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Abstract—Microbenchmarking frameworks, such as Java’s Microbenchmark Harness (JMH), allow developers to write fine-grained
performance test suites at the method or statement level. However, due to the complexities of the Java Virtual Machine, developers
often struggle with writing expressive JMH benchmarks which accurately represent the performance of such methods or statements. In
this paper, we empirically study bad practices of JMH benchmarks. We present a tool that leverages static analysis to identify 5 bad
JMH practices. Our empirical study of 123 open source Java-based systems shows that each of these 5 bad practices are prevalent in
open source software. Further, we conduct several experiments to quantify the impact of each bad practice in multiple case studies,
and find that bad practices often significantly impact the benchmark results. To validate our experimental results, we constructed seven
patches that fix the identified bad practices for six of the studied open source projects, of which six were merged into the main branch

of the project. In this paper, we show that developers struggle with accurate Java microbenchmarking, and provide several
recommendations to developers of microbenchmarking frameworks on how to improve future versions of their framework.

Index Terms—Performance testing, microbenchmarking, JMH, bad practices, static analysis

1 INTRODUCTION

Performance characteristics, such as response time, la-
tency or resource usage, are some of the most important
non-functional properties of critical software systems. In
many systems it is essential that performance issues are
avoided, as they can have a devastating impact on the
perceived quality of the software. For example, a one-second
slowdown in the checkout processes would cost Amazon an
estimated $1.6 billion per year [22].

To avoid such problems, the performance of a software
system must be thoroughly tested. Similar to functional test-
ing (e.g., through integration and unit tests), performance
testing should be done at different granularities. The ulti-
mate goal of performance testing is to achieve a good end-
to-end performance. Even though the impact of the perfor-
mance of each component on the end-to-end performance
of a system is not necessarily linear, obvious performance
issues at the component-level are likely to ripple through
to the system-level. Hence, we must first ensure that the
performance of each component of the system is adequate.

Microbenchmarking [1], [2] is an approach for precise per-
formance evaluation of an isolated segment of code at the
method, loop, or even statement level. Several frameworks
have been proposed to facilitate specifying and executing
microbenchmarks. For example, the Java Microbenchmark
Harness (JMH) [1] is a popular framework for languages
that target the Java Virtual Machine (JVM), such as Java and
Scala. JMH makes it possible to obtain a statistical estimate
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of the execution time by providing a scaffold that runs
the targeted segment of code a large number of times. In
addition, JMH offers mechanisms to prevent a subset of JVM
optimizations, which may lead to misleading performance
results.

Unfortunately, despite the existence of microbenchmark-
ing frameworks, writing microbenchmarks that yield correct
insights on the performance of the benchmarked task turns
out to be challenging. Prior work established that there
exist several pitfalls to avoid [20] and that many developers
struggle with writing appropriate microbenchmarks [37]. In
addition, the execution results of real-life microbenchmarks
of large open source projects can vary significantly across
repeated executions in identical environments [30].

In this paper, we empirically study bad practices of writ-
ing microbenchmarks that can lead to misleading bench-
mark results. In particular, we study the occurrence of 5 bad
practices, which were extracted from the JMH documenta-
tion, in the JMH microbenchmark suites of 123 Java-based
open source projects. In addition, we quantify the impact
of the identified bad practices on the benchmark results of
six open source projects. Our study addresses the following
research questions:

RQ1: How frequently do bad [MH practices occur in real-
life open source software? To assist developers
with avoiding bad practices, we implemented a
plugin (SpotJMHBugs [16]) for the SpotBugs
static analysis tool. SpotJMHBugs is able to
automatically identify the bad JMH practices
that are discussed in our study. Using the tool,
we found that 35 of 123 studied projects had
at least one instance of a bad JMH practice in
their benchmark suites. In 12 of these projects,
there were more than 10 instances of bad JMH
practices. The most frequently occurring bad



JMH practice is using accumulation to consume
computation in a loop, which could yield unre-
liable benchmark results.

RQ2:  What is the impact of the identified bad J]MH prac-
tices on the benchmark results?

We manually fixed 105 benchmarks across 6
projects and measured the impact of the bad
practices by comparing the results before and
after the fix. In 73 of the 105 fixed benchmarks,
the bad JMH practice significantly impacted the

benchmark results.

To evaluate whether developers in practice care about
these bad practices, we submitted 7 pull requests containing
fixes for 57 benchmarks from 6 projects. Six of these pull
requests were accepted and merged into the main project
repository, which demonstrates the significance of our work.
In particular, our study shows that despite the JMH docu-
mentation warning explicitly about all five discussed bad
JMH practices, they are still prevalent in open source soft-
ware. Even worse, we show that these bad practices have
a significant impact on the microbenchmarks, which often
leads to unreliable benchmark results.

2 BACKGROUND

In this section, we present the terminology that is used
throughout this paper, and introduce the set of studied bad
JMH practices.

2.1 JMH Microbenchmarks

Performance testing [43] is used to experimentally assess
one or more non-functional quality attributes of software
systems. In this paper, we focus on one specific performance
testing approach, namely software microbenchmarking. In
contrast to stress or load tests, which test the end-to-end
performance of a system, microbenchmarks are relatively
short-running and aim at measuring the fine-grained per-
formance of specific units of program code. For instance,
a microbenchmark may measure method-level execution
times of a class, the performance of a specific data struc-
ture, or the implementation of an algorithm. Consequently,
microbenchmarks are typically not used to evaluate system-
level service level agreements, but rather to ensure the
performance of critical low-level code components or to
compare different implementation alternatives.

For Java, the Java Microbenchmark Harness (JMH) [1] is
commonly used for microbenchmarking [39]. JMH is a tool
developed under the Open]DK umbrella that allows users to
specify benchmarks through Java annotations, using a syn-
tax that is similar to the well-known JUnit framework [40].
Every public method that is annotated with @Benchmark
is executed as part of the microbenchmark suite. Listing 1
shows an example benchmark from the RxJava project,
where the execution time and throughput of a latched
observer are measured.

In Figure 1 we illustrate the execution flow that J]MH
uses to evaluate microbenchmarks in four major steps.
(1) Initially, an optional benchmark fixture is invoked. The

public class ComputationSchedulerPerf ({

@State (Scope.Thread)
public static class Input
extends InputWithIncrementingInteger {
@Param({ "100" , "1000" })
public int size;

}

@Benchmark
public void observeOn (Input input) {
LatchedObserver<Integer> o =
input.newLatchedObserver () ;
input.observable.observeOn (
Schedulers.computation ()
) .subscribe (0) ;
o.latch.await ();

}

Listing 1: JMH example from the RxJava project.
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Fig. 1: JMH execution flow for a microbenchmark config-
ured with 2 forks, 6 benchmark warmups and 8 benchmark
iterations. In this example, the fixture methods are config-
ured to be executed before and after each trial.

benchmark fixture is the code which initializes the bench-
mark environment (e.g., by filling a data structure with test
data). (2) Afterwards, a defined number of warmup iterations
are executed. These are identical to benchmark iterations
(see below), but their results are discarded. Warmup itera-
tions are intended to bring the JVM into a steady state (e.g.,
execute all applicable just-in-time compilations). (3) In the
actual benchmark phase, a defined number of benchmark it-
erations is executed. Each iteration takes a defined amount of
time (typically 1s), during which the framework repeatedly
calls the method annotated with @Benchmark (a single invo-
cation in JMH parlor) and records all configured performance
counters (e.g., throughput, execution time, latency). (4) One
entire run of steps 1-3 (executing the benchmark fixture,
zero to many warmup iterations, one to many benchmark
iterations) is called a trial. By default, JMH executes each
trial in a separate VM, and developers may specify how
many forks each benchmark will sequentially execute (e.g.,
we present an example with two forks in Figure 1).

After the last iteration, JMH reports a summary of the
results to the user and/or saves the results into an XML
or JSON file. Parameters (e.g., int size in Listing 1) can
be used to easily define different benchmark instances of the
same method. In the example in Listing 1, JMH will effec-
tively execute the observeOn (Input) benchmark twice;
once with size = 100 and once with size = 1000.



TABLE 1: Bad JMH practices collected from the JMH documentation.

ID Bad JMH Practice Description

Undesired Effect

RETU  Not using a returned computation

Dead code elimination

LOOP  Using accumulation to consume values inside a loop Loop optimization

FINAL Using a final primitive for benchmark input Constant folding

INVO  Running fixture methods for each benchmark method invocation =~ JMH overhead

FORK  Configuring benchmarks with zero forks Profile-guided optimization

2.2 Bad JMH Practices in Benchmark Creation

While JMH offers an infrastructure that generates the boiler-
plate code for a microbenchmark from user-specified code
and annotations, the responsibility of creating a reliable and
correct benchmark remains with the developer.

Unfortunately, creating microbenchmarks which accu-
rately represent the performance of the benchmarked code
is difficult. There exist several coding pitfalls and bad JMH
practices that can affect the reliability and correctness of
a microbenchmark, as illustrated by the 38 sample bench-
marks [35] in the JMH documentation [1]. In the remainder
of this section, we discuss the most important bad JMH
practices described in the JMH documentation (see Table 1
for an overview). All code examples in this section were
taken from the JMH samples.

Bad JMH practice 1: Not using a result that is returned
by a method in the benchmark (RETU)

Description: A benchmark typically calls one or more
methods from the main application code. If such a method
returns a result that is not used in the benchmark, the JVM
may consider part of the called method as “dead code” and
eliminate that part.

Symptoms: Because the call to the benchmarked method
was eliminated, the code will appear faster than in actual
usage. Listing 2 shows an example of the RETU bad JMH
practice and two possible solutions. In measureWrong (),
Math.log (x1) is redundant and may be eliminated by the
JVM.

Solution: Every object that is returned by a method called
directly from the benchmark should be used in the bench-
mark method. In measureRightl (), Math.log(x1) is
used as a return of the benchmark method, and there-
fore, not eliminated. Alternatively, the JMH infrastructure
offers a Blackhole object which can be used to pre-
vent dead-code elimination by consuming the result. In
measureRight2 (), Math.log (k1) is consumed by a
Blackhole object.

Bad JMH practice 2: Using accumulation to consume
computation inside a loop (LOOP)

Description: Developers often have to design benchmarks
that measure a method call within a loop. If the method
call returns a numeric variable, it is intuitive to accumu-
late the returned objects as a way of avoiding dead-code
elimination. However, this leads to another set of JVM
optimizations that optimizes the code beyond what would
be expected in real usage.

Symptoms: The code appears faster than in actual usage,
as the loop can be extensively optimized by the JVM. List-
ing 3 shows an example of the LOOP bad JMH practice. The

1. https:/ /bitly /2uyb79b

private double x1;
private double x2;

@Benchmark

public double measureWrong () {
Math.log(xl);
return Math.log (x2);

}

@Benchmark
public double measureRightl () {

return Math.log(xl) + Math.log(x2);
}

@Benchmark

public double measureRight2 (Blackhole bh) ({
bh.consume (Math.log(x1));
bh.consume (Math.log (x2));

}

Listing 2: Example of the RETU bad JMH practice and two
possible solutions.'

private int[] xs;

@Benchmark
public int measureWrong() {
int acc = 0;
for (int x : xs) {
acc += work (x);
}
return acc;

}

@Benchmark
public void measureRight (Blackhole bh) {
for (int x : xs) {

bh.consume (work (x)) ;
}
}

Listing 3: Example of the LOOP bad JMH practice and a
possible solution.”

measureWrong () method executes every work () method
as intended, but the JVM is able to unroll the loop and
merge operations between two distinct work () calls. Such
optimizations are only performed because an accumulation
is used instead of a proper consume method, and will not
hold in a scenario where the application actually uses or
stores the return of each method call.

Solution: The user should avoid using accumulation
as a method of consuming the numeric return and use
the Blackhole facilities instead. The measureRight ()
method shows how a loop can be benchmarked more safely.

Bad JMH practice 3: Using a final primitive for
benchmark input (FINAL)

Description: If the JVM realizes that the result of a compu-
tation is predictable, it will optimize the computation (i.e.,

2. https:/ /bit.ly /2UfpVI1
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private double x = Math.PI;
private final double wrongX = Math.PI;

@Benchmark

public double measureWrong() {
// Computation is predictable

return Math.log(wrongX) ;
}

@Benchmark

public double measureRight () {
// Computation is not predictable
return Math.log(x);

}

Listing 4: Example of the FINAL bad JMH practice and a
possible solution.?
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Fig. 2: JMH setup execution flow when configured to run
(1) before a benchmark trial, (2) before each benchmark
iteration and (3) before each benchmark invocation. The
third option has several drawbacks and is classified as a
bad practice (INVO) for short-running benchmarks.

using constant folding [41]), thereby affecting the runtime of
the benchmark.

Symptoms: Because the constant computation was folded,
the code will appear faster than in acual usage. Listing 4
shows an example of the FINAL bad JMH practice. The
measureWrong () method does a computation using the
Math.PI constant, making the result of the computation
predictable and hence foldable.

Solution: Benchmark inputs should always be read from
non-final primitive instance fields or reference instance
fields. The measureRight () method in Listing 4 conducts
the computation in a proper way, since its result is not
predictable at compile time.

Bad JMH practice 4: Running fixture methods for each
benchmark method invocation (INVO)

Description: Fixture methods are methods that are used
to setup or tear down a benchmark. In Figure 2 we illustrate
the three levels at which JMH allows fixture methods to run:
(1) before/after a benchmark trial, (2) before/after a bench-
mark iteration and (3) before/after a benchmark method
invocation. In most cases, it is a bad JMH practice to use
the third option, as the overhead of the JMH infrastructure
might be large compared to the actual benchmark runtime.

Symptoms: The JMH infrastructure must add a timestamp
to each method invocation to calculate its execution time, as
the time spent in the fixture methods is excluded from the
performance measurement. On short-running benchmarks
(ones that typically run for less than a millisecond), JMH
saturates the system with timestamp requests, offsetting the
measurements. According to the JMH documentation, this
level might also omit problems stemming from time mea-

3. https:/ /bit.ly/2TE]Zzh

4

surement, introducing unexpected and surprising results.
Listing 5 shows an example of the INVO bad practice.
As fixture methods are shared among benchmarks of the
same class, the overhead caused by JMH will offset the
measurements of all benchmarks, including the ones that do
not access objects created in the setup/teardown methods.

Solution: Every invocation-level fixture method should
be checked to make sure that it is necessary to be called
at the invocation level. This necessity is rare and can be
avoided in most situations by including the contents of
the fixture method in the benchmark method (causing less
overhead).

@TearDown (Level.Invocation)
public void check () {

assert x > Math.PI : "Nothing changed?";

}
Listing 5: Example of the INVO bad JMH practice.*

Bad JMH practice 5: Configuring benchmarks with zero
forks (FORK)

Description: The JVM is good at profile-guided optimiza-
tion, i.e., optimization that is based on the usage profile of a
method. However, such optimizations should be avoided
in benchmarking, since a profile that was optimized for
one benchmark may be reused across other benchmarks.
In addition to the profile-guided optimization, running a
non-forked benchmark may cause the JMH infrastructure to
omit JVM options and compiler hints. These options and
hints could be paramount to ensuring the correctness of
the benchmark results. To avoid profile-guided optimization
and risk affecting the execution correctness, each benchmark
should execute in its own VM. Running a benchmark per
VM is the JMH default behaviour, however, it is possible to
override this behaviour using the @Forks annotation.

Symptoms: The code can appear faster or slower than
in actual usage, depending on the optimized profile that
was used by the JVM. JMH sample #12 contains a runnable
example of a case where profile-guided optimization leads
to unreliable benchmark results.”

Solution: Do not override the default JMH behaviour for
running a benchmark trial per VM unless there is a very
good reason to do so. In fact, since 2016, JMH issues a
message when executed with zero forks to warn developers
about potentially unreliable benchmarking results.

3 METHODOLOGY

In this paper, we present our study on bad JMH practices in
benchmarks. Our study has three main goals:

1) Identify how frequently bad JMH practices occur in
open source software projects (Section 4).

2) Study the performance impact of the used bad
practices on the benchmark results of those projects
(Section 5).

3) Validate our findings with the developers of those
projects, by proposing patches to address the iden-
tified bad practices (Section 6).

4. https:/ /bit.ly /2TZGkB6
5. https:/ /bit.ly /2PAHI3L
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Fig. 3: Overview of our study approach.

In the following, we present the methodology of our
study. An overview is also provided in Figure 3.

3.1

To identify the usage of bad JMH practices in the studied
projects, we built a static code analyzer, Spot JMHBugs, for
the JMH benchmarks. Our analysis tool was implemented as
a plugin for the SpotBugs® tool, the successor of FindBugs.
SpotJMHBugs is a rule-based tool that analyzes Java byte-
code, identifies bad JMH practices, and reports them to the
developer. We discuss the Spot JMHBugs tool in more detail
in Section 4.1.

Identifying Instances of Bad JMH Practices

3.2 Collecting Data

Below we present our methodology for collecting the data
for our study on (1) the frequency of bad JMH practices and
(2) the performance impact of these bad JMH practices on
the benchmark results of the projects. The full list of projects
and data sets that we base our results on can be found in
our online appendix [17].

3.2.1 Data Collection for Studying the Frequency of Bad
JMH Practices

We queried the 2017 GitHub snapshot (the Ilatest
snapshot available at the time of our study) us-
ing Google Bigquery’ to identify open source Java
projects that contain at least one JMH benchmark.
Concretely, we query for source files that import
org.openijdk.jmh.annotations.Benchmark and have
at least one method annotated with @Benchmark. This led
to a full data set of 839 projects.

In a second step, we remove forked projects to avoid
biasing our analysis towards popular programs’ charac-
teristics. Projects such as RxJava had 16 forked versions

6. https:/ /spotbugs.github.io/
7. https:/ /cloud.google.com/bigquery /

60
2407 2
8 30_ %
& & 40
:
20
#* 40 £
0 T OJV T T T 0 T o;l T T T
S N} L O N S S O N
PN E SR\ S S\ NP S S
N &7 NI IS &7
# of Stars # of Subscribers

Fig. 4: Distribution of stars and subscribers of the 123
projects used to identify bad JMH practices.

(aside from the original from ReactiveX) and would distort
our results. The set without forked projects contained 506
projects. As our Spot JMHBugs tool analyzes JVM bytecode,
it requires a compiled project to analyze. As manually com-
piling and executing tests for a large number of projects is
extremely time-consuming, if at all possible [30], we selected
a subset of 123 projects that could be built automatically
or with minimal intervention using Gradle or Maven for
our study. Figure 4 shows the descriptive statistics of the
selected projects in terms of their number of stars and
subscribers. Our selected projects cover a range of popular
and less-popular projects.

3.2.2 Data Collection for Studying the Performance Impact
of Bad JMH Practices

In the second part of our study, we study the performance
impact of the bad JMH practices (Section 5). We limited
our project selection further for this part of our study, as it
requires manually addressing the instances of the identified
bad JMH practices (and therefore requires knowledge about
the project). To study the performance impact of bad JMH
practices, we selected projects that matched the following
criteria:

o The project is in the top-3 projects ranked by the
number of stars on GitHub for a specific bad JMH
practice.

o The project contains at least 2 instances of the identi-
fied bad JMH practice.

These selection criteria help us focus our efforts on
(1) popular projects and (2) projects with multiple instances
of a bad JMH practice, thereby reducing the effort that is
necessary to address bad JMH practices.

Table 2 gives an overview of the projects for which
we studied the performance impact of the followed bad
JMH practices. Initially, our set of projects was composed of
three projects per bad JMH practice. However, after careful
inspection, we decide to remove two projects initially con-
sidered for the impact assessment of the FORK bad practice:
oopslalb-artifact and benchmark-arraycopy. The
first project was created as a paper artifact for the OOP-
SLA conference and the second is a series of benchmarks
created to evaluate a specific library function. Hence, both
are not good examples of production-quality open-source
software, which is the primary subject of our study. Table 2
shows the list of projects ultimately selected for the impact
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TABLE 2: Selected projects per bad JMH practice. We select
the top-3 most starred projects with at least two instances
of each bad JMH practice. Column # BP shows the total
number of bad practice instances that were identified in the
three projects.

Selected Projects # BP
RETU  netty gs-collections  logging-log4j2 54
LOOP  netty druid logging-log4j2 29
FINAL netty druid logging-log4j2 9
INVO  netty druid h20-3 18
FORK  pgjdbc 2
Total number of evaluated instances of bad JMH practices 112

assessment. Note that some projects (e.g., the netty project)
were selected for multiple categories. For the performance
impact study, we selected 6 projects which contain a total
of 93 instances of the 5 studied bad JMH practices (see
Section 2.1).

3.3 Assessing the Performance Impact of Bad JMH
Practices

To assess the performance impact of bad JMH practices, we
manually analyze the instances of the bad JMH practices
that we identified in the 6 projects in Table 2. We then
generate an alternative, “fixed” version of the benchmarks,
by removing the bad practices according to the solutions
proposed by the JMH documentation as stated in Sec-
tion 2.2. It is of paramount importance that in our fix
we do not introduce artificial latency or modify what has
been measured in a benchmark. Most fixes are non-intrusive,
and require simple code refactoring, such as consuming
variables, removing the final modifier from a primitive field,
or some level of benchmark reconfiguration.

However, one solution for removing the INVO bad prac-
tice required us to introduce the code from fixture methods
inside the benchmark. We classify this particular solution
as intrusive and benchmarks fixed with this solution are
evaluated using a separate methodology.

Assessing the Impact of Non-Intrusive Fixes: At the
end of our experiment we collect the resulting performance
counters (in particular, we focus on the execution time of
the benchmarks). If a bad JMH practice is irrelevant to
the benchmark result, both the original and fixed version
should lead to similar performance counter distributions. If
the distributions differ significantly, we conclude that the
bad practice impacts the benchmark result.

Assessing the Impact of Intrusive INVO Fixes: In
the case of the INVO fix, we also collect and compare
both performance counter distributions. If inserting the
setup/teardown code inside a benchmark method makes
the benchmark faster to execute, the JMH overhead takes
longer than the time spent on fixture methods. In this case,
we conclude that the benchmark was impacted by the INVO
bad practice.

To test whether the distributions of performance coun-
ters for the original version and fixed version are statis-
tically significantly different, we used the Wilcoxon non-
parametric test [44] with a significance level of o = 0.01.
The Wilcoxon test only indicates whether the distributions
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have a statistically significant difference. However, the test
does not indicate whether the difference is large enough to
be noticeable in practice. To quantify the difference, we use
Clift’s Delta effect size [8]. We use the following common
thresholds [38] for interpreting the effect size:

negligible(N), if |d| < 0.147
if 0. <0.
Effect size d — smal‘l(S)7 %f 0.147 < |d| < 0.33
medium (M), if 0.33 < |d| <0.474
large(L), if0474 < |d| <1

It is important to keep in mind that a large effect size
does not necessarily imply a large absolute difference in
mean benchmark times, but rather in the mean benchmark
times as well as the variation in these times. For example, if
a benchmark consistently takes 100ms to execute before the
fix, and 102ms after the fix, the difference could have a large
effect size, even though the absolute difference between the
mean benchmark times is fairly small. In the remainder of
the paper, we clarify whether ‘large’ refers to the effect size
of the difference, or the absolute mean benchmark times.

We consider the benchmark as impacted if it has at least
one benchmark instance where the performance counters of
the fixed version differ significantly from the original, with a
non-negligible effect size. In the particular case of the INVO
intrusive fix, we consider the benchmark as impacted if all
benchmark instances yield performance counters compara-
ble or faster than the original version.

We further define the benchmark effect size, as the highest
absolute effect size observed in its instances. The reasoning
behind this definition is that a benchmark should yield
consistent results on all defined input parameters. A single
set of parameters in a benchmark that is impacted by a bad
JMH practice, is sufficient to mislead an analysis and affect
the benchmark quality.

3.4 Evaluating Fixed Versions and Results with Devel-
opers

To evaluate the identified instances of bad JMH practices,
and their assessed impact, we manually submitted pull
requests to six open source projects (selected based on where
we found the largest impact on the benchmark results).
These pull requests contained the fixed versions that we
constructed as part of our study. The goal of this step was
two-fold. Firstly, we wanted to see whether the developers
agree with our assessment that the original benchmarks pro-
duced misleading results. Secondly, we wanted to validate
whether the developers agree with our fixes.

4 IDENTIFYING BAD JMH PRACTICES

In this section, we present the results of our first RQ: How
frequently do bad JMH practices occur in real-life open source
software?

4.1

To investigate the occurrences of bad JMH practices in Java
projects, we first derive a set of rules that can be used to
identify such practices via static code analysis. We present

The SpotJMHBugs Tool



TABLE 3: Static rules used to identify bad JMH practices.

Static Rule

Variable not consumed in the benchmark

RETU Ignored return of static method calls

LOOP  Numerical variable is accumulated in a loop
FINAL  Final and non-static primitives in @State classes
INVO @Setup /@Teardown with invocation level
FORK  @Fork with a value of zero

a brief description of each derived rule in Table 3. Bad JMH
practices that relate to the benchmark configuration, such
as INVO and FORK are easily verifiable and have unique
static rules. For instance, FORK requires a simple check on
the occurrence of a @Fork annotation with a value of 0.

The RETU, FINAL and LOOP bad JMH practices are
related to the source-code and manifest themselves in dif-
ferent ways. In such cases, we use heuristics to identify
scenarios in which the undesired JVM optimizations could
happen. For instance, the RETU bad practice may occur
when a variable is not properly consumed in the benchmark
or when developers ignore the return of a static method
call. Our rule for identifying unconsumed variables in a
benchmark is based on the following principle. A local
variable V is considered consumed if at least one of the
following criteria are met:

1) V isstored into a class field.

2) V is returned at the end of the benchmark method.
3) V is consumed by a JMH Blackhole object.

4) There exists another variable V' that has a data

dependency on V and V" is a consumed variable. To
check if such a dependency exists, we build a data-
dependency graph [42], and verify the existence of
a path between V and V’ in the graph.

Our rule reports every local variable that does not fulfill the
above mentioned criteria and is therefore prone to dead-
code elimination. For an explanation of the other rules,
we refer the reader to the source-code documentation of
Spot JMHBugs [16].

Our tool can be executed through a batch command
using Maven, Gradle or Ant, or integrated with the Eclipse
IDE. If used in conjunction with Eclipse, the warnings about
bad JMH practices are shown directly in the editor view.
SpotJMHBugs restricts its analysis to classes that contain at
least one method annotated with @Benchmark, as bad JMH
practices are only potentially harmful in the context of JMH
benchmarks. Calls to methods outside of benchmark classes
are skipped, keeping the analysis time short and primarily
dependent on the JMH benchmarks, which tend to be a very
small fraction of the overall application code base [31], [39].

4.2 Results

35 out of 123 projects (28%) contained at least one instance
of a bad JMH practice. Table 4 shows the number of iden-
tified instances of bad JMH practices per project together
with the number of benchmarks potentially affected by such
instances. If we limit our consideration to the 49 projects
with more than 10 benchmarks, the share of projects with
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TABLE 4: Distribution of identified instances of bad JMH
practices in all 123 projects and on a subset of 49 projects
containing at least 10 benchmarks.

# of Identified Bad JMH Practices
Dataset 0 1 2 3 4 5 6-10 +10

All projects 8 9 6 2 1 1 4 12

Projects with
10+ benchs 24 3 4 1 1 O 4 12

TABLE 5: The number of identified instances of bad J]MH
practices for all 123 studied projects. The ‘Total’ column
shows the number of instances found in all projects per bad
JMH practice.

Bad JMH Practice Total # of Projects % of Projects
RETU 89 15 12.2
LOOP 128 16 13.0
FINAL 25 9 7.3
INVO 82 10 8.1
FORK 7 3 2.4

at least one bad JMH practice increases to 51%. The number
of benchmarks potentially affected by bad JMH practices
varies considerably per project. In 23 projects we identi-
fied at most 10 instances, while we identified more than
10 instances in 12 other projects. In total, Spot JMHBugs
identified 331 instances of bad practices in our dataset.

LOOP was the most commonly identified bad JMH
practice, with a presence in 13% of the studied projects.
Table 5 summarizes the number of identified instances for
all bad practices. The second most commonly identified
bad JMH practice was the RETU bad practice, occurring in
12% of the studied projects. FINAL and INVO occurred in
respectively 9 (7%) and 10 (8%) of the studied projects. The
FORK bad practice was identified in only 3 projects.

Table 6 gives a detailed overview of the distribution of
the bad practices across the top 25 projects with the largest
number of benchmarks in their benchmark suite in our
dataset. Overall, the distribution of identified bad JMH prac-
tices appears to be very particular to each project. For exam-
ple, although RxJava has 215 benchmarks, Spot JMHBugs
did not identify any bad JMH practice in the project. On
the other hand, we identified instances of four different bad
JMH practices in the benchmarks of netty. In total, we
found 22 bad practice instances in this project alone. Aside
from FORK (which was found in only three projects) every
bad JMH practice was found in at least six projects.

28% of the studied projects contained at least one
instance of a bad JMH practice. Our results show that
the studied bad JMH practices occur frequently in
open source projects: LOOP was the most frequently
ocurring bad JMH practice, but aside from FORK, all
bad practices appeared in at least 6 projects.
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TABLE 6: The number of instances of bad JMH practices that were found in the 25 studied projects with the largest
benchmark suites. The projects in bold were selected for an experimental evaluation of the impact of bad JMH practices
instances in the next step of the study. The ‘Benchs’ column denotes the number of @Benchmark-annotated methods, and
‘Affected Benchs’ column shows the amount of benchmarks containing at least one bad JMH practice. We also included
the h20-3 project in the impact assessment which was not in the listed top-25 projects.

Project Stars  Benchs Affected Benchs Bad JMH Practices
# % | RETU LOOP FINAL INVO FORK
gs-collections 1652 451 | 48 10.6% 47
logging-log4j2 256 346 | 17 4.9% 5 7 5
RxJava 23,558 215
oopslal5-artifact 16 213 | 25 11.7% 4 1 2 12 3
netty 9,746 159 | 29 18.2% 2 14 2 4
reactive-streams-commons 106 157 2 1.2% 2
druid 4,743 148 | 15 10.1% 8 2 2
JCTools 1,053 92 3 3.2% 1 2
golo-jmh-benchmarks 4 92
zipkin 5,627 74
microbenchmarks 7 67 | 17 25.3% 17 5
xodus 248 66 | 52 78.7% 7 18
lab-java8streamperformancebenchmark 4 64 6 9.3% 6
mini2Dx 137 55
fast-select 3 48
jenetics 183 47 | 16 34.0% 8 1
rtree 482 42
byte-buddy 1,495 39
caffeine 2,414 38 1 2.6% 1
pgjdbc 322 35 14.2% 2
java-final-benchmark 10 34
streamalg 15 34 4 11.7% 4
pinot 1,475 31 | 15 48.3% 16
cache2k-benchmark 12 28 9 32.1% 1
template-compiler 12 27
h20-3 | 1,943 18 | 12 66.6% | 6 12

5 IMPACT OF BAD JMH PRACTICES

To answer our second RQ (What is the impact of the identified
bad JMH practices on the benchmark results?), we fix the iden-
tified bad JMH practices in selected projects (Section 5.1)
and compare the benchmark times of the fixed and original
benchmarks (Section 5.2).

5.1

We aim to evaluate the impact on performance of each
bad JMH practice separately. Thus, in projects that had
multiple identified bad practices, we generated multiple
fixed versions, each containing fix-patches for a single bad
practice. For instance, we identified three bad JMH practices
in druid, thus we generated three fixed versions. In total,
we fixed 93 instances of bad JMH practices, generating 13
fixed versions for 6 selected projects. Our concrete process
for generating fixes differed per bad JMH practice. We detail
how fixed versions were generated when discussing the
results for each bad practice.

Generating Fixed Versions

5.2 Running Benchmarks

There are a number of challenges in evaluating steady-
state performance in a managed runtime environment, such
as the JVM [20]. Various uncontrolled factors can impact
the performance, such as the garbage collector, Just-in-Time
compilation (JIT) and method sampling optimizations. As

mentioned in Section 2.1, JMH helps to mitigate the un-
controlled factors by allowing developers to configure the
number of warmup iterations, benchmark iterations and
forks. This configuration is highly important to achieve
reliable and repeatable results in a benchmark, e.g., too few
warmup or benchmark iterations may yield a large variance
in the performance counters of some benchmarks [30].

To avoid building our analysis on unreliable benchmark
configurations, we repeat each experiment 5 times, while
keeping the original benchmark configuration (i.e., the num-
ber of warmup and benchmark iterations, and forks). Our
experiments generate a median of 780 performance coun-
ters (min=100, max=14,400) for each benchmark instance.
Finally, we also alternate runs between the original and fixed
versions to reduce the chances of circumstantial external
influence impacting only one version of the program.

We conducted our experiments on a computational
server with an E5-1660-3.3GHz CPU, with 6 physical cores
and 64 GB RAM using Linux 3.16.0-53. The benchmarks
use the JVM HotSpot 64 bits and jdk1.8.0_65 as the Java
version. Aside from the basic operating system functionality,
no other process was running during the execution of our
experiments.

5.3 False Positives

We describe in this section, for each bad JMH practice, the
criteria for filtering false-positives. False positives are bad
JMH practices that were wrongly reported by our tool, due



TABLE 7: Identified bad JMH practice instances instances
characterized as false-positives (FP) by further manual in-
spection. The ‘TP’ column shows the correctly identified
cases by SpotJMHBugs and ‘# Benchs” shows the number
of benchmarks that are potentially affected by the bad JMH
practices.

Bad JMH Practice Identified FP TP # Benchs
RETU 54 11 43 43
LOOP 29 4 25 25
FINAL 9 2 7 7
INVO 18 2 16 25
FORK 2 0 2 5
Total 112 19 93 105

to (1) limitations in our rules or (2) needing to understand
the intent behind the benchmark creation.

Table 7 shows the number of false positives found (the
‘FP’ column) per bad JMH practice. Upon manual analysis
of the 112 bad practice instances that were initially identi-
fied by SpotJMHBugs, we found that 19 (17%) were false
positives reported by our tool. Note that the remaining 93
bad JMH practice instances could affect 105 benchmarks, as
a single instance of INVO and FORK may affect multiple
benchmarks. We further detail the criteria used to filter the
encountered false positives.

RETU: 11 of 54 instances of RETU were considered false
positives after manual inspection. In those cases, developers
inserted the variable that was identified as non-consumed
inside a conditional check, throwing an exception in case
of an unexpected value. This can be done by a call to an
assert method, or through an explicit if clause followed
by throwing an exception. This is a path-sensitive strategy
for checking the value of a variable and preventing dead
code elimination, and is currently not considered by our
Spot JMHBugs tool.

LOOP: In 5 of 29 cases, the accumulation of a numeric
variable in a benchmark loop was considered a false positive
after manual inspection. In these cases, the accumulation
was an integral part of the benchmark, and not only used to
consume the return of a method call.

FINAL: From the initial set of 9 FINAL cases, 2 were
considered a false positive. The final primitives were used
in a method unrelated to benchmarks.

INVO: From the initially reported 18 INVO bad practices,
2 could not be removed or reduced with our methodology.
Both scenarios are comprised of fixture methods that are
required to execute on every invocation, and run for too
long (longer than 1 ms) to be included in the benchmark
without offsetting the measurements. These constitute cor-
rect configuration of invocation level fixture methods, and
are hence false positives.

FORK: We found no false positives in the two instances
of FORK reported by Spot IMHBugs.

5.4 Results

In this section, we describe the methodology used to gener-
ate the fixed version and the results of the impact analysis
for each of the studied bad JMH practices. For each bad
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practice, we also detail a specific case where removing the
bad JMH practice had a significant impact on the perfor-
mance counters of the benchmarks.

TABLE 8: The number of benchmarks that were impacted by
the bad JMH practices which were removed through non-
intrusive fixes. The ‘Effect Size’ column indicates whether
the observed difference after removing the bad JMH practice
had a small (S), medium (M) or large (L) effect size.

Bad JMH Proiect Benchmarks Effect Size
Practice ) Impacted %|S M L
netty 1/1 100.0 1
gs-collections 9/37 243 1 8
RETU logging-log4j2 5/5 1000 | 1 4
Total 15/43 348 | 1 1 13
netty 10/10  100.0 10
druid 6/8 75.0 1 5
LoopP logging-log4j2 7/7 100.0 | 1 2 4
Total 23/25 920 |1 3 19
netty 1/2  50.0 1
druid - -
FINAL logging-log4j2 4/5 800 | 4
Total 57 5714 0 1
netty 12/12  100.0 1 11
druid 2/3 66.7 2
INVO h20-3 6/6 1000 | 2 2 2
Total 20/21 95.2 | 2 3 15
FORK pgdbc \ 5/5 1000 | 5

Table 8 shows the analysis of the impact of bad J]MH
practices for all non-intrusive fixes, and Table 9 shows the
result of removing the INVO bad practices through the
intrusive fix. In both tables we show how often a benchmark
was impacted (the ‘Impacted” column) by removing the
bad JMH practice and the ‘Effect Size’ of the observed
differences compared to the original version.

5.4.1 Impact of RETU

Fix Patches. We can ensure that unconsumed variables will
not be eliminated by the JIT in two ways: (1) we can return
a variable at the end of the benchmark method, or (2) we
can call Blackhole.consume () to consume the variables.
We apply the first patch to every void benchmark with a
single unconsumed variable, as we consider this solution
more elegant (which is relevant as we contribute a subset of
fixes to the projects, as discussed in Section 6). In all other
cases, we consume the variable using a Blackhole object.
Results. As shown in Table 8, we evaluate 43 benchmarks
containing the bad JMH practice. In our results, 15 of 43
benchmarks (34%) were impacted by fixing the RETU bad

TABLE 9: Benchmarks impacted by the INVO bad practice,
fixed by adding the fixture code inside the benchmark
(intrusive fix).

Bad JMH Proiect Benchmarks Effect Size
Practice ) Impacted % |S M L
INVO netty | 3/4 750 | 3




practices. For 13 benchmarks the difference has a large effect
size. The differences for the other two impacted benchmarks
have smaller effect sizes.

@Benchmark
public void baseline () {
consume (bytes); // return is not used

}

private static long consume (final byte][
long checksum = 0;
for (final byte b :
checksum += b;

bytes) {
bytes) {

}

return checksum;

}

Listing 6: Source-code of a benchmark affected by the RETU
bad practice in the logging—log4j2 project.

- baseline is08859_1GetBytes usAsciiGetBytes
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o 50 250 250
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Fig. 5: Performance counters before and after fix-
ing a RETU bad JMH practice in 3 benchmarks
in the AbstractStringLayoutEncoding class from
logging-log43j2. The effect size is large for the baseline
benchmark, and medium and small for the other 2 bench-
marks.

The highest impact after fixing a RETU bad practice
came from a baseline benchmark of logging-log4i2
presented in Listing 6. Developers called a static self-
implemented consume method, to consume the computa-
tion, but ignored the method return. After changing the
code to consume the computation, the resulting perfor-
mance counters showed that the execution time increased
by 32% (see Figure 5), which indicates that the developers
originally failed to appropriately take JIT optimization into
account. In addition, other benchmarks from the same class
(e.g., usAsciiGetBytes) were also impacted by our fix,
although with smaller effect sizes.

35% of the benchmarks containing the RETU bad
practice were significantly impacted by the bad prac-
tice. In 30% of the cases, the impact had a large effect
size.

5.4.2 Impact of LOOP

Fix Patches. We refactor the accumulation inside a loop into
a Blackhole.consume method call.

Results. Table 8 shows how often an instance of the LOOP
bad JMH practice impacted a benchmark. 23 of 25 bench-
marks (92%) had their performance counters impacted by
fixing this bad JMH practice. For 19 of these 23 impacted
benchmarks, the difference in execution time before and
after removing the LOOP bad practice has a large effect size.

To illustrate, we present a benchmark class from the
druid project, where we observed the largest effect sizes
in our experiment. LongCompressionBenchmark has two
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@Benchmark
public void readContinuous (Blackhole bh) {
ColumnarLongs columnarLongs = supplier.get();
int count = columnarLongs.size();
long sum = 0;
for (int 1 = 0; 1 < count; i++) {
sum += columnarLongs.get (i);
}
bh.consume (sum) ;
columnarLongs.close () ;

}

Listing 7: Source-code of a benchmark in druid project
affected by the LOOP bad practice.

1 Original
I Fixed

S
s
O

(%]
o

N
o
o—
——
o—

Execution Time (ms)
N
o

- e e

i1 i2 i3 i4 i5 i6 i7 8 i9 i10i11i12i13i14i15i16i17i18i19i20

Fig. 6: Performance counters before and after the fix of an
instance of the LOOP bad practice in a druid benchmark.
The effect size of the differences is large for all 20 benchmark
parameters (il to i20).

benchmarks defined: the first benchmark reads sequentially
from an array (see Listing 7) while the second randomly
skips array positions. The first example can have its loop
unrolled and the operations merged by JIT, artificially
speeding-up the benchmark with a median of 22%, and up
to 9 times in one extreme case. We present the impact of
our fix of the sequential read benchmark in Figure 6 for the
execution with all 20 benchmark parameters. The second
benchmark cannot easily be optimized by JIT, and was not
impacted by our fix (see our online appendix [17]).

23 out of 25 benchmarks containing the LOOP bad
JMH practice were impacted by the bad practice. For
19 benchmarks the impact had a large effect size.

5.4.3 Impact of FINAL

Fix Patches. To fix FINAL bad JMH practices, we simply
removed the final modifier of primitive variables.

Results. As shown in Table 8, we found that 5 of 7 (71%)
benchmarks had their performance counters impacted by
fixing the FINAL bad JMH practice. The effect size of
the impact was large for one benchmark, and small in the
other four cases. The four benchmarks with small effect
size measure the execution time of logging an event in the
logging-log43j2 project. Developers used a final boolean
variable to check whether to perform further logging op-
erations as depicted in Listing 8. JVM can optimize the
first check of the if-clause away. The impact of such an
optimization is statistically noticeable, and may be relevant
in some practical use cases, but the absolute impact of the
bad FINAL bad JMH practice is considerably lower than for
the previously discussed bad JMH practices (see Figure 7).



5 out of 7 benchmarks were impacted by the FINAL
bad practice, but the impact typically has only a
small effect size.

private final additive = true;
//Method called by a benchmark
private void logParent (final LogEvent event) ({
if (additive && parent != null) {
parent.log(event);
}
}

Listing 8: Source-code of a benchmark affected by FINAL
bad practice in the 1ogging-1log4 j2 project.

logWithCountersAndLock
580

logWithCountersNoLocks

50 40
35
40
30
30 25

Fixed

logWithoutCountersOrLocks

Execution Time (n
(2] ~
o o

[$)]
o

Original ~ Fixed Original Original Fixed

Fig. 7: Performance counters before and after the fix a
FINAL bad practice on 3 benchmarks in logging-log43j2.
The effect size is small for all 3 benchmarks.

5.4.4 Impact of INVO

Fix Patches. The process of fixing the INVO bad JMH practice
requires both the analysis of the benchmark code and a
preliminary set of experiments. The JMH documentation
explicitly mentions the requirement of an ad-hoc evaluation
of the invocation level usage.

We first determined which objects need to be created
or cleaned up on every invocation. Every object that does
not require this was moved to a fixture method with
Level.Iteration. Then, we ran a set of preliminary
experiments to identify fixture methods that run in less
than one millisecond, which we define as short-running.
In such cases, we moved the fixture method code into the
relevant benchmark method, as suggested by the JMH doc-
umentation. We made sure to never refactor class fields into
local variables to prevent the JVM from performing further
optimizations. The JVM can identify if a local variable is
accessed in a restricted scope (Escape Analysis) and avoid
allocating the object in the heap (Scalar Replacement).

SpotJMHBugs reported 16 INVO instances, which af-
fected 25 benchmarks in total. In 21 benchmarks, the in-
vocation level fixture could be removed or reduced without
adding code to the benchmark method (non-intrusive fix). In
the remaining 4 benchmarks, we added the setup/teardown
code inside the benchmark (intrusive fix).

Results of the non-intrusive fix. Table 8 shows the impact
analysis for instances of the INVO bad practice that could
be removed without changing the benchmark code. In our
evaluation, 20 of 21 (95%) benchmarks had their perfor-
mance counters impacted by the INVO bad practice, and in
15 benchmarks the impact had a large effect size.
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Fig. 8: Performance counters before and after the non-
intrusive fix for the INVO bad practice on 3 benchmarks
from CodecOutputListBenchmark class. The effect size
is large for all benchmarks, each evaluated with 2 sets of
parameters (il and i2).
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Fig. 9: Performance counters before and after the fix for
3 benchmarks that had their INVO bad practice removed
through an intrusive fix.

For instance, the CodecOutputListBenchmark class
from the netty project had its fixture methods unneces-
sarily configured to invocation level. The created objects
were not modified during the benchmark execution and
could instead be instantiated on every iteration. After our
fix, every benchmark executed on average three times faster
(see Figure 8).

Results of the intrusive fix. As shown in Table 9, 3 of 4
benchmarks had significantly faster performance counters
after moving the setup code inside of the benchmark. This
speedup indicates that the JMH overhead was considerably
higher than the time spent in the setup phase.

Figure 9 shows the comparison of the performance coun-
ters in three of the benchmarks. The benchmarks were up
to 20% faster after our fix. More importantly, such bench-
marks were defined in a single class HeadersBenchmark,
which contained nine other benchmarks that were indirectly
affected by the invocation level fixture. Therefore, our fix
eliminated the JMH invocation overhead from the remain-
ing nine benchmarks as well.

23 out of the 25 benchmarks that used the INVO bad
practice were misconfigured which impacted their
performance counters. Including the setup code in
the benchmark itself, actually accelerated benchmark
execution in 3 of 4 cases.

5.4.5 Impact of FORK

Fix Patches. Benchmarks configured with zero forks can be
reconfigured by modifying the annotation @Fork or by
overriding the fork parameter of JMH directly when starting
the benchmark through the command line. We opt for the
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Fig. 10: Performance counters before and after fixing the
FORK bad practice in the AddingPaddingZeroes bench-
mark of the pgjdbc project. The impact of removing the
FORK bad practice had a large effect size in all three
instances.

first approach in our study (as it allows us to fix the bad
practice directly in the source-code).

Results. We evaluated two instances of the FORK bad
JMH practice, which configured the fork parameter for
five benchmarks (see Table 8). All five benchmarks were
impacted by the FORK bad JMH practice. In all cases, the
difference in execution time after removing the FORK bad
practice had a large effect size.

In our evaluation, the AddingPaddingZeroes class
from pgjdbc showed the highest impact after our fix, with
differences of up to three times (see Figure 10).

All five benchmarks configured with zero forks had
their performance counters largely impacted by re-
moving the FORK bad practice.

6 SUBMITTING PULL REQUESTS

After evaluating the impact of bad JMH practices, we sub-
mitted a number of pull requests to the maintainers of a
subset of the studied projects. In this study, the purpose
of submitting the pull requests are twofold: (1) To validate
our bad JMH practice detection and impact assessment
with the benchmark creators, and (2) to contribute to open-
source projects by fixing potentially misleading benchmark
implementations.

We restricted our pull requests to the cases where our
analysis has shown that the effect size of removing the
bad JMH practice was large. This limited our efforts to
benchmarks where misleading results could have conse-
quences on the project’s performance. We also refrained
from submitting a pull request for one benchmark from the
pgjdbc project, because this benchmark did not evaluate
project code, but only compared the performance of bitwise
operations instead. Table 10 shows a description of the pull
requests that we submitted to each project, per bad JMH
practice. In total, our pull requests applied changes to 57
benchmarks across 6 open-source projects.

Accepted pull requests. 6 of 7 issued pull requests were
well received and accepted by developers and maintainers
of the studied projects. In these pull requests, developers
agreed on merging the recommended patch into the main
branch. In one case, a developer mentioned having pre-
viously identified such unsafe loops, but never had the

12

chance to fix it [15]. In another case [14], the developers
agreed with the fix but asked to remove the benchmark
altogether instead since it was not in use anymore. The
gs-collections project has the largest benchmark suite,
with almost every class making a good use of Blackhole
and variable sinking options. Still, we found 23 cases of the
harmful RETU bad JMH practice, fixed by our patch [10].

Rejected pull requests. The only rejected pull request was
the patch that reconfigured the @Fork parameter from zero
to one. The developers acknowledged that configuring a
benchmark with zero forks could lead to misleading results,
but justify that such configuration was only used to debug
the benchmark in the IDE. Furthermore, the pull request
was not accepted and merged into the pgjdbc project
for two reasons: (1) The benchmarks were not part of the
continuous integration process and are executed on a case-
by-case basis, thus would not impact the quality of the main
product and (2) the developers intend to remove JMH from
the project due to licensing issues.

7 DISCUSSION

We now discuss the implications of our results for software
developers and researchers, as well as threats to the validity
of our study.

7.1 Implications

Our results show that existing JMH microbenchmarks even
in prominent open source software systems contain bad
practices that impact the benchmark results.

Although well-documented in research [20] as well as in
the JMH documentation, many open source developers still
appear to be struggling to correctly account for the many
intricacies of benchmarking Java applications. The fact that
our pull requests containing fixed benchmarks have been
merged back in 6 of 7 cases indicates that developers gen-
erally care about the bad JMH practices we have presented
(i.e., they appear to not be cases of conscious trade-offs),
but often fail to avoid them in practice. This should be
addressed in the following orthogonal ways:

Improve developer training and documentation. Based
on our results, we speculate that the information that de-
velopers currently have is not effective in guiding them
towards rigorous benchmarking solutions. One reason may
be that without detailed knowledge of the inner workings of

TABLE 10: Pull requests submitted to developers of studied
open-source projects. Column Ref links the Github pull-
request and Issue description, while column Status shows
how developers received our patch.

Ref  Project Bad J]MH #of Status
Practice Benchmarks
[10]  gs-collections RETU 23 Accepted
[12]  logging-log4j2 RETU 5  Accepted
[15]  druid LOOP 4 Accepted
[14]  druid INVO 2 Accepted
[13] h20-3 INVO 2 Accepted
[9] netty INVO 16 Accepted
[11]  pgjdbc FORK 5 Rejected
Total 57




the JVM and just-in-time compilation, many bad JMH prac-
tices may appear obscure and unimportant to developers. It
is possible that developers are aware that their code contains
bad JMH practices according to the documentation, but fail
to see how these bad practices impact their own projects.
Improving this understanding is difficult, but may require
more explicitly and extensively discussing the effects of bad
practices (for example in the JMH documentation) rather
than only listing what they are. However, ultimately, better
developer training with regards to performance engineering
for Java applications will be required.

Improve developer tooling. In addition to training, bet-
ter tooling should be provided to help developers avoiding
bad JMH practices. Our own tool, Spot JMHBugs, is a good
starting point. As a SpotBugs plugin, Spot JMHBugs is easy
to integrate into standard IDEs and can be used already dur-
ing development to point out bad JMH practices. Another
angle may be to extend JMH itself to, for instance, analyze
the configuration input and benchmark code before the
execution of the benchmarks. Through this analysis, JMH
could produce warning messages when it discovers configu-
rations or benchmark code that appears to contain bad JMH
practices (similar to what it already does for the FORK bad
practice). A significant advantage of this approach is that at
runtime, JMH has access to a much richer set of metrics than
our static analysis approach to determine whether any given
execution is likely to lead to trustworthy benchmark results.
For instance, JMH knows how many warmup iterations,
benchmark iterations, and forks are actually being executed,
and can use statistical power analysis to evaluate if this
configuration is trustworthy given the benchmark value
dispersion it observes.

Studying approaches for automatic benchmark repair.
In our work, we have manually fixed a number of instances
of bad JMH practices. However, in doing so, it has become
evident that for a subset of bad practices, (e.g. LOOP, FINAL
and RETU) fixes actually only require a fairly static and
simple transformation of the code. Future studies should
investigate automatic benchmark repair, which could help
to fix bad JMH practice instances without direct developer
involvement. Such a tool would have a large positive impact
on performance testing practices, as it (1) could be employed
to provide widespread fixes of the many instances of bad
JMH practices we have identified in our study, and (2) act
as another tool for developer training. That is, such an au-
tomatic benchmark repair tool could educate developers in
how a rigorous implementation of their benchmark would
look.

7.2 Threats to Validity

The external wvalidity concerns the generalizability of our
work. One threat is that we selected open source projects
from GitHub only. Future studies are necessary to identify
the frequency and impact of bad JMH practices in other
types of projects, such as industrial projects.

In addition, our study focused on JMH microbench-
marks. While JMH has become one of the most popular
microbenchmarking frameworks for JVM-based languages
(such as Java, Scala and Clojure), future studies are nec-
essary to investigate whether our findings hold for other
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microbenchmarking frameworks in Java and other pro-
gramming languages. In addition, future studies should
investigate the impact of these bad practices when using
non-default JIT compilers, such as the Graal compiler.

The internal validity concerns the confidence that we have
in our findings. One threat is that we consider the fixes that
are suggested by the JMH documentation as the current
‘industry-standard” for addressing bad JMH practices. It is
possible that these JMH-proposed fixes themselves impact
the performance of the benchmark. Regardless, our tool
can detect the bad JMH practices; if in the future a differ-
ent ‘industry-standard’ fix arises, future studies should re-
evaluate the impact of the bad JMH practices that our tool
can detect.

Another threat is that we use the thresholds that were
proposed by Romano et al. [38] for Cliff’s Delta effect size to
quantify the impact of a bad JMH practice on the benchmark
results. Some projects may require different thresholds to
meet their performance requirements. Future studies should
investigate these differences in performance requirements.

Because our detection rules are heuristic-based, manu-
ally verified instances of bad practices investigated in this
study could represent only a subset of all existing cases
in the studied projects. If a bad practice manifests itself in
a different way our tool will not detect it. Future studies
should investigate how our detection rules can be extended
and improved.

The construct validity concerns the construction of our
experiments. One threat is that our tool for identifying
bad JMH practices is based on heuristics, and is therefore
inherently susceptible to false positives. The major challenge
is that developer intent is an important factor in deciding
whether an identified instance of a bad JMH practice is
indeed a bad practice. For example, a developer might
actually want to benchmark the impact of JVM optimization
on variable accumulation inside a loop. Hence, our tool
should be used as a guideline by developers to identify
potential instances of bad JMH practices.

In addition, our rules do not cover all possible cases
of undesired JVM optimizations. JVM also uses runtime
analysis to perform optimizations, e.g., it might eliminate
dead code after inlining a method call during the benchmark
execution. Because our tool uses static analysis only, it
cannot detect instances of bad JMH practices that depend
on runtime information.

8 RELATED WORK

Below we discuss the related work on (1) microbenchmark-
ing and performance unit testing, (2) errors in performance
evaluation, and (3) methodologies for robust performance
analysis.

Microbenchmarking and performance unit tests

Microbenchmarking and performance unit testing are two
related approaches to assess the performance of program
code. Microbenchmarks evaluate the performance of a (typ-
ically small) code segment, such as a single method [1],
[2], [30], [37]. The outcome of a microbenchmarking run
is a set of one or multiple performance counters. A devel-
oper or quality engineer uses these performance counters



to compare different implementation alternatives, or detect
slowdowns (i.e., by statistically comparing the performance
counters produced in a new version of the product with
counters produced by previous releases). Performance unit
tests similarly operate on small code segments, but they
entail concrete target values, akin to asserts in unit testing
for functional defects [18], [39]. In this paper, we focus on
microbenchmarking. However, given the conceptual prox-
imity of the concepts, much of our work can arguably also
be applied to performance unit testing.

As discussed in this paper, a major challenge of correct
microbenchmarking is to prevent misleading results due to
compiler and JVM optimizations, including constant fold-
ing, loop unrolling and method inlining [2]. Frameworks
such as JMH [1] are designed with an intricate knowledge
of JVM optimizations and can help benchmark designers
in avoiding related pitfalls. For example, JMH provides
the Blackhole class, which consumes return values and
circumvents dead code elimination. However, as demon-
strated in this work, JMH alone cannot preclude spurious
evaluation results if used incorrectly.

Especially close to our work are approaches and method-
ologies which ensure the correctness of microbenchmarks
or performance unit tests [2], [25], [26], [37]. Rodriguez-
Cancio et al. [37] proposed a combination of static and
dynamic analysis and code generation to synthesize mi-
crobenchmarks evaluating code segments extracted from
large applications. Their AutoJMH tool generates payloads
which prevent dead code elimination and constant folding,
optimizations which can lead to common mistakes in mi-
crobenchmarks. In our work, we consider a larger set of
problems related to JMH, including more complex ones, e.g.,
a loop inside a benchmark. We also focus on detecting such
bad practices via a static analysis tool and conduct empirical
studies on the prevalence of bad practices and the impact of
their fixes.

Further work focusing on the correctness of microbench-
marking discusses the issues that can hinder the experiment
or mislead the evaluation in Java [25], or describe how J]MH
can be used to avoid typical pitfalls [2], [26].

Other contributions in this area propose methods for
generating benchmarks for scenarios in which JVM opti-
mizations are not harmful [29], [36]. Kuperberg et al. [29]
proposed an automated solution for benchmarking any set
of APIs, e.g., the Java Platform API Contrary to the above-
mentioned approaches, this solution specifically induces
the JIT optimizations to “obtain realistic benchmarking re-
sults”. Pradel et al. [36] introduced SpeedGun, a technique
which can automatically discover performance regressions
in thread-safe classes. Also in this scenario, JVM optimiza-
tions do not affect the results (assuming that both code
versions are optimized).

Performance evaluation errors

A large amount of work studies reasons for incorrect or
biased performance evaluation results. A commonly iden-
tified problem is non-determinism of individual executions
caused by the complexity of the runtime environments, in
particular the Java JVM [5]. Another source of performance
variations is the OS Jitter phenomenon [34], e.g., the impact
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of the thread affinity values and settings on the execution
time.

While the impact of non-determinism on the results
can be addressed by repetition of experiments and rigid
statistical procedures [6], [20], a more serious problem is
a measurement bias caused by presumably innocuous fac-
tors [33]. Such so-called hidden factors can take various forms,
such as link order of code segments/libraries, or UNIX
environment size [7].

Mytkowicz et al. [33] conducted one of the first com-
prehensive studies on hidden factors and their causes, and
proposed a method for their detection (via causal analysis)
and for avoiding them (setup randomization). Curtsinger
et al. [18] addressed the impact of the layouts of code,
stack, and heap objects at runtime on the performance. They
developed a tool for randomizing the memory layout, which
is combined with statistical techniques such as ANOVA for
sound performance optimization (in particular related to the
impact of compiler optimization levels).

Other studies reported different types of hidden factors.
Kalibera et al. [27] demonstrated the impact of the initial
state of the system on the performance results. Harji et
al. [24] showed that the Linux kernel has had multiple
serious performance-related regressions, resulting in perfor-
mance variation of as much as 45% between two subsequent
versions. Consequently, the choice of the kernel version
might have significant impact on the benchmark results.
In an earlier version of the JVM, changing the names of
symbols significantly affected the cache miss count and thus
performance of applications [23]. In another study of Java
performance, the authors reported that simply restarting the
virtual machine could cause performance variations as high
as 3% [21].

Our work focuses on the incorrect usages of the J]MH
framework which can result in measurement biases. The
reasons for such errors are in most cases unwanted JVM
optimizations. Contrary to the approaches to avoid hidden
factors such as setup randomization, unwanted optimiza-
tions can be eliminated via thorough understanding of
the optimization process and correct benchmarking code.
Nevertheless, detection of measurement biases due to novel
optimizations or JVM internals remains an open challenge,
similarly to generic detection approaches for hidden factors.

Methodologies for robust performance analysis

Prior work proposed methodologies, frameworks, and spe-
cific techniques to ensure correctness and robustness of
performance evaluation results in face of non-determinism
inherent in complex computer systems. In most cases, this
work is complemented by empirical studies or literature
analyses which demonstrate the problems.

Georges et al. [20] focus on the data analysis aspects of
the performance evaluation of Java programs. Their study
of reported Java performance results available at that time
uncovered a need for a statistically rigorous evaluation
methodology in face of the non-determinism of the Java
runtime. They proposed and evaluated several statistical
measures to address this problem while considering prac-
tical aspects, such as best practices for quantifying startup
and steady-state performance. The conclusions of this work
were partially extended by Bulej et al. [6], where the authors



showed the pitfalls of applying basic statistical methods to
data from a real performance benchmark (SPECjbb2015).

Blackburn et al. [5] showed how the complexity and
large number of degrees of freedom of the Java runtime
system can lead to misleading performance results. They
argue that benchmark designers must use relevant work-
loads, principled experimental design, and rigorous analysis
to produce meaningful results, and illustrate their reasoning
on the design choices for the DaCapo benchmark [4].

Other work focused on specific aspects of performance
evaluation. Alexander et al. [3] propose using nonlinear time
series analysis techniques to capture the complex dynamics
of computer performance data. Kalibera and Jones [28]
addressed the trade-off between cost of experiments (in
terms of number of repetitions) and statistical validity of the
results. They introduced a mathematical model for adjusting
the number of repetitions to the level of uncertainty and
evaluate it using the DaCapo and SPEC CPU benchmarks.
De Oliveira et al. [19] proposed DataMill, a distributed
infrastructure for rigorous performance evaluation with par-
ticular focus on eliminating impact of hidden factors via
their automated variation. Moreno and Fischmeister [32]
discussed a simple technique to eliminate the systematic
error introduced by the get_current_time () system call,
a relevant problem in microbenchmarking.

Our work focuses on the particular domain of Java
microbenchmarks, which is a relatively new class of eval-
uation methods. We quantify the prevalence and impact
of misuse of the JMH benchmarks, attempting to raise the
awareness of correct microbenchmarking. We also provide a
set of recommendations for practitioners and researchers as
a “soft” methodology for robust performance analysis.

9 CONCLUSIONS

In this paper, we studied bad practices of writing mi-
crobenchmarks using the JMH framework. We presented
five bad JMH practices related to not consuming products
of computation, using a loop to accumulate computations,
using final primitives that are prone to constant folding,
incorrect usage of test fixtures, and incorrect usage of JMH
forks. We showed that these bad JMH practices are indeed
prevalent in Java-based open source systems, and found that
fixing them often leads to performance counters that are
statistically significantly different from the original version
with a large effect size. This indicates that bad JMH practices
are indeed often severely impacting the outcome of bench-
marks, as they lead to benchmark results that substantially
deviate from the correct measurements. We submitted pull
requests containing fixed benchmarks to developers of im-
pacted open source projects to validate whether developers
agreed with our assessment and analysis. 6 of 7 submitted
pull requests were accepted and merged quickly (one was
rejected as the developers plan to remove JMH from the
project due to licensing issues), indicating that developers
indeed confirmed the identified issues after being presented
with the results of our study.

Our study results indicate that many open source de-
velopers still struggle to account for the many intricacies of
benchmarking Java applications. Consequently, we suggest
that we need (besides improving developer training as
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well as the JMH documentation) better tooling to guide
developers towards rigorous benchmark implementations.
As part of our study, we have developed SpotJMHBugs,
a static analysis tool to identify bad JMH practices. As a
plugin to SpotBugs, Spot IMHBugs is easy to integrate into
standard Java IDEs. However, even more important may
be to improve JMH itself. Such improvement could for
example consist in generating warning messages when JMH
discovers configurations or benchmark code that appears
to contain bad JMH practices. Further, we suggest that
our work can be used as a starting point for studying
approaches for automatic benchmark repair.
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