exists
yet.

9.3 AJAX and Widget Security

Since AJAX is a relatively new technology, not much research has been done on it yet. The
community has only recently began to realize AJAX imposes new issues on web application
security. Attempts have been made to give an overview of security risks introduced or
enhanced by AJAX [10, 39], but only few approaches known to the authors exist, which
actively try to prevent or detect these specific problems.

This is even more the case for widget and mashup security. As explained in Section 3.2,
most frameworks either disallow all communication between widgets, or allow all nonse-
cure communication. Google has made an attempt to allow widgets to communicate using
the pubsub protocol [9]. This protocol allows widgets to subscribe to communication chan-
nels. Publisher widgets may communicate with subscriber widgets by sending messages
over such a channel. However, using this protocol is not allowed for user-published wid-
gets.

9.3.1 Sandbox Approaches

The approach taken most in current research is the sandbox approach. By placing the widget
in a sandbox, functionality is being limited. Examples of such approaches are SubSpace
[16] and MashupOS [42], which both introduce new HTML elements which give a widget
more freedom than an IFrame, and less than a DIV. Our approach places a virtual sandbox
on the widget by disallowing communication outside its boundary, without the requirement
for changes to the HTML standard or browsers.

An approach which limits functionality by sandboxing JavaScript objects is Google
Caja [7]. Google Caja is a subset of JavaScript, in which all objects can communicate with
other objects of which they have a reference only. A JavaScript file is converted to a Caja
module, which contains only secure JavaScript. Because this approach rewrites JavaScript,
it is important that the JavaScript is in a standard format. Because our approach does not
use the JavaScript source code, it does not have this requirement. In addition, our approach
is designed for detection rather than prevention.

66

Chapter 10

Conclusion

AJAX has led to a new type of web application component, called web widget. A widget
is a mini-application, which can be placed on a homepage next to other widgets using a
widget framework. A consequence of this is that widgets may access and change each
other’s properties. From a security point of view, this is often not allowed, and therefore a
violation. In the beginning of this report, we stated the following research questions:

RQ1: What are the problems and difficulties of detecting these violations?

RQ2: Can we propose an automated approach for detecting these violations?

We have identified two types of inter-widget interaction violations, and we have pro-
posed an automated approach for detecting them. The first type of violation is the DOM
change violation, in which a widget changes the DOM of another widget. The second type
of violation is the HTTP request violation, in which a widget makes an HTTP request it is
not allowed to.

The implementation of our approach uses ATUSA, a tool for automated testing of AJAX

applications. For this purpose we have implemented several ATUSA plugins and we have
integrated an HTTP proxy into ATUSA. We have evaluated this implementation using two
case studies. The first case study was on a simplified widget framework. The second case
study was on the EWF, a widget framework researched by the Research and Innovation team
of Exact Software. From the evaluation results we can conclude our approach is successful
in detecting DOM change violations and HTTP request violations, with a small number of
false positives and within reasonable time.

10.1 Contributions

In this report, we have contributed the following:

C1: The first dynamic approach for automatically testing AJAX-based web widgets,

C2: The definition of a widget boundary in the DOM and a method for deciding to which
widget a DOM element belongs,

67

10.2 Future Work Conclusion

C3: A method for coupling an HTTP request to the HTML element from which the initi-
ating event was triggered,

C4: A case study of extension of ATUSA using plugins, and proof that it can be used for
automated security testing,

C5: A method for automatically detecting DOM change violations and HTTP request
violations.

10.2 Future Work

Our approach can be improved on a number of aspects. The first is completeness, of which
a number of examples are given in Section 8.1. An important future task is adapting ATUSA

such that it is able to automatically drag and drop widgets onto the personal homepage.
This would greatly benefit the testing process and would add to the completeness of our
approach. More research should be done on CSS dispositioning and its threats, as this is a
type of vulnerability which has not been widely researched yet.

Future work also includes research on defining the best subsets of widgets for testing, as
it is not possible to place all available widgets on the same page in larger widget frameworks.

Finally, more research should be done on threats to the validity of our approach. Any
client-side based security approach is difficult to secure, which makes it interesting to see if
an external tool, such as ATUSA, can contribute to this process. Therefore more case studies
should be performed.

68

Bibliography

[1] The AspectJ Team. The AspectJ Programming Guide. Palo Alto Research Center,
2003. Version 1.2.

[2] Richard Atterer and Albrecht Schmidt. Tracking the Interaction of Users with AJAX
Applications for Usability Testing. In CHI ’07: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages 1347–1350, New York, NY, USA,
2007. ACM.

[3] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[4] Mark Curphey and Rudolph Araujo. Web Application Security Assessment Tools.
IEEE Security and Privacy, 4(4):32–41, 2006.

[5] Robert J. Ennals and Minos N. Garofalakis. MashMaker: Mashups for the Masses. In
SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 1116–1118, New York, NY, USA, 2007. ACM.

[6] Jesse James Garrett. AJAX: A New Approach to Web Applications. http://www.
adaptivepath.com/ideas/essays/archives/000385.php, 2005.

[7] Google. Google Caja. http://code.google.com/p/google-caja/.

[8] Google. Google Mashup Editor Getting Started Guide. http://code.google.com/
gme/docs/gettingstarted.html, 2008.

[9] Google. Gadget-to-Gadget Communication. http://code.google.com/apis/
gadgets/docs/pubsub.html, 2008.

[10] Billy Hoffman and Bryan Sullivan. AJAX Security. Pearson Education, 2008.

[11] Gregor Hohpe. Google Mashup Editor and Yahoo! Pipes: Friend, not Foe. http:
//code.google.com/support/bin/answer.py?answer=72765&topic=12044,
2007.

69

BIBLIOGRAPHY

[12] Michael Howard and David E. Leblanc. Writing Secure Code. Microsoft Press, Red-
mond, WA, USA, 2002.

[13] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung Tsai. Web Appli-
cation Security Assessment by Fault Injection and Behavior Monitoring. In WWW ’03:
Proceedings of the 12th international conference on World Wide Web, pages 148–159,
New York, NY, USA, 2003. ACM.

[14] Yao-Wen Huang, Chung-Hung Tsai, D. T. Lee, and Sy-Yen Kuo. Non-Detrimental
Web Application Security Scanning. In ISSRE ’04: Proceedings of the 15th Interna-
tional Symposium on Software Reliability Engineering, pages 219–230, Washington,
DC, USA, 2004. IEEE Computer Society.

[15] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-
Yen Kuo. Securing Web Application Code by Static Analysis and Runtime Protection.
In WWW ’04: Proceedings of the 13th international conference on World Wide Web,
pages 40–52, New York, NY, USA, 2004. ACM.

[16] Collin Jackson and Helen J. Wang. Subspace: Secure Cross-domain Communication
for Web Mashups. In WWW ’07: Proceedings of the 16th international conference on
World Wide Web, pages 611–620, New York, NY, USA, 2007. ACM.

[17] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities (short paper). In SP ’06: Proceedings
of the 2006 IEEE Symposium on Security and Privacy, pages 258–263, Washington,
DC, USA, 2006. IEEE Computer Society.

[18] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic. SecuBat: A
Web Vulnerability Scanner. In WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 247–256, New York, NY, USA, 2006. ACM.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In 11th Europeen Conf. Object-Oriented
Programming, volume 1241 of LNCS, pages 220–242. Springer Verlag, 1997.

[20] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic. Noxes: A
Client-side Solution for Mitigating Cross-site Scripting Attacks. In SAC ’06: Proceed-
ings of the 2006 ACM symposium on Applied computing, pages 330–337, New York,
NY, USA, 2006. ACM.

[21] Peter-Paul Koch. JavaScript - Event Compatibility Tables. http://www.
quirksmode.org/dom/events/index.html, 2008.

[22] Peter-Paul Koch. W3C DOM Compatibility Tables. http://www.quirksmode.org/
dom/compatibility.html, 2008.

[23] Jean-Claude Laprie and Brian Randell. Basic Concepts and Taxonomy of Dependable
and Secure Computing. IEEE Trans. Dependable Secur. Comput., 1(1):11–33, 2004.
Fellow-Algirdas Avizienis and Senior Member-Carl Landwehr.

70

BIBLIOGRAPHY

[24] Duane Merrill. Mashups: The New Breed of Web App. http://www.ibm.com/
developerworks/library/x-mashups.html, 2006.

[25] Ali Mesbah, Engin Bozdag, and Arie van Deursen. Crawling AJAX by Inferring
User Interface State Changes. In D. Schwabe and F. Curbera, editors, Proceedings
of the 8th International Conference on Web Engineering (ICWE’08). IEEE Computer
Society, July 2008.

[26] Ali Mesbah and Arie van Deursen. An Architectural Style for AJAX. In D. Paulish,
I. Gorton, J. Tyree, and D. Soni, editors, Proceedings of the 6th Working IEEE/IFIP
Conference on Software Architecture (WICSA’07), pages 44–53. IEEE Computer So-
ciety, 2007.

[27] Ali Mesbah and Arie van Deursen. Migrating Multi-page Web Applications to Single-
page AJAX Interfaces. In R. L. Krikhaar, C. Verhoef, and G. A. Di Lucca, editors,
Proceedings of the 11th European Conference on Software Maintenance and Reengi-
neering (CSMR), pages 181–190. IEEE Computer Society, March 2007.

[28] Ali Mesbah and Arie van Deursen. Exposing the Hidden Web Induced by AJAX.
Technical Report SERG-2008-001, Delft University of Technology, The Netherlands,
2008.

[29] Ali Mesbah and Arie van Deursen. Invariant-Based Automatic Testing of AJAX User
Interfaces. In Proceedings of the 31st International Conference on Software Engineer-
ing (ICSE’09). IEEE Computer Society, 2009.

[30] Matteo Meucci. OWASP Testing Guide v2. OWASP Foundation, 2007.

[31] Microsoft. Microsoft Popfly Documentation. http://www.popflywiki.com/, 2008.

[32] OWASP. OWASP Top Ten Project. http://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project, 2007.

[33] Stefano Di Paola and Giorgio Fedon. Subverting AJAX. In 23rd CCC Conference,
2006.

[34] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Esmeir.
BrowserShield: Vulnerability-driven Filtering of Dynamic HTML. ACM Trans. Web,
1(3):11, 2007.

[35] Jesse Ruderman. The Same Origin Policy. http://www.mozilla.org/projects/
security/components/same-origin.html, 2001.

[36] David Scott and Richard Sharp. Abstracting Application-level Web Security. In WWW
’02: Proceedings of the 11th international conference on World Wide Web, pages 396–
407, New York, NY, USA, 2002. ACM.

[37] Chris Shiflett. Security Corner: Cross-Site Request Forgeries. http://shiflett.
org/articles/cross-site-request-forgeries, 2004.

71

BIBLIOGRAPHY

[38] Clinton W. Smullen and Stephanie A. Smullen. An Experimental Study of AJAX
Application Performance. JOURNAL OF SOFTWARE, 3:30–37, 2008.

[39] Michael Sonntag. AJAX Security in Groupware. In EUROMICRO ’06: Proceed-
ings of the 32nd EUROMICRO Conference on Software Engineering and Advanced
Applications, pages 472–479, Washington, DC, USA, 2006. IEEE Computer Society.

[40] Andrew van der Stock and Adrian Wiesmann, editors. A Guide to Building Secure
Web Applications and Web Services. OWASP Foundation, 2006.

[41] W3C. Frames in HTML Documents. http://www.w3.org/TR/html4/present/
frames.html.

[42] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. Protection and Com-
munication Abstractions for Web Browsers in MashupOS. In SOSP ’07: Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems principles, pages 1–16,
New York, NY, USA, 2007. ACM.

[43] Gary Wassermann and Zhendong Su. Static Detection of Cross-site Scripting Vulner-
abilities. In ICSE ’08: Proceedings of the 30th international conference on Software
engineering, pages 171–180, New York, NY, USA, 2008. ACM.

[44] Yahoo! Yahoo! Pipes Documentation. http://pipes.yahoo.com/pipes/docs,
2008.

72

Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

AJAX: Asynchronous JavaScript and XML - a technique used to make asynchronous re-
quests in web applications.

AOP: Aspect-Oriented Programming - a method of programming which allows for the
definition of cross-cutting concerns.

API: Application Programming Interface - an interface for accessing a service or data
source.

ATUSA: Automated test framework for AJAX applications. Contains CRAWLJAX and val-
idation plugins.

CSRF: Cross-Site Request Forgery - an attack in which unauthorized commands are sent
by a web page the user trusts.

CSS: Cascading Style Sheets - a method for specifying the layout of a web page.

DOM: Document Object Model - the representation of a web page as seen by JavaScript.

EWF: Exact Widget Framework - the framework researched by Exact which allows users
to manage widgets.

GME: Google Mashup Editor - tool for creating mashups.

GUI: Graphical User Interface - the graphical user interface of an application.

HTML: HyperText Markup Language - the language which is used to create web pages.

JPF: Java Plugin Framework - plugin framework used by ATUSA.

JSON: JavaScript Object Notation - a data interchange format.

SOP: Same Origin Policy - a policy implemented by browsers that prohibits two docu-
ments from different origins from communicating with each other.

73

Glossary

SPIAR: Single Page Interface Architecture - a software architecture for AJAX applications.

Traditional web application: A web application which does not use AJAX.

UI: User Interface - the user interface of an application.

URL: Uniform Resource Locator - a method for uniquely identifying a web page.

UWA: Universal Widget API - a universal API for describing widgets.

(Web) Widget: A mini-application which runs in an environment provided by a widget
framework.

XML: eXtensible Markup Language - a data interchange format.

XSS: Cross-Site Scripting - an attack in which unauthorized code is injected in a web page.

74

Appendix B

ATUSA Adjustments Overview

In this chapter the changes which were made to ATUSA are explained. This chapter dis-
cusses only the changes which were made to the core source code of ATUSA. The goal of
the approach used for implementing these changes was to offer plugins the possibility to
extend ATUSA while restraining as much as possible from changing the source code. The
implementation of the plugins is discussed in Chapters 5 and 6 of this report.

B.1 Active Element

As defined in Section 5.1.2, the active element is the element on which the last event is
fired by ATUSA. This element must be accessed during the validation phase because our
approaches rely on it. The active element was made available by storing it in the IEBrowser
object, right before an event is fired. Events can be fired by the methods input() and
fireEventWait().

B.2 Accessing the Internal Browser DOM

As explained in Section 5.2.1, CRAWLJAX has access to three DOM objects. The DOM
of the internal browser must be accessible to annotate data on its elements. CRAWLJAX

uses Watij1, an open source library for web application testing in Java, to access the internal
browser. Unfortunately Watij does not allow direct access to the internal browser’s DOM.
However, this can be achieved by a workaround. By using reflection, the internal browser
object can be retrieved from the Watij package and its DOM can be modified. Figure B.1
shows the code used to do this.

B.3 Plugin Configuration

CRAWLJAX is configured using a properties file as specified by the Commons Java Con-
figuration API2. Originally CRAWLJAX and its plugins were being configured through one

1Watij: http://www.watij.com
2Commons Configuration: http://commons.apache.org/configuration

75

B.3 Plugin Configuration ATUSA Adjustments Overview

/**
* Return the corresponding internal browser DOM element

* for element.

*/
public static HTMLElement

getInternalBrowserElement(watij.elements.HtmlElement element)
throws Exception

{
IEHtmlElement ieHtml = (IEHtmlElement) element;
Method ieMethod =

ieHtml.getClass().getDeclaredMethod("htmlElement", null);
ieMethod.setAccessible(true);
HTMLElement HTMLe = (HTMLElement) ieMethod.invoke(ieHtml , null);
return HTMLe;

}

Figure B.1: Accessing the internal browser’s DOM using reflection.

file (crawljax.properties). The properties file is parsed by the PropertyHelper class which
makes the configuration available to CRAWLJAX throughout execution. When configuration
options are added to the properties file, the source code of the PropertyHelper class must
be adapted as well.

A method for avoiding this is to extend the PropertyHelper using Aspect Oriented
Programming (see Appendix C). An abstract aspect PluginPropertyHelper was added to
CRAWLJAX which can be extended by plugins which require their own configuration.

The aspect places a pointcut on calls to the checkProperties() method declared in
PropertyHelper. This method is called by the PropertyHelper after all properties are
initialized to validate the loaded configuration. By placing an advice right before this call
additional properties can be added to the PropertyHelper. By placing an advice around
the call the additional properties can also be validated without interfering with the original
checkProperties() function. The advices in PluginPropertyHelper only call abstract
methods which means that any extending aspect can add its own properties.

The PropertyHelper offers convenience methods for reading configuration values and
returning them with the required type (the getProperty*() methods). In these methods
the Configuration object is used, which is linked to one properties file throughout the ses-
sion. In order to allow plugins to use their own properties file, the PluginPropertyHelper
aspect implements wrappers for the methods of the PropertyHelper. These wrappers, the
getPluginProperty*() methods, temporarily replace the Configuration object with the
plugin’s Configuration object and restore it after the requested property was retrieved.

The main advantage of this approach is that each plugin can have its own configuration
file. Another advantage of this is that plugins can be easily turned on or off, by adding or
removing them from the atusa.plugins setting, rather than requiring to turn on or off all
their configuration options.

76

ATUSA Adjustments Overview B.4 Attribute Annotation

Fire event

Analyze result

Execute plugin

[Yes]

Changes?

Change allowed?Continue crawling

[No]

[Yes]

[No]

Report violation

[Done]

Save domBeforeEvent

Save domAfterEvent

Inject attributes

Save injectedDomAfterEvent

Remove attributes

Save injectedDomBeforeEvent

Figure B.2: Annotating variables during the crawling process.

B.4 Attribute Annotation

Some of the approaches discussed in this report require the annotation of an attribute on a
DOM element in order to identify the element later on during the crawling process. Because
annotating attributes changes the DOM, it is important to use and remove the attributes again
before CRAWLJAX copies the DOM. When the attributes are not removed, CRAWLJAX will
detect a new DOM state after each annotation and the crawling process may end up in an
infinite loop.

The required annotation process is depicted in Figure B.2. This process is implemented
in CRAWLJAX using an abstract aspect AbstractInjectionAspect. This aspect allows for
the annotation of an attribute on a DOM element in the internal browser’s DOM. It places a
pointcut on the execution of the fireEventWait() method of the IEBrowser. By placing
an advice right before and after the pointcut, an attribute can be annotated and removed
without interfering with the execution of CRAWLJAX. To make the annotated DOMs avail-
able to the plugins for analysis they are being stored inside the IEBrowser. They can be re-

77

B.5 DOM History ATUSA Adjustments Overview

quested using the getInjectedDom*() methods. The aspect uses the AttributeInjector
class which offers functionality for performing and removing the annotation. This class also
contains functionality for verifying whether a node already is annotated or whether a node
should be excluded from the annotation process. Finally it is also possible to annotate a
node and all its parents, which is a process that is used in widget boundary detection (Sec-
tion 5.1.1).

B.5 DOM History

ATUSA executes its in-crawling plugins after a DOM change. With the introduction of our
proxy for ATUSA (Section 6.2.1), HTTP requests have become another point of interest. It
is possible that many events fired by ATUSA trigger HTTP requests without causing a DOM
change. This means that at the time a plugin is started, requests which were not triggered
by the last event may be present in the proxy buffer. ATUSA was extended to annotate a
unique value into the DOM, which is appended to each request, everytime an event is fired.
If requests in the proxy buffer were sent a number of events ago, their unique value cannot
be found in the current DOM because it already has been removed.

To solve this, the DOM history was implemented. This object contains the last 25 DOM
instances. When a unique value must be located in the DOM, the history is traced back
until the value is found. The advantage of this approach is that despite the asynchronicity
of AJAX, HTTP requests can be traced back exactly to the situation from which they were
triggered.

78

Appendix C

Aspect-Oriented Programming

Some programming problems are difficult to solve using object-oriented programming with-
out generating code clutter. An example of this is a logging system which writes a log entry
at the entrance and exit of every public function. Such a system would require a call to
writeLog() as first and last line of code of every public function, which results in cluttered
code.

This problem can be solved using aspect-oriented programming (AOP) [19]. AOP al-
lows for the generation of aspects, which describe crosscuts of system functionality. Solv-
ing the logging problem using aspects would result in an aspect, which describes that every
function should be preceded and concluded with a call to writeLog(). This results in much
cleaner code and abandons the need to add logging to every new component.

Another advantage of AOP is that existing code can be extended or changed without the
need to physically change the source code. This allows for the extension of legacy or third
party libraries.

A Java implementation of AOP is AspectJ [1]. AspectJ allows for the definition of
pointcuts and advices. A pointcut describes a crosscut of the system, to which functionality
must be added. A pointcut can match a number of execution points, called joinpoints. In
AspectJ pointcuts can be defined on a number of actions, including function calls, func-
tion executions and variable accesses. An advice describes the action to be taken when a
joinpoint is reached during execution. Advices can be applies before, after and around the
joinpoint.

Figure C.1 shows the implementation of the logging problem using an aspect. The
pointcut defines a crosscut on the execution of every public function. AspectJ is used to
implement the approaches described in this thesis.

79

Aspect-Oriented Programming

public aspect LoggingAspect{
pointcut addLogging():

execution(public * *(*));

before(): addLogging(){
writeLog("Before function: ...");

}

after(): addLogging(){
writeLog("After function: ...");

}
}

Figure C.1: Solution for the logging problem using AspectJ.

80

Appendix D

Vulnerabilities

Browser security measures cannot handle all security issues in web applications. Numerous
types of vulnerabilities have been identified in web application security research [12, 30].
Some of the most common are discussed in this appendix. First cross-site scripting and
injection, vulnerabilities which both exploit weak input validation, are explained. Finally
Cross-site request forgery, an attack which exploits weak user validation, is discussed.

D.1 Cross-site Scripting

Cross-site scripting (XSS)1 is an attack in which a malicious user exploits weak input vali-
dation by entering code that is eventually executed by a visitor [10, 12]. In 2007 the majority
of attacks recorded were XSS attacks [32]. Characteristics of XSS vulnerabilities are that
they are easy to fix, easy to exploit and can have a great impact when they are not fixed [30].

XSS is usually done by entering HTML code which includes JavaScript, which will be
displayed somewhere later on. An example of this is a comment on a blog post. There are
two types of XSS: transient and persistent. The difference between these is that persistent
XSS remains on the page, for example because it is stored in a database, while transient
XSS exists only in the current session. An example of transient XSS can be demonstrated
by the following snippet of PHP code:

<p>An error occured: <?php echo $_GET[’error’]; ?></p>

The $ GET array indicates that the error message is sent via the URL, for example:

http://www.domain.com/page.php?error=112

It is displayed to the visitor without validation. A malicious user may exploit this by tricking
a user into visiting the following page:

http://www.domain.com/page.php?error=<script>alert(’XSS!’)</script>

Because the value for $ GET[’error’] is not validated, it will be displayed on the page and
the visitor will see a JavaScript alert box. Instead of displaying an alert box the malicious

1Because CSS is generally used to describe Cascading Style Sheets the acronym XSS is generally used to
describe cross-site scripting to avoid confusion.

81

D.2 Injection Vulnerabilities

user could also have chosen to include more dangerous code like code that sends cookie
details.

D.2 Injection

Injection attacks are based on exploiting weak validation of input which is used in a query
of some sort later on. Examples of injection attacks are SQL injection, XPath injection and
RSS injection [12, 30]. The idea of injection attacking is demonstrated by the following.
On a website the following SQL query is used during the authentication process of a user:

SELECT * FROM login WHERE user = ’$user’ AND pwd =’$pwd’;

If $user is input from a form and not validated, a malicious user may enter a value like 1’
OR 1=1;--, which results in the query:

SELECT * FROM login WHERE user = ’1’ OR 1=1;--’ AND pwd =’$pwd’;

The WHERE clause of this query is always true because of the OR clause and the semicolon
which is the command delimiter in SQL. Because -- indicates a comment in SQL, the part
after the semicolon is not included in the query. The query will return the details for the
first user in the table and since this is often the administrator, the malicious user is able to
login as administrator. Similar approaches can be taken to inject code into XPath and RSS
queries.

D.3 Cross-site Request Forgery

Cross-site request forgery (CSRF) [37] is an attack that exploits weak user credential vali-
dation. It is becoming more popular and entered the latest OWASP TOP 10 [32] at the fifth
place. Many websites which require a user to login store the session ID in a cookie during
the authentication process. When a logged in user visits a protected page, the server looks
for the session ID in its session table and decides whether the user is allowed to view the
page.

CSRF tries to exploit this behaviour by tricking the user into requesting vulnerable
pages. An example is the following. A bank www.insecurebank.com allows logged in
users to transfer money by visiting transfer.aspx?to=113&amount=100.00. When this
page is requested, the session ID is validated and if the user is logged in, the money is
transferred to the user with account number 113.

If the cookie containing the session ID is not removed after visiting the bank and a ma-
licious user can trick someone into visiting a specially crafted URL that transfers money to
the account of the malicious user, he may trick that person into transferring money without
knowing it. This type of attack, called CSRF, is often done with a tag such as the tag, which requests the page without requiring a click. CSRF attacks are of-
ten combined with XSS attacks, preferably on websites with a high volume of traffic to
maximize exposure.

82

Appendix E

JavaScript Code for AJAX
Subversion

The JavaScript code of Figures E.1 and E.2 adds the requestforproxyid attribute of the
srcElement on which an event was fired to AJAX calls. If the srcElement does not have
the property, 12345 is added to the call.

/* jQuery framework AJAX subversion code */
if(typeof(jQuery) != "undefined")
{
oldAjax = $.ajax;

jQuery.extend({
ajax : function(s){

var id = window.event && window.event.srcElement ?
window.event.srcElement.getAttribute(’requestforproxyid’) : 12345;

// attach the requestforproxyid value to the variables to send
if(typeof(s) === "object")

s.data.requestforproxyid = id;
else if(empty(s.data))

s.data = "";
else

s.data += "&";

s.data += "requestforproxyid=" + id;
// send the request
oldAjax(s);

});
}
// end of jQuery framework AJAX subversion code

Figure E.1: JavaScript code used for subverting AJAX calls in the jQuery framework.

83

JavaScript Code for AJAX Subversion

/* Microsoft AJAX.NET framework subversion code */
if(typeof(Sys) != "undefined"){
// for EFW use the following line
Sys.Net.WebRequest.prototype.oldGetBody = SysNetWebRequest$get_body;
// for Pageflakes use the following line
// Sys.Net.WebRequest.prototype.oldGetBody = Sys.Net.WebRequest.prototype.get_body;
Sys.Net.WebRequest.prototype.get_body = newGetBody;

}

function newGetBody(){
var body = this.oldGetBody();
var id = window.event && window.event.srcElement ?

window.event.srcElement.getAttribute(’requestforproxyid’) : 12345;
if(empty(body))

body = "";
else

addAmpsnd = true;

if(typeof(body) == "object")
body.data.requestforproxyid = id;

else
{
// json request is not supported yet
var regex = new RegExp("{.*:.*}");
var m = regex.exec(body);
if(m == null)
{
if(addAmpsnd)

body += "&";
if(!body.match("requestforproxyid"))

body.requestforproxyid = id;
}

}
return body;

}
//end of Microsoft AJAX.NET framework subversion code

Figure E.2: JavaScript code used for subverting Microsoft AJAX.NET calls.

84

