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Identifying Similar Test Cases That
Are Specified in Natural Language
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Abstract—Software testing is still a manual process in many industries, despite the recent improvements in automated testing
techniques. As a result, test cases (which consist of one or more test steps that need to be executed manually by the tester) are often
specified in natural language by different employees and many redundant test cases might exist in the test suite. This increases the
(already high) cost of test execution. Manually identifying similar test cases is a time-consuming and error-prone task. Therefore, in this
paper, we propose an unsupervised approach to identify similar test cases. Our approach uses a combination of text embedding, text
similarity and clustering techniques to identify similar test cases. We evaluate five different text embedding techniques, two text
similarity metrics, and two clustering techniques to cluster similar test steps and three techniques to identify similar test cases from the
test step clusters. Through an evaluation in an industrial setting, we showed that our approach achieves a high performance to cluster
test steps (an F-score of 87.39%) and identify similar test cases (an F-score of 83.47%). Furthermore, a validation with developers
indicates several different practical usages of our approach (such as identifying redundant test cases), which help to reduce the testing
manual effort and time.

Index Terms—Software testing, Test case similarity, Clustering.
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1 INTRODUCTION

D ESPITE the many recent improvements in automated
software testing, testing is still a manual process in

many industries. For example, in the gaming industry,
game developers face several challenges and difficulties
with writing automated tests [37, 39, 42]. As a result, test
cases are often described in natural language and consist of
a sequence of one or more test steps, which have instruc-
tions that must be manually performed to test the target
game. Furthermore, those test cases are usually defined
by employees from different departments, such as Quality
Assurance (QA) engineers or developers, which may result
in redundant test cases (i.e., test cases that are semantically
similar or even duplicates) as the system evolves and the
test suite grows [45]. Having redundant test cases is prob-
lematic in particular in a manual testing scenario, due to the
tediousness and cost of executing such manual tests.

Manually identifying similar or duplicate test cases to
reduce test redundancy is an expensive and time-consuming
task. In addition, naive approaches (e.g., searching for ex-
actly matching test cases) are not sufficient to capture all
similarity, as different test case writers may use different
terminology to specify a test case, even for similar test
objectives. Approaches proposed by prior work [7, 28, 52]
have limitations in terms of scope (e.g., the work by Li et al.
[28] can only cluster test steps but not entire test cases), the
large manual effort necessary to specify formal descriptions
of test cases [52], or the need for the test case source code [7].
Therefore, an automated and unsupervised technique to
identify similar test cases (which can be applied directly
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to the natural language description of entire test cases) is
necessary as it can prevent the QA and development teams
from wastefully executing test cases that perform the same
task. Throughout this paper, for brevity we adopt the term
“similar test cases” to refer to semantically similar and
duplicate test cases.

In this paper, we propose an approach to identify sim-
ilar test cases that are specified in natural language. More
specifically, (1) we use text embedding, text similarity, and
clustering techniques to cluster similar test steps that com-
pose test cases and (2) we compare test cases based on their
similarity in terms of steps that belong to the same cluster.

In the first part of the study, we study how text em-
beddings obtained from different techniques, text similarity
metrics, and different clustering algorithms can be lever-
aged to identify semantically similar test steps. We com-
pare embeddings from five different techniques (Word2Vec,
BERT, Sentence-BERT, Universal Sentence Encoder, and TF-
IDF), two similarity metrics (Word Mover’s Distance and
cosine similarity), and evaluate two different clustering
techniques (Hierarchical Agglomerative Clustering and K-
Means). In particular, we address the following research
question for this part of the study:
RQ1: How effectively can we identify similar test steps
that are written in natural language?
Understanding if we can effectively identify similar test steps
automatically allows to know if we can rely on test step clusters
to identify similarity between entire test cases. We found that we
can achieve the highest performance (an F-score of 87.39%) using
an ensemble approach that consists of different embedding and
clustering techniques. In addition, we show that using Sentence-
BERT instead of Word2Vec (which was identified as the best-
performing model by prior work [28]) yields a slightly lower
performance but reduces the execution time from 150 minutes
to about 2 minutes.
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In the second part of the study, we leverage the previ-
ously detected clusters of test steps to identify similar test
cases. We compared three different techniques and related
variations to compute a similarity score (using the simple
overlap, Jaccard, and cosine metrics) to measure the similar-
ity of test cases based on the test step clusters that they have
in common. In particular, we address the following research
question for this part of the study:
RQ2: How can we leverage clusters of test steps to identify
similar test cases?
Given the difficulty of identifying similar test cases, which are
usually composed of several steps, we use clusters of similar test
steps to identify similar test cases. We found that test step clusters
can be used to identify test case similarity with a high performance
(an F-score of 83.47%).

Our work presents an approach to identify similar test
cases based only on their natural language descriptions. We
highlight that our approach is unsupervised as it does not
require labelled data nor requires human supervision. In ad-
dition, no test source code or system model is necessary. QA
engineers and developers can use our approach to obtain
groups of similar test cases, which can be used, for example,
to identify and remove redundant test cases from the test
suite. Furthermore, existing groups of similar test cases
can be leveraged to support the design of new test cases
and help to maintain a more consistent and homogeneous
terminology across the test suite. Finally, we provide access
to the source code of our approach and the experiments that
we performed.1

The remainder of the paper is organized as follows. In
Section 2, we present background information about text
embedding, clustering techniques and game testing. We dis-
cuss related work in Section 3 and our proposed approach
in Section 4. Section 5 presents the dataset that we used to
evaluate our approach. Sections 6 and 7 discuss the exper-
iments that we performed to evaluate the two main stages
of our approach. In Section 8, we discuss our results and the
approach validation. Finally, Sections 9 and 10 present the
threats to validity and conclude our work, respectively.

2 BACKGROUND

In this section, we present an overview of the terminology
and concepts that we use throughout the paper. In this work,
we use “test cases” to refer to manual test cases that are
described in natural language as a sequence of steps, i.e.,
test cases for which there is no source code associated.

2.1 Text representation

In order to use text data as input for a machine learning
algorithm, we first need to convert the text into a numeric
vector through a process called text embedding [56, 57]. Dif-
ferent methods can be used to obtain a text embedding, and
the embedding can be done at different granularity levels,
such as at word and sentence-level. Below, we explain the
different techniques that we use in this work to obtain the
numeric representation of words and sentences.

1. https://github.com/asgaardlab/test-case-similarity-technique

2.1.1 Word Embedding

A word embedding is the representation of a single word
through a real-valued (and usually high-dimensional) nu-
meric vector. In this study, we use two natural language
processing techniques to obtain word-level embeddings:
Word2Vec [34] and BERT [9]. Figure 1a presents two ex-
amples of pre-processed test steps along with part of their
word embeddings obtained by the Word2Vec and BERT
models. Next, we explain how each word embedding tech-
nique works and how the example embeddings presented
in Figure 1a are computed.

Word2Vec transforms words into high-dimensional nu-
meric vectors that are able to maintain the syntactic and se-
mantic relationships between words in the vector space [34,
35]. This means that embeddings of similar words will (most
of the time) be close in the vector space (i.e., the distance
between the embedding vectors is small). Furthermore, with
Word2Vec, each word is assigned a single numeric vector
regardless of the context in which it is used, as we can see for
the words “verify” and “item” in the two steps in Figure 1a.
In this work, we used the continuous bag-of-words (CBOW)
model architecture of Word2Vec, which is faster than the
other possible architecture, called skip-gram [35].

Differently from Word2Vec, BERT (Bidirectional
Encoder Representations from Transformers) is a
transformer-based model that can be used to extract con-
textual word embeddings, i.e., embeddings that change
depending on the context in which a word is present [9]. The
context of a target word refers to the words that surround
it, i.e., the words that appear before and after the target
word. This means that the same word may have different
embedding vectors, as we can see in Figure 1a, where the
BERT embeddings for the words “verify” and “item” are
different in the two test steps because those words are in
different contexts.

BERT is available as a model that was pre-trained on
lower-cased English text (uncased BERT). This pre-trained
model can further be trained with a domain-specific train-
ing set (known as domain-adaptive pre-training [17]). The
BERT model uses WordPiece tokenization [58], in which a
word may be split into sub-words. For example, the word
“validate” is composed of the sub-words “valid” and “ate”,
each one with its own embedding vector. Therefore, when
extracting embeddings of words that are split into sub-
words, we need to aggregate the embeddings of the sub-
words (e.g., by averaging the embedding vectors).

2.1.2 Sentence Embedding

Differently from word embedding, sentence embedding is
the representation of a whole sentence with a real-valued
(and usually high-dimensional) numeric vector. In this
work, we use three different techniques to extract sentence
embeddings (SBERT, USE, and TF-IDF). Figure 1b presents
two examples of pre-processed test steps along with part
of their sentence embeddings obtained by the SBERT, USE,
and TF-IDF techniques. Next, we explain how each sentence
embedding technique works.

Sentence-BERT (SBERT) is a BERT-based framework
that allows us to directly extract numeric representations
of full sentences [43]. The embeddings of sentences that

https://github.com/asgaardlab/test-case-similarity-technique
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Test step Word2Vec BERT

[verify item name] [(-0.93, -0.16, ...), (0.57, 0.21, ...), (0.12, 0.85, ...)] [(-0.12, -0.11, ...), (-0.59, -0.13, ...), (-0.24, -0.58, ...)]

[verify item description] [(-0.93, -0.16, ...), (0.57, 0.21, ...), (-0.03, -0.27, ...)] [(-0.12, 0.07, ...), (-0.61, -0.08, ...), (-0.24, -0.50, ...)]

(a) Examples of word embeddings for test steps.

Test step SBERT USE TF-IDF

[verify item name] [(0.32, 0.02, ...)] [(0.46, 0.52, ...)] [(0.0 ... 0.63, 0.67 … 0.0)]

[verify item description] [(0.31, -0.09, ...)] [(-0.15, 0.81, ...)] [(0.0 … 0.76, 0.55 … 0.0)]

(b) Examples of sentence embeddings for test steps.

Figure 1: Examples of test step embeddings. Note that we provide only the first two elements of the embedding vector due
to space constraints as the actual vectors have a high dimension.

are semantically similar are close in the embedding space.
We can use this information for different purposes, such
as identifying paraphrases and clustering similar sentences.
For instance, the SBERT embeddings of the two test steps
presented in Figure 1b are close in the embedding space
(i.e., have a small distance between them). Among several
generic and task-specific SBERT pre-trained models that are
available2, three models are suitable for our task (identi-
fying similar test steps): paraphrase-distilroberta-base-v1, stsb-
roberta-base, and stsb-roberta-large. While the first model is
optimized to identify paraphrases and was trained on large
scale paraphrase data, the second and third ones are the
base and large versions of a model that was optimized for
semantic textual similarity.

Universal Sentence Encoder (USE) is an embedding
technique that can be used to directly extract embeddings
from sentences, phrases, or short paragraphs to be used
in another task, such as textual similarity and clustering
tasks [5]. With a similar behavior to SBERT, the two exam-
ples presented in Figure 1b have close embedding vectors.

Finally, we also used the TF-IDF (Term Fre-
quency–Inverse Document Frequency) method to repre-
sent sentences. TF-IDF computes the importance of a word
to a document by combining the word frequency in the
document and the word frequency across all the other
documents [21, 22, 46]. In our case, the test steps (i.e.,
sentences) are considered documents. We built a numeric
vector for each test step using the word importance values.
Words that are not present in the step are assigned a value
of zero. We can observe a typical vector obtained with TF-
IDF in the examples presented in Figure 1b, in which the
values different from zero correspond to the importance of
the words presented in the “verify item name” and “verify
item description” steps.

2.2 Clustering techniques

Hierarchical Agglomerative Clustering (HAC) [44] is a
clustering algorithm that works in a bottom-up manner. Ini-
tially, each data point corresponds to a single cluster itself,
and as the algorithm iterates, different clusters are merged
with the aim of minimizing a specific linkage criterion. The
result of the iterative merging process is a tree structure that

2. https://www.sbert.net/docs/pretrained models.html

can represent the data points (and their clusters), known as a
dendrogram. Although the dendrogram can be used to iden-
tify the number of clusters, in our work we determined that
parameter empirically and used the number that maximizes
our evaluation metric (as explained in Section 6.5). Different
linkage criteria can be used, such as single-linkage (the
algorithm uses the minimum of the distances between all
data points of two sets) and average-linkage (the algorithm
uses the average of the distances between all data points of
two sets).

The K-means clustering [12] algorithm splits the data
points into k different clusters. Different from HAC, no
hierarchical cluster structure is generated with K-means.
The goal of K-means is to group data points in order to
minimize the distance between points belonging to the
same cluster compared to the distance of points from
different clusters. Using the Expectation-Maximization al-
gorithm [36], K-means starts with k centroids. Then, the
algorithm (1) assigns each data point to the closest cluster (in
terms of the distance between the point and the centroids)
and (2) computes the new centroids using the updated data
point assignments. The execution finishes when there is no
change to the allocation of data points.

2.3 Game testing
Video game testing is substantially different from traditional
software (e.g., desktop or mobile) testing. While there have
been advances in test automation for traditional software,
games still rely mainly on high-level, black-box, manual
testing, in which human testers play through the game to
assert its expected behavior (which is known as gameplay
testing) [37, 39, 42]. Furthermore, the focus of game testing
is more related to the overall user experience than to the
accuracy of the test [42]. The test cases in a test suite of a
game must also verify different types of requirements com-
pared to traditional software, such as fun, entertainment,
gameplay and other user experience aspects that traditional
testing cannot satisfy [42]. Test automation is significantly
more difficult in games for a number of reasons, such as
(1) the difficulty of separating the user interface from the
rest of the game, (2) the difficulty to explore the often large
state space in games, (3) the challenge in asserting what
the expected behavior is, and (4) the non-determinism that
games have (e.g., because of multithreading, distributed

https://www.sbert.net/docs/pretrained_models.html
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computing, and AI agents) [37]. Finally, the common sce-
nario of manual testing and the difficulties to automate
tests in games show the need for new methodologies that
can support QA engineers and developers during the game
testing and enable game test automation in the future [39].

3 RELATED WORK

In this section, we discuss prior work that applied clustering
techniques [4, 6, 28, 52, 60] and natural language processing
(NLP) [28, 30, 32, 33, 49, 54, 55] to software testing.

3.1 Clustering techniques for software testing
Our work is based on the study of Li et al. [28], which
proposed an approach to cluster test steps written in nat-
ural language based on the steps’ similarities. The study
used text embeddings (including embeddings obtained with
the Word2Vec technique) together with the Relaxed Word
Mover’s Distance (RWMD) metric [23] to measure similarity
between embeddings. The test steps were then clustered
with the hierarchical agglomerative and K-means clustering
techniques. The approach was evaluated on a large-scale
dataset of a mobile app and achieved an F-score of 81.55%
in the best case. The proposed approach also reduced the
manual effort for implementing test-step API methods by
65.90%. Differently from Li et al.’s work [28], we evalu-
ated more recent NLP techniques to obtain word and sen-
tence embeddings (BERT, SBERT, and Universal Sentence
Encoder). Furthermore, we extended Li et al.’s work [28]
for the purpose of identifying similar test cases using the
identified clusters of test steps.

Walter et al. [52] proposed an approach to improve the
efficiency of test execution. The approach removes redun-
dant test steps and uses clustering techniques to rearrange
the remaining steps. To use the approach, the textual de-
scriptions of test cases must be converted into a represen-
tation form of parameters concatenated by first-order logic
operators (AND, OR, NOT). The approach was evaluated
in a case study with a system from an automotive industry
company. The results indicated a test load reduction of 18%
due to the removal of redundant test steps and rearrang-
ing of the remaining steps. Chetouane et al. [7] proposed
an approach to reduce a test suite by clustering similar
test cases (based on their source code) with the K-means
algorithm. 13 Java programs were used to evaluate if the
approach could efficiently reduce the test suite and assess
the impact on coverage metrics. The evaluation showed
that the approach can reduce the test suite by 82.2% while
maintaining the same coverage metric as the original test
suite. Even though the work of Walter et al. [52] addressed
the problem of test step redundancy, their approach requires
all test steps to contain a formal description of their pre-
condition, action and postcondition. Creating these formal
descriptions requires a large amount of manual effort which
causes scalability issues and reduces the applicability of the
approach in practice. Our approach does not require such
manual effort. The approach proposed by Chetouane et al.
[7] requires test cases that have source code associated with
them. The test cases on which our approach focuses consist
of only natural language descriptions and do not have any
source code associated with them.

Pei et al. [40] proposed distance-based Dynamic Random
Testing (DRT) approaches with the goal of improving the
fault detection effectiveness of DRT. The work clustered
similar test cases based on their source code with three
clustering methods: K-means, K-medoids, and hierarchical
clustering. The information of distance between the test case
groups was used to identify test cases that are closer to
failure-causing groups. 12 versions of 4 open-source pro-
grams were used to evaluate the approaches. The evalua-
tion showed that the proposed strategies achieve a larger
fault detection effectiveness with a low computational cost
compared to other DRT approaches. Arafeen and Do [3]
investigated whether clustering of test cases based on simi-
larities in their requirements could improve traditional test
case prioritization techniques. The paper used TF-IDF and
the K-means clustering algorithm to group test cases that
have similar requirements. Two Java programs were used
to evaluate the approach. The evaluation showed that the
use of requirements similarity can improve the effectiveness
of test case prioritization techniques but the improvements
vary with the cluster size.

Differently from the works above, our study aims at
finding similar test cases that are written in natural language
and for which there is no associated source code. We experi-
mented with different NLP and clustering techniques to find
clusters of similar test steps, which are used with test case
names to obtain similar test cases. Furthermore, differently
from the work of Walter et al. [52], which converts natural
language descriptions of test cases into a representation
form of parameters concatenated by logic operators to be
used with their approach, our proposed approach works in
an unsupervised manner with the original test cases written
in natural language.

3.2 Natural Language Processing techniques for soft-
ware testing

Wang et al. [54] proposed an approach to automate the
generation of executable system test cases. The approach
applies NLP techniques (such as tokenization and part-
of-speech tagging) to textual data obtained from use case
specifications. Furthermore, a domain model of the system
under analysis is necessary to generate test data and ora-
cles. Wang et al. [54] performed an industrial case study
with automative software to demonstrate the feasibility of
the proposed approach. Wang et al. [55] extended their
previous work [54] by further providing empirical evidence
about the scalability of the approach to generate executable,
system-level test cases for acceptance testing from natural
language requirements. In addition, Wang et al. [55] focused
on embedded systems and demonstrated the effectiveness
of the proposed approach using two industrial case studies,
in which the approach correctly generated test cases that ex-
ercise different scenarios manually implemented by experts,
including critical scenarios not previously considered.

Yue et al. [59] proposed a Test Case Specification (TCS)
language, called Restricted Test Case Modeling (RTCM), and
an automated test case generation tool, called aToucan4Test,
to transform textual test cases into executable test cases.
RTCM provides a template that combines natural language
with restriction rules and keywords for writing TCS. Two
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case studies were performed to assess the applicability of
RTCM and a commercial video conferencing system was
used to evaluate the aToucan4Test tool. aToucan4Test could
correctly generate 246 executable test cases from 9 test
case specifications of subsystems of the video conferencing
system. The study also evaluated the effort to use RTCM
and aToucan4Test using the average time for deriving the
executable test cases, which is 0.5 minutes. Mai et al. [30]
addressed the problem of automatically generating exe-
cutable test cases from security requirements in natural lan-
guage. Mai et al. proposed an approach to generate security
vulnerability test cases from use case specifications that
capture malicious behavior of users. Similarly to previous
work, Mai et al. evaluated the approach with an industrial
case study in the medical domain. The evaluation indicated
that the proposed approach can automatically generate test
cases detecting vulnerabilities.

Prior work also used NLP techniques for test case prior-
itization and fault localization. Peng et al. [41] investigated
program change-based test case prioritization using Infor-
mation Retrieval (IR) techniques, in which the textual simi-
larity between the program changes and the tests is used to
rank tests for execution. Four techniques were used to com-
pare and rank the tests, such as BM25, LDA, LSI, and TF-
IDF, which transforms the text data into a numeric vector us-
ing bag-of-words. The proposed techniques were evaluated
using cost-aware and cost-unaware metrics related to the
Average Percentage of Faults Detected (APFD). Lachmann
et al. [24] investigated test case prioritization of system-
level, black-box test cases written in natural language. Test
case textual descriptions were pre-processed (with tech-
niques such as tokenization and stemming) and converted
to numeric vectors using the frequency of terms occurring
in the test cases. These vectors were combined with other
test case meta-data (e.g., failures revealed by the test cases)
to rank test cases based on their importance. Hemmati et al.
[19] also studied test prioritization using natural language,
black-box test cases. Three techniques were proposed (text
diversification, topic modeling, and history-based test pri-
oritization) and evaluated on Mozilla Firefox projects. The
evaluation showed that, in rapid release environments, test
case failure history can be used to effectively prioritize test
cases for execution. DiGiuseppe and Jones [11] proposed
a Semantic Fault Diagnosis (SFD), which automatically
provides natural language descriptions of software faults.
Using information extracted from the source code text (e..g,
class names, comments, and other keywords), SFD can
present developers not only with the pass and fail outcome
of a test execution, but also a list of words that describe
the topics related to the fault. Finally, Fry and Weimer [14]
presented an approach that relies on textual features (e.g.,
term frequency vectors) from source code and defect report
descriptions to localize defects in the source code. Using a
similarity score to compare the representations of a defect
report and the source code files, the approach ranks the
source code files such that files at the top are more likely
to contain the defect.

The aforementioned works used different NLP tech-
niques to perform several tasks related to testing, such as to
automatically generate different types of test cases, test case
prioritization, and fault localization. In contrast, we propose
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Figure 2: Overview of our proposed approach.

an approach that leverages different NLP techniques to ex-
tract text embeddings and can automatically identify similar
test cases. The approach can be used to identify and remove
redundant test cases written in natural language.

4 PROPOSED APPROACH

In this section, we demonstrate our proposed approach
through a running example. Our approach starts by clus-
tering similar test steps, which are then used to identify
similar test cases. We adopt a test step-based approach since
test steps have a simpler grammatical structure compared
to whole test cases. Also, a whole test case, which consists
of all of its test steps aggregated, is not a coherent document
as the test steps in a test case might be very different from
each other. For example, in the same test case, one test step
might be related to the ’login’ functionality and another test
step might be related to ’purchasing a membership’. Finally,
using a test step-level approach provides more flexibility for
recommending improvements not only related to whole test
cases but also to individual test steps in the future. Figure 2
presents an overview of our approach, which consists of
three stages: (1) pre-processing of test cases, (2) clustering of
similar test steps and (3) identification of similar test cases.
Next, we explain the stages of our approach, and we present
an example that demonstrates the necessity of our approach.

4.1 Stage 1: Test case pre-processing

Our approach relies only on test cases that are written
in natural language, which means that there is no source
code available for our test cases. The input to our approach
consists of unprocessed (raw) test cases. Table 1 presents
three test cases (TC1, TC2, and TC3) that we use as a running
example to describe how our approach identifies similar
test cases. As we can observe, each test case contains an
identifier, a name and a type. In addition, a test case has
one or more test steps, which are instructions that the tester
must perform in order to achieve the overall objective of the
test case. Note that this objective is generally not explicitly
specified. Test steps might be related to one or more game
assets, which are the content of the game (e.g., in-game
items, characters, and maps). The test steps that we collect to
perform our experiments are explicitly identified (i.e., each
test step has its own field within a test case). Therefore, we
can directly collect the test steps and identify to which test
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Table 1: Running example.

Test case
identifier

Test case
name

Test case
type

Test step
identifier

Test step
(before pre-processing)

Test step
(after pre-processing)

TC1 Log in to an
existing account Login

TS1.1 Login to the game using an existing ac-
count that has completed the tutorial

[login, game, using, existing, account,
completed, tutorial]

TS1.2 Select the Playing from School portal [select, playing, school, portal]

TC2 Assignment with
many students Education

TS2.1 Update the assignment adding students [update, assignment, adding, student]
TS2.2 Request the next skill and question from

the algorithm gateway for the 1st stu-
dent on the assignment

[request, next, skill, question, algorithm,
gateway, student, assignment]

TS2.3 Request the next skill and question from
the algorithm gateway for the middle
student on the assignment

[request, next, skill, question, algorithm,
gateway, middle, student, assignment]

TC3
Student has
multiple
assignments

Education

TS3.1 Request the next skill and question from
the algorithm gateway for one of the
students that was on the assignment

[request, next, skill, question, algorithm,
gateway, one, student, assignment]

TS3.2 Remove student from the first assign-
ment

[remove, student, first, assignment]

TS3.3 Request the next skill and question from
the algorithm gateway for one of the
students that was on the assignment

[request, next, skill, question, algorithm,
gateway, one, student, assignment]

TS3.4 Remove the student from the second as-
signment

[remove, student, second, assignment]

case they belong. Each test step is assigned a unique iden-
tifier and is pre-processed. Initially, we used tokenization to
transform the step sentences into a list of words. To ensure
that we have high-quality data, we obtained a list of the
unique words in our data and manually inspected the list to
identify misspelled words, which were used to build a list of
[misspelled word, fixed word] tuples. The manually built
tuple list was used to programmatically replace misspelled
words with the corresponding fixed words across the entire
dataset. We then removed stopwords (such as “a”, “of”,
and “the”) as they do not add meaning to the sentences.
Also, we applied lemmatization to the words to have a
consistent terminology across the data. Finally, similar to
prior work [28], we removed words that occur only once in
the whole dataset (507 out of 2,599 unique words) as they
may result in incorrect embeddings due to the small amount
of data for these words. Overall, a test case instance can be
represented by the triple:

<test case name, test case type, test steps>

4.2 Stage 2: Test step clustering
In the second stage, our approach clusters similar test steps.
Figure 3 shows how the steps of the three test cases are
processed in this stage. Before applying a machine learning
algorithm to text data, we need to transform the text into
a numeric representation [56, 57]. Our approach starts by
transforming each test step into one or more numeric vec-
tors (text embedding). The pairwise similarity between steps
(in terms of embedding distance) is then computed. The
computed distances between the text embeddings of the test
steps can be used to capture their similarity. In particular,
embeddings that are close in the embedding space should
represent similar steps.

Finally, our approach leverages the computed distances
to identify clusters of similar test steps. While steps that
have a small distance between them should belong to the
same cluster, steps with larger distances should be in differ-
ent clusters.

4.3 Stage 3: Test case similarity

In the last stage, our approach leverages the clusters of
test steps identified in stage 2 together with the test case
name to find similar test cases. Figure 4 shows how the
TC1, TC2, and TC3 test cases are processed in this stage.
The relationship between test cases and test step clusters is
represented through a matrix in which each row is a test
case (TC1, TC2, and TC3) and each column is a step cluster
(C1, C2, C3, C4, and C5). Initially, for each test case (matrix
row), the approach identifies the test step clusters (matrix
column(s)) that contain one or more steps of the test case.
Our approach supports the use of binary (which yields a
matrix consisting of 0’s and 1’s) or numeric flags. Note that
a numeric flag represents the number of test steps present
in the identified cluster. After filling in the matrix, each test
case is represented by the corresponding binary or numeric
vector (a row in the matrix) with a length corresponding
to the total number of test step clusters. Test cases are
then compared to each other in terms of the similarity
between their representation vectors. Finally, to incorporate
knowledge from the test case name, the approach computes
the pairwise similarity between test case name embeddings
and combines this similarity metric with the one obtained
from the test step clusters. The final test case similarity score
is a weighted sum between the test step cluster and the test
case name metrics. For the running example, our approach
identifies the TC2 and TC3 test cases as similar but both are
different from the TC1 test case. A QA engineer can then
investigate those test cases to decide, for example, whether
they are redundant or should be improved.

4.4 Motivational Example

Li et al. [28] proposed an approach to cluster similar test
steps in natural language. Even though their work is sup-
posed to be used for test steps only (and not entire test
cases composed of one or more test steps), we evaluated
an adaptation of their approach on our dataset using their
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Figure 3: Overview of stage 2 of our approach with the running example.
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Figure 4: Overview of stage 3 of our approach with the running example.

Table 2: Motivational example of two similar test cases.

Test case name 1 Test steps 1

Boots - Ruin Dweller Boots
(Got Item)

1. Verify item name
2. Verify item icon

Test case name 2 Test steps 2

Boots - Got Item
1. Verify item name
2. Verify item icon
3. Sanity check on wearable item -
check ”Got item dialogue” for Boots

best-performing techniques. The adaptation approach con-
sists of using Word2Vec for text embedding, Word Mover’s
Distance (WMD) for text similarity, and hierarchical agglom-
erative clustering together with K-means for clustering. To
be able to apply their approach, we considered a test case to
be represented by either (1) the test case name concatenated
with all the test steps or (2) all the test steps together. In
both scenarios, the approach failed to cluster the two similar
test cases presented in Table 2 (and there are many more
examples in our dataset which could not be identified as
similar by our adaptation of Li et al.’s approach).

The intended purpose of Li et al.’s approach is to cluster
test steps (and not test cases). When considering a whole
test case as a single test step, the granularity of Li et al.’s

approach becomes too coarse and it considers the differ-
ences between the two test cases too large to cluster them
together. However, when comparing the test cases step by
step, instead of as a single blob of text, our approach detects
that many of the steps overlap, hence clustering the two test
cases in the same cluster.

5 DATASET AND GROUND TRUTH

We collected 3,323 test case descriptions written in natural
language. The test cases under study were manually de-
signed to test the Prodigy Game3, a proprietary, educational
math game with more than 100 million users around the
world. Each test case is composed of one or more test steps
and, in total, there are 15,644 steps. There is an average of
4.71 (and a median of 2) test steps per test case. We also
collected the predefined type of the test case regarding the
part of the game that is being tested. The test case type is
available for 2,053 test cases (62% of the total number of
test cases). All the test steps are pre-processed according to
the pre-processing steps as explained in Section 4.1. Manual
testing using test cases that are described only in natural
language is still a common practice across several indus-
tries [18, 19, 28, 37, 39, 42, 52]. The test cases of the Prodigy
game are similar in structure to natural language test cases

3. https://www.prodigygame.com/main-en/
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from other projects. Hemmati et al. [19] studied Mozilla
Firefox projects, with manual test cases described only in
natural language, with an objective and one or more test
steps, similarly to our test cases. Li et al. [28] studied natural
language test cases of a large industrial app (WeChat) with
similar characteristics, such as 4.04 words per test step
description on average (our average is 3.92) and test steps
with simple grammatical structure. Walter et al. [52] studied
automotive test cases in natural language, also with similar
characteristics, such as an average of 3.57 test steps per test
case for one of the studied systems (our average is 4.71).

To evaluate the performance of our approach (stage 2,
for test step clustering, and stage 3, for test case similarity),
we used our dataset to manually build a ground truth of
similar test steps (stage 2) and similar test cases (stage 3), as
we explain below.
Ground truth of similar test steps (stage 2 of our ap-
proach). We randomly selected a representative sample
from all 15,644 test steps with a confidence level of 95%
and a confidence interval of 5%, which corresponds to 394
steps. The test step samples were manually analyzed in an
incremental manner: when analyzing test step n, we looked
at all the (n-1) previously clustered steps to verify if step
n should be assigned to an existing cluster or to a new
cluster. To determine if two test steps are similar, we looked
for two main characteristics of the data: (1) if the steps are
textually similar or (2) if the steps give the same or similar
instructions for testing, even if the textual descriptions are
not similar. If any of those two characteristics are observed,
we cluster the two samples together. Below, we show exam-
ples of pairs of test steps to demonstrate both characteristics:

(1) Textually similar test steps:

• “Play before 4pm and attempt to play video.”
• “Play before 8am and attempt to play video.”

(2) Test steps with similar instructions for testing:

• “Verify the game zones that can be selected by the
student.”

• “Check which game zones are available to the stu-
dent.”

The ground truth of similar test steps ended up with
a total of 213 clusters and an average of 1.9 (standard
deviation of 2.0) test steps per cluster. We also found that
the largest cluster has 15 test steps. The fourth author
independently validated the ground truth on a sample of
80 randomly selected pairs of test steps, which corresponds
to a representative sample with a confidence level of 95%
and a confidence interval of 10%. For each pair of test steps,
the fourth author indicated if the two test steps should be in
the same cluster (i.e., if they are similar) or not. We reached
an agreement of 96.25% (which corresponds to a kappa
coefficient [8, 25] of 0.89 or almost perfect agreement). The
reached agreement demonstrates that the manual clustering
process is straightforward (though time-consuming).
Ground truth of similar test cases (stage 3 of our ap-
proach). We randomly selected a representative sample of
test cases with a confidence level of 95% and a confidence
interval of 5%, which corresponds to 381 test cases. Similarly
to the way that we built the ground truth of similar test

steps, the test case samples were manually analyzed in an
incremental manner: when analyzing test case n, we looked
at all the (n-1) previously clustered test cases to verify if test
case n should be assigned to an existing cluster or to a new
cluster. To determine if two test cases are similar, we looked
for the same characteristics (1) and (2) as for the test steps. If
any of those two characteristics are observed, we cluster the
two samples together. Note that, to analyze test cases, we
consider the test case name, test case type, and all the steps
that compose the test case. The ground truth of similar test
cases ended up with a total of 242 clusters and an average
of 1.6 (standard deviation of 1.9) test cases per cluster. For
this ground truth, we found that the largest cluster has 21
test cases.

6 EVALUATING OUR APPROACH FOR CLUSTERING
SIMILAR TEST STEPS

In this section, we discuss the experiments that we per-
formed to evaluate our approach for clustering similar test
steps in an industrial setting.

6.1 Evaluated techniques
Our approach consists of several steps that can be imple-
mented through different techniques and models. To eval-
uate our approach, we performed experiments with com-
binations of five different text embedding techniques, two
similarity metrics, and two clustering techniques. Figure 5
presents an overview of the experiments that we performed
to address RQ1. Different NLP techniques can be used for
text embedding at different granularities, such as words,
sentences, and short paragraphs [5, 9, 26, 34, 35, 43]. As
our test steps usually consist of a single sentence and the
test steps are transformed into a list of words after pre-
processing, we adopt word-level and sentence-level text
embedding. We used two techniques to obtain text embed-
dings at the word-level (Word2Vec [34, 35] and BERT [9])
for the test steps and computed the embedding similarity
using the Word Mover’s Distance (WMD) metric [23]. For
text embeddings at the sentence-level, we used three tech-
niques (SBERT [43], Universal Sentence Encoder [5], and TF-
IDF [21, 46]) and used the cosine similarity to compare the
embeddings. For both types of embeddings, we applied the
hierarchical agglomerative [48] and K-means [12] clustering
techniques to obtain clusters of similar steps.

6.2 Configuration of the word embedding techniques
Word2Vec. We trained a Word2Vec model using all 15,644
test steps that we collected. Furthermore, to provide more
context to the embedding model during training, we con-
catenated the test case type (available for 2,053 test cases)
and test case name to each step. We used an embedding
vector of length 300 (as in the original study that proposed
the Word2Vec model [34]). We used the continuous bag-of-
words (CBOW) model architecture of Word2Vec with two
context words as this configuration provides the highest
test step clustering performance, which was determined
through an experiment in which we varied the number of
context words from one to ten. We initialized the word em-
beddings with the weights from the large-scale pre-trained
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Figure 5: Overview of the experiments to identify clusters of
similar test steps.

model released by Google.4 This model contains 3 million
word embeddings with dimension 300 and was trained on a
Google News corpus with approximately 100 billion words.
For words that are present in our dataset but not in the
pre-trained model (and, therefore, cannot be initialized with
pre-trained weights), we followed a process proposed by Li
et al. [28] to initialize the word embeddings. We computed
the mean and standard deviation of the initialized words
and initialized the remaining words with samples of a
normal distribution parameterized by the computed mean
and standard deviation. Finally, the outcome of the training
process is the word embeddings learned with our data.

BERT. In this work, we used the pre-trained model released
by Google5 (pre-trained BERT) to obtain contextual embed-
dings of the test steps. Furthermore, we used a model with
additional pre-training using our own corpus of test steps
(domain-adaptive pre-trained BERT) to obtain the contextual
embeddings. We explain the configurations of both models
below.
Pre-trained BERT. For the pre-trained model, we used the
uncased (case-insensitive) version of the base model [9, 51].
We transformed the test step text into the BERT format
by adding the [CLS] and [SEP] tokens respectively to the
start and end of each test step text. The test step was then
tokenized with BERT’s own tokenizer. Finally, we used the
tokenized steps to extract the contextual embeddings. As
explained in Section 2.1.1, we can adopt different pooling
strategies to obtain the embedding vector for a word. We
performed experiments with four different pooling strate-
gies to combine the layers (as suggested by the original
paper’s authors [9]): using only the second-to-last layer,
summing the last four layers, averaging the last four lay-
ers, and concatenating the last four layers. We found that
summing the last four layers achieves the best performance
with our data. Finally, we used the average of sub-word
embeddings (see Section 2.1.1) to obtain the original out-of-
vocabulary word embedding.
Domain-adaptive pre-trained BERT. We also performed ad-
ditional pre-training of BERT with our corpus. For the
additional pre-training, after experimenting with the base
and large models, we decided to use the uncased version
of the BERT large model as the initial checkpoint (i.e., we

4. https://code.google.com/archive/p/word2vec/
5. https://github.com/google-research/bert

performed the additional pre-training on top of the pre-
trained large model). We followed the same process to con-
figure the test step text to a BERT-friendly format. However,
differently from the pre-trained model, using the second-to-
last layer (instead of summing the last four layers) achieves
the best results for the domain-adaptive pre-trained BERT
model.

6.3 Configuration of the sentence embedding tech-
niques
Sentence-BERT (SBERT). We performed experiments with
three available pre-trained SBERT models suitable for our
task (see Section 2.1.2): paraphrase-distilroberta-base-v1, stsb-
roberta-base, and stsb-roberta-large. We decided to use the
paraphrase-distilroberta-base-v1 model since it achieves the
best results with our data. To obtain the embeddings for
the test steps, we just provided the test steps directly as
parameters to the SBERT model.

Universal Sentence Encoder (USE). To obtain the test step
embeddings with the USE model, we provided the steps
directly as parameters to the USE model.

TF-IDF. Finally, we also used TF-IDF to extract the numeric
vector representations of the test steps. For each word, we
computed its importance in a single test step relative to all
the other test steps. We used the TfidfVectorizer class pro-
vided by sklearn6 with default parameters, which includes
a smoothing parameter of 1 so that out-of-vocabulary words
can be properly handled.

6.4 Computing the test step similarity
Word Mover’s Distance (WMD). We used the Word Mover’s
Distance (WMD) [23] metric to measure the similarity be-
tween test step word-level embeddings. The WMD metric is
suitable to be used together with the Word2Vec and BERT
models because of the property that distances between
embedded words in the embedding space are semantically
meaningful, which is a property that WMD relies on [23].
Therefore, for word-level embeddings, we used the WMD
metric instead of other metrics, such as the cosine similarity.
We computed the pairwise WMD metric between any two
test steps and built a distance matrix of dimension [15,644
x 15,644]. The more similar two steps are, the lower is the
WMD metric, with the lowest bound being zero for exactly
matching steps.

Cosine similarity. Since cosine is a widely used metric to
measure similarity between text vectors [15, 20, 27, 47],
we used the cosine to measure the similarity between test
step sentence-level embeddings. Note that we cannot use
the WMD metric for sentence-level embeddings since WMD
requires the embeddings of each word individually instead
of a whole sentence embedding. Similarly to the way we
computed the WMD metric, we computed the pairwise
cosine similarity between any two test steps and built a
distance matrix of dimension [15,644 x 15,644]. As the cosine
similarity score measures the cosine of the angle between
the numeric vectors of two steps, the smaller the angle, the
larger its cosine and the more similar the two test steps are.

6. https://scikit-learn.org/stable/

https://code.google.com/archive/p/word2vec/
https://github.com/google-research/bert
https://scikit-learn.org/stable/
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6.5 Clustering test steps
Hierarchical Agglomerative Clustering. We applied the hier-
archical agglomerative clustering technique to the distance
matrix that we built in the previous step (Section 6.4). We
used the average linkage criterion (with Euclidean distance),
which means that the clustering algorithm merges pairs
of test step clusters that minimize the average distance
between each observation of the pairs.

K-means. To apply the K-means clustering technique,
we used the test step embeddings obtained with
the word/sentence embedding techniques (Sections 6.2
and 6.3). Note that, for word-level embeddings, we trans-
formed the embedding vectors of the words of a test step
into a single vector to represent the whole test step by com-
puting the word embeddings’ average [31, 61]. Furthermore,
to speed up the execution of K-means, we used the centroids
of the clusters obtained by the hierarchical approach as the
initialization centroids, similarly to prior work [28, 29].

Regarding the number of clusters for both clustering
techniques, we chose the number of clusters that maximized
the F-score (which is our evaluation metric, as explained in
Section 6.6). We performed a search by varying the number
of clusters from 50 up to 15,000 with a step of 50, and for
each value we executed both clustering approaches and
computed the F-score. Finally, we selected the (optimal)
number of clusters for which each clustering technique
achieved the highest F-score. Note that the optimal number
of clusters might be different for the hierarchical clustering
and K-means.

Ensemble approach. Each text embedding technique that
we used has different characteristics and properties to ex-
tract word or sentence embeddings, which leads to dif-
ferent clusters of test steps. Therefore, attempting to miti-
gate each model’s specific weaknesses and based on prior
work [10, 53] which showed that ensemble approaches
might perform well for certain tasks (e.g., classification and
clustering), we built an ensemble approach that uses major-
ity voting. The approach uses the clusters generated by each
previous single approach and starts by getting the set of all
the test steps in the data. Then, it iterates through each test
step and performs pairwise comparisons with all the other
test steps. Suppose the approach (1) starts with test step
TSn. Then, (2) for each pair (TSn-TSn+1, TSn-TSn+2, etc.),
the approach verifies if the majority of the single approaches
(i.e., at least three out of five) assigned that pair to the same
cluster or not and does the same assignment (i.e., puts the
pair together if the majority did so or just skips the test step
being compared to TSn). After this first pass, we have all the
test steps that are similar to TSn. (3) The test steps that are
clustered with TSn are removed from the main set of test
steps (i.e., they will not be analyzed anymore). (4) We then
repeat procedures (1), (2), and (3) for the next test step that
is not part of the TSn cluster. When there is no test step left
in the main set of test steps, the approach finalizes and we
have a set of clusters of similar test steps.
Baseline. We used two baselines to evaluate the perfor-
mance of our proposed approaches for test step (TS) clus-
tering. The first baseline (TS-Baseline 1) assigns test steps to
the same cluster only if those steps are exactly the same after
pre-processing, similarly to Li et al. [28]. The second baseline

(TS-Baseline 2) uses the Word2Vec technique together with
the WMD similarity metric and only assigns two test steps
to the same cluster if the WMD similarity of those steps is
zero (i.e., their embeddings are the same).

6.6 Evaluation metric
We are interested in penalizing both the false positives (to
avoid excessive suggestions of similar test steps when they
are not similar) and false negatives (to avoid missing out
many similar test steps). Therefore, we used the F-score
metric (as shown in Equation 1) to evaluate the test step
clustering approaches as this metric captures the trade-
off between precision (related to false positives) and recall
(related to false negatives). Even though we focus on the F-
score, we also report the precision and recall of the proposed
techniques along with the time necessary to execute the
techniques. The executed time consists of the median time
(in minutes) of five executions. Using the test steps present
in the manually built ground truth of similar test steps,
we analyzed all the pairs of test steps, similarly to prior
work [28]:

• True positive (TP): when a pair of steps is included
in the same cluster by our approach and the steps
indeed belong to the same cluster in the ground
truth.

• False positive (FP): when a pair of steps is included
in the same cluster by our approach but the steps do
not belong to the same cluster in the ground truth.

• True negative (TN): when a pair of steps is not in-
cluded in the same cluster by our approach and the
steps do not belong to the same cluster in the ground
truth.

• False negative (FN): when a pair of steps is not in-
cluded in the same cluster by our approach but the
steps belong to the same cluster in the ground truth.

We then computed the F-score metric as follows:

F-score = 2× precision× recall

precision+ recall
(1)

Where the precision corresponds to the proportion of
true positives regarding all the pairs identified as positive
( TP
TP+FP ) and the recall corresponds to the proportion of

true positives regarding all the existing positive instance
( TP
TP+FN ).

6.7 Findings
Similar test steps that are written in natural language can
be identified with an F-score of 87.39% by applying the
ensemble approach. Word2Vec (K-means), TF-IDF (HAC)
and SBERT (K-means) also have high F-scores (86.99%,
86.67%, and 86.10%, respectively), but TF-IDF and SBERT
considerably reduce the execution time (from 150 minutes
to 2 minutes compared to Word2Vec). Table 3 presents the
precision, recall, and F-score of all the approaches along
with the execution time and the optimal number of clusters.

All the proposed approaches achieve a similar and high
performance, with an F-score between 83.96% and 87.39%,
except for both baselines, which have the same F-score of
70.40%. More specifically, the ensemble approach achieves
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Table 3: Precision, recall, and F-score of the test step clustering approaches along with the execution time (in minutes) and
the optimal number of clusters obtained using HAC and K-means. In the last column, we show the F-score distribution for
a number of clusters between 2,150 and 3,000.

Text embedding technique Clustering Precision Recall F-score
Execution
time (min)

Num. of
clusters

F-score for num. of clusters
between 2,150 and 3,000

TS-Baseline 1 Identical text 100.00 54.32 70.40 1 4,407 -

TS-Baseline 2 Identical embeddings 100.00 54.32 70.40 151 4,393 -

Word2Vec HAC 93.74 79.19 85.85 149 2,650 80 87

Word2Vec K-means 94.24 80.77 86.99 150 2,650 80 87

BERT HAC 89.57 80.25 84.65 157 3,050 80 87

BERT K-means 91.14 79.89 85.15 160 3,050 80 87

Domain-adaptive BERT HAC 93.89 78.66 85.60 159 3,300 80 87

Domain-adaptive BERT K-means 94.29 78.66 85.77 162 3,300 80 87

SBERT HAC 94.67 78.30 85.71 2 3,350 80 87

SBERT K-means 95.09 78.66 86.10 2 3,350 80 87

USE HAC 90.26 78.48 83.96 1 3,050 80 87

USE K-means 86.91 82.01 84.39 1 2,900 80 87

TF-IDF HAC 91.90 82.01 86.67 2 2,500 80 87

TF-IDF K-means 91.80 80.95 86.03 2 2,500 80 87

Ensemble approach - 94.47 81.30 87.39 317 3,158 -

the highest performance, with an F-score of 87.39%. If we
look at the performance of the single models, Word2Vec
with K-means has the highest F-score (86.99%), which is
very close to the ensemble approach performance. TF-IDF
with HAC achieves the second highest F-score (86.67%)
among the single models, followed closely by SBERT
with K-means (86.10%) and Domain-BERT with K-means
(85.77%). By analyzing the F-score obtained by all the ap-
proaches for all the searched number of clusters (from 50 up
to 15,000), we observed that the F-score plateaus when we
use a number of clusters of 6,000 or higher. This means that,
in practice, we do not need to search for the optimal number
of clusters with values above 6,000. We also noticed that the
F-score is always above 80% when the number of clusters
is between 2,150 and 3,000. We can therefore use a number
of clusters in that range to avoid searching for the optimal
number of clusters frequently.

Regarding the two versions of the BERT model, we
observe that the domain-adaptive pre-trained BERT is a little
better, with F-scores of 85.60% (using HAC) and 85.77%
(using K-means), in comparison to the generic pre-trained
BERT, with F-scores of 84.65% (using HAC) and 85.15% (K-
means). One possible reason for the small gain is that we do
not have large amounts of data for the domain-adaptive pre-
training. However, our findings indicate that the additional
pre-training is capable of improving the model performance
and might be more helpful with larger datasets.

We can observe that for all the approaches except for TF-
IDF, running K-means on top of HAC is beneficial as this
increases the F-score. Note, however, that the gain in per-
formance is minimal, such as 1.14% and 0.50% in absolute
percentage point for Word2Vec and BERT, respectively. On
average, applying K-means on top of hierarchical clustering
increases the performance by 0.33% in absolute percentage

point. The number of clusters obtained by the approaches
with HAC does not necessarily need to be the same as
the number of clusters obtained by the approaches with
K-means. HAC and K-means are two different clustering
techniques that we evaluate and, since they follow different
procedures to cluster the data, they might achieve a different
number of clusters. Note that, since we use the centers of
the clusters obtained by HAC to initialize the K-means’
centroids, K-means will converge fast as those initial cluster
centers are often close to optimal or are in fact optimal in
terms of F-score (which is the case when using HAC and
K-means achieves the same number of clusters).

Table 3 also presents the precision and recall for all the
approaches. Except for the baselines, we can observe that
the precision varies from 86.91% (USE with K-means) up
to 95.09% (SBERT with K-means) and the recall varies from
78.30% (SBERT with HAC) up to 82.01% (USE with K-means
and TF-IDF with HAC). For the best performing models
(ensemble approach and Word2Vec with K-means), both
the precision and recall metrics are similar. Regarding the
baselines, both of them present a very high precision (100%)
but with a low recall (54.32%).

Finally, the presented execution time is the median time
(in minutes) of five executions of the techniques. Even
though the ensemble approach has the highest performance
for clustering test steps, this approach is computationally
expensive as it requires the implementation and execution
of all the other approaches, which takes around 317 minutes
(about 5 hours) in total (using six cores on an Intel i7-
8700 CPU to compute the WMD metric and a single core
for all the other computations). However, we can achieve
a very close performance with a single technique, such as
Word2Vec with K-means (which takes around 150 minutes
to execute using six cores to compute the WMD metric).
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TF-IDF (HAC) and SBERT (K-means) also achieve similar
high F-scores (86.67% and 86.10%, respectively) but present
much shorter execution times using a single core (2 minutes
for both). Our experiments showed that both Word2Vec
and BERT present a large execution time due to the large
computational cost of computing the Word Mover’s Dis-
tance, which makes SBERT a great alternative since it is
considerably faster despite the slightly lower performance,
and does not require further configurations or training as
it uses a pre-trained model. The reported execution times
are for the full test step clustering pipeline (test step pre-
processing, word embedding training, test step similarity,
and clustering) using the optimal number of clusters.

7 EVALUATING OUR APPROACH FOR IDENTIFYING
SIMILAR TEST CASES

In this section, we discuss the experiments that we per-
formed to evaluate our approach for identifying similar test
cases that are specified in natural language. Below, we dis-
cuss four different techniques to identify similar test cases
using the test step clusters obtained by the best-performing
approach in Section 6 (ensemble approach).

7.1 Evaluated techniques

We performed experiments with three different techniques
and variations of those techniques to identify similar test
cases using the previously identified clusters of test step
(with the ensemble approach). Figure 6 gives an overview
of the experiments. To explain how each technique works,
we use the two example test cases presented in Table 4.

Simple 
overlap

Jaccard 
index

Computing the test case similarity

Replace steps by 
their cluster IDs 

Represent test 
cases through 

step cluster IDs 

Representing test cases through IDs of test step clusters

Cosine 
similarity

Groups of similar 
test cases

Groups of similar 
test cases

Groups of similar 
test cases

T1 = [cluster1, cluster2…]
T2 = [cluster1, cluster2…]
T3 = [cluster5, cluster6…]

Compute 
Binary matrix

Compute 
numeric matrix

Embed test 
case name

Compute test case 
name similarity

Name 
Similarity

Groups of similar 
test cases for 
technique n

+

..

Identify steps of 
test cases

Technique 1

Technique 2

Technique 3

Technique n + test name embedding

n = 1

n = 2

n = 3

Figure 6: Overview of the experiments to identify similar
test cases.

In the example, there are two test cases (TC1 and TC2).
TC1 contains four steps (TS1, TS2, TS3, TS4) and TC2
contains five steps (TS1, TS5, TS6, TS7, TS8). As we can
see, only the TS1 step is shared between the test cases. In
the test step cluster column, we can see the cluster ID to
which each step belongs (TS1 belongs to the C1 cluster, TS2
belongs to the C2 cluster, and so on), where Cn is the ID of
the cluster n. Note that different steps (such as TS2 and TS7)

might belong to the same cluster (C2). Next, we explain each
proposed technique using this example.
Technique 1: Test step cluster overlap. For this technique,
we used only the identifiers of the test step clusters to
represent test cases. For each test case, we gathered the
unique list of cluster IDs that contain the test steps. For our
running example, the TC1 test case is represented through
the [C1, C2, C3] vector, while TC2 is represented through the
[C1, C2, C4, C5] vector. Finally, we computed the pairwise
similarity of any two test cases using a simple overlap
metric, which indicates the proportion of overlap that test
cases have in terms of test step cluster IDs, as shown below:

Overlap =
length((TCn) ∩ (TCm))

max(length(TCn), length(TCm))
(2)

Where TCn and TCm correspond to the representations
of the test cases n and m through the unique cluster IDs,
respectively. Intuitively, test cases that have a large overlap
of test step clusters (even if the test steps themselves are
different) should be similar since test steps in the same
cluster are (most of the time) similar. For our example, the
length of TC1 is three (C1, C2, C3), the length of TC2 is four
(C1, C2, C4, C5), and the length of the intersection between
TC1 and TC2 is two (C1, C2). Therefore, the overlap between
the TC1 and TC2 test cases is: 2

max(3,4) =
2
4 = 0.5 (50%).

We used the computed overlap as the similarity metric to
compare the test cases. Furthermore, in order to determine
the optimal similarity threshold (i.e., with the optimal trade-
off between false positives and false negatives) to be used to
identify similar test cases, we performed a search by varying
the threshold from 0.1 (10% of overlap) up to 1.0 (100% of
overlap). Figure 7a shows how the F-score changes with the
similarity threshold (the optimal threshold is indicated with
the vertical red line). As we can see, our search showed
that the threshold that provides the maximum F-score is
0.70, which means that two test cases should be considered
similar if their overlap metric is at least 70%.
Technique 2: Binary representation of test cases. Similarly
to Technique 1, for Technique 2 we used the test step
clusters to represent test cases. However, instead of using
the cluster IDs directly, we used a binary vector for each
test case, in which we flagged the clusters that contain at
least one test step of that case with a “1”. Otherwise, we
used “0”. For our example, both test cases TC1 and TC2 are
represented through a vector of length five because there
are five different test step clusters in total (C1, C2, C3,
C4, C5). TC1 is represented through the [1,1,1,0,0] vector
(because TC1 has steps that belong to the clusters C1, C2,
and C3, but no step belongs to the clusters C4 and C5),
while TC2 is represented through the [1,1,0,1,1] vector. We
built a matrix of dimension [#test cases x #test step clusters],
where each row corresponds to a test case and each column
corresponds to a test step cluster. Finally, we computed the
pairwise similarity of any two test cases using the Jaccard
index, as used in prior work [1, 2] to calculate the similarity
between binary vectors. Our search (see Figure 7b) shows
that the optimal lower threshold for the Jaccard index is
0.60 (vertical red line), which means that two test cases are
similar if their Jaccard index is equal to or larger than 0.60.
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Table 4: Examples of test case representations (through vectors) obtained with the experimented three techniques and their
versions with test case name embedding (Technique n + name embedding).

Test case Test step Test step cluster Technique 1 Technique 2 Technique 3 Technique n + name embed.

TC1 TS1, TS2, TS3, TS4 C1, C2, C3, C1 [C1, C2, C3] [1, 1, 1, 0, 0] [2, 1, 1, 0, 0]
Technique n +
[TC1 Name embedding]

TC2 TS1, TS5, TS6, TS7, TS8 C1, C4, C5, C2, C5 [C1, C2, C4, C5] [1, 1, 0, 1, 1] [1, 1, 0, 1, 2]
Technique n +
[TC2 Name embedding]
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(a) F-score for different similarity thresholds
for Technique 1 and Technique 1 + test name.
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(b) F-score for different similarity thresholds
for Technique 2 and Technique 2 + test name.
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(c) F-score for different similarity thresholds
for Technique 3 and Technique 3 + test name.

Figure 7: F-score for different similarity thresholds for our proposed techniques. The vertical line indicates the threshold
that maximizes the F-score (red for Techniques 1, 2, and 3 and blue for their versions with the test name).

Technique 3: Numeric representation of test cases. Using a
binary vector to represent test cases might not be sufficient
for situations where test cases have more than one step in
a cluster. Therefore, we modified the previous technique so
that, instead of representing test cases as a binary vector, we
represent test cases as a numeric vector. This numeric vector
corresponds to the number of test steps that the test case has
in each cluster. For our example, TC1 is represented through
the [2,1,1,0,0] vector (because TC1 has two steps in the C1
cluster, one step in each of the C2 and C3 clusters, and no
step in the C4 and C5 clusters). TC2 is represented through
the [1,1,0,1,2] vector. We found that using a threshold of
0.85 (see Figure 7c, vertical red line) achieved the best
performance in terms of F-score. This means that all the
pairs of test cases that have a cosine similarity equal to or
larger than 0.85 are considered similar by Technique 3.
Including the test case name embedding. For each tech-
nique mentioned above (Techniques 1, 2, and 3), we eval-
uated their versions with the test case name embedding as
well: Technique 1 + test name, Technique 2 + test name, and
Technique 3 + test name. For our example, both test cases TC1
and TC2 are represented through the same vectors discussed
above for Techniques 1, 2, and 3. For the versions with the
test case name, we combined the test step clusters with the
test case name embedding.

To obtain the embeddings for the name, we used the
best-performing text embedding technique from the experi-
ments for test step clustering (which is Word2Vec). Follow-
ing a similar process as we did for the test step clustering,
we computed the pairwise similarity for any two test case
name embeddings. To compute the final similarity score for
test cases, we used the weighted sum between the similarity
score obtained with the test step clusters and the similarity
score obtained with the test case name embeddings, as
shown in Equation 3. Two test cases are considered similar

if the final score is above a certain threshold.

Final score = (weight) ∗ (test step cluster similarity)
+ (1− weight) ∗ (test case name similarity)

(3)

To determine the best weight and threshold for the final
score, we performed a search similarly to the threshold
search that we did for Techniques 1, 2, and 3. We varied
the weight from 0.1 up to 1.0 with a step of 0.1. For each
weight, we varied the threshold from 0.10 up to 1.0 with a
step of 0.05. For each combination of weight and threshold,
we obtained the clusters of similar test cases and computed
the evaluation metrics.

For Technique 1 + test name, we found that the optimal
weight is 0.9, i.e., the similarity score from the test step
clusters contributes with 90%, while the similarity score
from the test case name contributes with 10% to the final
score. For Technique 2 + test name, the optimal weight is 0.8
and for Technique 3 + test name, the optimal weight is 0.5.
Furthermore, as Figures 7a, 7b, and 7c show (vertical blue
line), the optimal similarity thresholds for Technique 1 + test
name, Technique 2 + test name, and Technique 3 + test name are
0.65, 0.55, and 0.75, respectively. Note that, due to space con-
straints and for a better visualization, Figures 7a, 7b, and 7c
only display how the F-score changes with the threshold
already using the optimal weights for each technique.
Baseline. We compared the performance of our proposed
approaches with several baselines for test case (TC) similar-
ity identification. TC-Baseline 1 considers two test cases to be
similar if they have the exact same steps (regarding the text
of the step). TC-Relaxed baseline 1 considers two test cases
similar if they differ only in N test steps (with N=1), with
the remaining test steps being exactly the same. Note that
TC-Baseline 1 has N=0. TC-Baseline 2 considers two test cases
to be similar if they have the same name. TC-Relaxed baseline
2 considers two test cases similar if their test case name em-
bedding vectors are close, for which we embedded test case



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MAY 2021 14

Table 5: Precision, recall and F-score of the test case similarity techniques along with the execution time (in seconds) and
the optimal similarity threshold.

Technique Technique name Prec. Recall F-score Exec. time (sec) Thresh.

TC-Baseline 1 Identical steps 99.42 31.07 47.35 18.28 -
TC-Relaxed baseline 1 Close number of identical steps 93.91 38.57 54.68 23.36 -
TC-Baseline 2 Identical name 50.00 0.18 0.35 6.53 -
TC-Relaxed baseline 2 Close test name embedding 59.77 27.86 38.00 7.98 -
TC-Baseline 3 Aggregated test steps 68.87 72.68 70.72 325.82 -
TC-Baseline 3 + test name Test case name + aggregated test steps 27.25 39.46 32.24 343.29 -

Technique 1 Test step cluster overlap 82.43 78.75 80.54 16.33 0.70
Technique 1 + test name Test step cluster overlap + test name embedding 83.19 89.29 86.13 33.63 0.65
Technique 2 Binary repres. of test cases 78.34 75.53 76.90 144.09 0.60
Technique 2 + test name Binary repres. of test cases + test name embedding 77.80 81.96 79.82 154.16 0.60
Technique 3 Numeric repres. of test cases 90.45 67.67 77.42 6.52 0.85
Technique 3 + test name Numeric repres. of test cases + test name embedding 94.37 74.82 83.47 23.84 0.75

names with Word2Vec (as in Section 6.2) and searched for
the optimal similarity threshold. TC-Baseline 1, TC-Relaxed
baseline 1, TC-Baseline 2, and TC-Relaxed baseline 2 are simple,
intuitive and computationally cheap methods. TC-Baseline 3
and TC-Baseline 3 + test name are based on existing document
clustering techniques [20, 38]. We transformed the textual
description of the test cases into a numeric vector (vector-
ization) using a traditional vectorization method (TF-IDF).
We then computed the pairwise cosine similarity between
the test cases and applied the HAC and K-means clustering
algorithms. For both baselines, we consider the whole test
case as a single document. For TC-Baseline 3, we represent
a test case with all its test steps aggregated, while for
TC-Baseline 3 + test name we consider the test case name
concatenated to the aggregated test steps. For both cases, we
followed a similar procedure as for the test step clustering
(Section 6.5), in which we searched for the optimal number
of clusters.

7.2 Evaluation metric.
To evaluate our approaches for finding similar test cases, we
used the manually built ground truth of similar test cases to
compute the precision, recall, and F-score. We followed the
exact same process as we did previously for the test step
clustering (Section 6.6).

7.3 Findings
Clusters of similar test steps and test case name embed-
dings together can be used to identify similar test cases
with an F-score of 86.13%. Table 5 presents the F-score of
all the techniques that we evaluated along with precision,
recall, execution time and the optimal similarity threshold.

We observe that Technique 1 + test name achieves the high-
est performance in terms of F-score (86.13%), followed by
Technique 3 + test name, which achieves an F-score of 83.47%.
We also observe that, even though Technique 3 achieves a
higher performance than Technique 2, the improvement is
very small (0.52 in absolute percentage point). This indicates
that using the number of test steps in each cluster (instead
of just flagging whether the cluster contains a test step)
slightly improves the performance of the test case similarity
technique. Further incorporating the test case name infor-
mation considerably improves the performance for all the

three techniques. Technique 1 + test name improved the F-
score in 5.59 absolute percentage point from Technique 1. The
absolute percentage point improvements for Techniques 2
and 3 were 2.92 and 6.05, respectively.

Regarding the baselines, all the experimented techniques
perform considerably better than all the baseline methods.
We observe that TC-Baseline 2 achieves an extremely low
F-score (0.35%) and that TC-Baseline 3 presents the best F-
score among the baseline methods (70.72%). Note that for
TC-Baseline 3, HAC performed better than K-means, while
for TC-Baseline 3 + test name, K-means performed better. We
only report the results using the best-performing clustering
algorithms. We also see that the precision of the TC-Baseline
1 is very high (99.42%), but the recall is very low (31.07%).
Two main reasons explain why all our proposed approaches
perform better than the baseline methods. First, TC-Baseline
1 and 2 and TC-Relaxed baseline 1 and 2 are too simple to
capture all the different types of similar test cases (e.g.,
test cases that have a different name and number of test
steps, which, despite describing similar testing activities, are
written differently). Second, TC-Baseline 3 and TC-Baseline 3
+ test name consider a whole test case as a single document.
However, a whole test case is not a coherent document as
test steps might be very different from one another. For
example, in the same test case, one test step might be related
to the ’login’ functionality and another test step might
be related to ’purchasing a membership’. Therefore, using
whole test cases as documents for the similarity detection is
a much more difficult task.

The presented execution time is the median time (in
seconds) of five executions of the techniques and reflect
the time necessary to run the test case similarity techniques
considering that the clusters of test steps (obtained in the
previous stage, as described in Section 6) are available.
Apart from the TC-Baseline 3 and TC-Baseline 3 + test name
and Technique 2 and Technique 2 + test name, all the other
techniques present a similar execution time, which ranges
from 6.52 seconds (Technique 3) up to 33.63 seconds (for the
best-performing Technique 1 + test name). Using the optimal
similarity threshold, the best technique (Technique 1 + test
name) found 427 groups of similar test cases with two or
more test cases in each group. The 427 groups contain a total
of 2,193 test cases (65.9%), i.e., there are 2,193 test cases in the
test suite that have at least one similar test case, according
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to this technique. This leaves 1,130 test cases for which there
is no other similar test case. On average, each group has two
similar test cases, with a standard deviation of four.

To understand the output produced by our best tech-
nique, we manually inspected a representative sample of
100 of the obtained groups of similar test cases. The sample
was randomly selected with a confidence level of 95% and
a confidence interval of 10% from the 427 groups of similar
test cases obtained by the best technique (Technique 1 + test
name). We identified four main types of similar test cases
(shown in Table 6). While Type 1 corresponds to test cases
with the same steps for different game assets, Type 2 regards
test cases that have slightly different steps to indicate the
asset being tested (e.g., backpack hat and backpack wand).
Type 3 refers to test cases with a large overlap of steps but
one of them has more/fewer steps, which might indicate
unnecessary or missing steps. Finally, Type 4 regards re-
dundant test cases, which are written differently and may
have a different number of steps, but the testing objective
is the same. The last type of similarity helps to identify and
remove redundant test cases from the test suite.

8 DISCUSSION

In this section, we revisit the research questions and discuss
the validation of our approach.
RQ1: How effectively can we identify similar test steps
that are written in natural language?
Our experiments demonstrate that we can identify similar
test steps with a high performance in terms of F-score.
We showed that an ensemble approach using a combi-
nation (majority voting) of different techniques (five text
embedding techniques with two similarity metrics and two
clustering algorithms) achieves the highest performance.
Such ensemble approach has a large computational cost
as it requires the execution of several different techniques.
However, we showed that using a single technique (such as
Word2Vec or TF-IDF) can also provide a high performance
while being less computationally expensive.
RQ2: How can we leverage clusters of test steps to identify
similar test cases?
Our experiments demonstrate that we can use the clusters
of similar test steps identified in the first part of the study
to represent test cases and identify the similar ones. More
specifically, representing test cases through a vector that
captures the number of test steps in each cluster boosts the
similarity technique performance. Furthermore, we showed
that combining the clusters of similar test steps with the
embedding of the test case name achieves an even higher
performance. Our experiments showed that the optimal
weight (for our data) for the test step clusters and the test
case names is 90% (i.e., the similarity score from the test
step clusters contributes with 90%, while the similarity score
from the test case name contributes with 10% to the final
similarity score). In addition, we can use a threshold of
0.65 for the final similarity score to decide whether two test
cases are similar (i.e., two test cases are similar if their final
similarity score is equal to or larger than 0.65).
Validation with developers. To validate the results of our
approach, we did an informal interview with a QA expert
at Prodigy Education to discuss whether our results are

valid and how they can be used in practice and improve the
testing process. We selected a purposive sample [13, 16, 50]
to explicitly select test cases that cover the different types of
similar test cases that we identified.

Overall, the expert validated the different types of test
case similarity that we identified and mentioned that our
approach can help the QA to improve the quality of the
test cases. More specifically, the QA expert pointed out four
practical usages of our approach, as we explain next.

• Identification of redundant test cases, which are
test cases that are described differently (e.g., because
they were written by different professionals) but test
exactly the same aspect/asset of the game.

• Reuse of existing test cases when creating new ones
for new features of the game. In this case, existing
descriptions of test cases can either be fully or par-
tially (e.g., a few test steps) reused. The reuse can be
full (e.g., when a new test case instructs the tester to
perform the exact same steps of an existing test case
but for a new game asset, such as a new consumable
item in the game) or partial (e.g., when a new test
case performs a similar test as an existing test case
but with a few differences, such that only part of
the test steps of the existing similar test case can
be reused). By reusing test cases, the overall quality
of the test suite improves with more consistent and
homogeneous descriptions in terms of terminology.
Furthermore, reusing test cases reduces the manual
effort and time required for designing and creating
new test cases.

• Identification of test cases with missing steps. A
few test case samples that we discussed with the
expert were indeed groups of similar test cases which
perform the same task, but some of the cases had
fewer steps than what is actually performed by a
tester. We further investigated those cases with the
QA expert and found out that the missing steps were
scattered across the test suite (in different cases) and
should be merged with the steps of the main test
case.

• Identification of test cases which are redundant but
one of the cases has additional steps. This occurs
when a new test case is created based on existing
ones, but some steps are added for clarification pur-
poses and the older test case is not removed from the
test suite.

9 THREATS TO VALIDITY

External validity relates to the generalizability of our find-
ings. One threat is that our findings rely on the test case
descriptions of an educational game company. Test cases
of organizations from different domains might be different
(e.g., in terms of the used terminology, grammar complexity
and structure, and characteristics of the data, such as the
distribution of test steps across the test cases) and might
affect the results. However, as we explained in Section 5,
our test cases are similar in structure to natural language
test cases from other domains studied by prior work, such as
WeChat [28], automotive systems [52], and Mozilla Firefox
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Table 6: Examples of the four types of test case similarity. Differences between test cases’ steps are highlighted in bold.

Similarity type Test case name Test steps

(1) Same steps for different
game assets

Check Hat - In Backpack 1. Verify item name
2. Verify item icon

Check Wand - In Backpack 1. Verify item name
2. Verify item icon

(2) Slightly different steps
for different game assets

Equip Hat 1. Trigger equip functionality via backpack hat item slot
2. Trigger unequip functionality via backpack hat item slot

Equip Wand 1. Trigger equip functionality via wand backpack item slot
2. Trigger unequip functionality via wand backpack item slot

(3) Test cases with
additional/missing steps

Check Consumables (Water Resist)

1. Use in battle
2. Check battle bonus
3. Check item card name
4. Check item card stats

Check Food (Popcorn) 1. Use in battle
2. Check battle bonus

(4) Redundant test cases Catch Firefly in Forest 1. Catch firefly in forest

Firefly Forest - Catch Firefly 1. Catch a firefly

projects [19]. Our approach can be applied to natural lan-
guage test cases from other industrial projects with similar
characteristics as the test cases from our industry partner,
such as the test cases from the projects and companies
discussed above. Furthermore, our approach can be applied
to well-maintained open-source projects which have test
cases described in natural language that are composed of
one or more individual test steps. Note that our approach
consists of using clusters of similar test steps together with
the similarity of test case name embeddings, which might be
computationally expensive for large datasets. In addition,
specifying a ground truth to be used with our approach
can be challenging and time-consuming. Finally, further
investigation is necessary to apply our approach to projects
with different test case characteristics, such as different
distributions of test steps across test cases or different test
case structures (e.g., test cases which are not composed of
individual test steps). Another threat is that our thresholds
for optimal values (e.g., the number of clusters and the sim-
ilarity score) likely do not apply to other systems. However,
our method for searching for these values is generalizable.

Internal validity concerns the bias and errors due to the
experimental design. One threat concerns the methods that
we used for text embedding, text similarity and clustering.
Even though we mitigated this threat by studying several
different types of techniques (five different text embed-
ding techniques, three similarity metrics and two cluster-
ing algorithms), different results might be achieved with
other techniques. Future studies should further investigate
additional methods and algorithms for text embedding,
text similarity and clustering. Another threat is related to
the manual analysis of the samples of test steps and test
cases performed by one author to build the ground truth.
The manual analysis is subject to error and bias because
of human factors. To mitigate this threat, another author
independently cross-validated a subset of the 20 randomly
selected test steps, which achieved an agreement of 100%.
Furthermore, a QA engineer with more than 5 years of
experience in the company further validated the output
produced by our technique.

Construct validity concerns the choices made during
the construction of our experiments. One threat is related
to the chosen parameters for the embedding techniques. We
mitigated this threat by using well-studied or recommended
values for such parameters. For example, our chosen length
for the Word2Vec embedding vector is 300. This is a popular
choice and was used in the original study that proposed
the Word2Vec model [34], but models with different lengths
might achieve different performances for the clustering task.
Another threat concerns the pooling strategies that we used
to combine the layers of the BERT models and extract the
embedding vectors. Different strategies provide different
word embedding vectors. Even though several strategies
can be used, we compared the four strategies recommended
by the original paper on BERT [9]. The use of the clusters
obtained by the HAC algorithm to initialize K-means’ cen-
troids is another threat to validity. Even though we adopted
this process to speed up the execution of K-means, us-
ing different initialization methods might produce different
clusters and achieve a different performance. Future studies
should investigate how the initialization of the K-means’
centroids affects the performance of the test step clustering.
Finally, another threat is regarding the evaluation of the test
step clustering and test case similarity identification. We
evaluated our proposed techniques using a random sample
of test steps/cases, which may not reflect the characteris-
tics of the entire population. To mitigate this threat, we
randomly sampled the data with a confidence level of 95%
and a confidence interval of 5%, which yielded a statistically
representative sample.

10 CONCLUSION

Test cases written in natural language are often defined by
different people who may use different terminology to refer
to the same concept. As a result, many similar or redun-
dant test cases may exist in the test suite, which increases
the manual testing effort and the usage of development
resources. Since manually identifying similar test cases is a
time-consuming task, an automated technique is necessary.
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In this paper, we propose an approach to identify similar
test cases specified in natural language. First, we evaluated
different text embedding techniques, similarity metrics, and
clustering algorithms to identify clusters of similar test steps
(which compose test cases). We then leveraged the identified
test step clusters together with the test case name to identify
similar test cases. To evaluate the approach, we used test
cases from an educational game company. We manually
built a ground truth of similar test steps and test cases
and computed the F-score metric. The approach evaluation
shows that similar test steps can be identified with a high
performance (an F-score of 87.39%) using an ensemble ap-
proach which consists of different NLP techniques. We can
also achieve a similar performance (an F-score of 86.99%)
using a single technique (Word2Vec). Furthermore, we iden-
tified similar test cases with a high performance (an F-score
of 83.47%) using clusters of similar test steps combined with
the similarity between test case names.

In this work, we show how we can identify similar test
cases based only on their description in natural language
with an unsupervised approach, which requires no labelled
data nor human supervision. As indicated in an informal
interview with a QA engineer, our approach has several
usages in practice, such as supporting QA and developers
to identify and remove redundant test cases from the test
suite. Furthermore, existing groups of similar test cases can
be leveraged to create new test cases and help to maintain
a more consistent and homogeneous terminology across the
test suite.
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