
1

Revisiting the Performance Evaluation of
Automated Approaches for the Retrieval of

Duplicate Issue Reports
Mohamed Sami Rakha, Cor-Paul Bezemer, and Ahmed E. Hassan

Abstract— Issue tracking systems (ITSs), such as Bugzilla, are commonly used to track reported bugs, improvements and change
requests for a software project. To avoid wasting developer resources on previously-reported (i.e., duplicate) issues, it is necessary
to identify such duplicates as soon as they are reported. Several automated approaches have been proposed for retrieving duplicate
reports, i.e., identifying the duplicate of a new issue report in a list of n candidates. These approaches rely on leveraging the textual,
categorical, and contextual information in previously-reported issues to decide whether a newly-reported issue has previously been
reported. In general, these approaches are evaluated using data that spans a relatively short period of time (i.e., the classical evaluation).
However, in this paper, we show that the classical evaluation tends to overestimate the performance of automated approaches for
retrieving duplicate issue reports. Instead, we propose a realistic evaluation using all the reports that are available in the ITS of a software
project. We conduct experiments in which we evaluate two popular approaches for retrieving duplicate issues (BM25F and REP) using
the classical and realistic evaluations. We find that for the issue tracking data of the Mozilla foundation, the Eclipse foundation and
OpenOffice, the realistic evaluation shows that previously proposed approaches perform considerably lower than previously reported
using the classical evaluation. As a result, we conclude that the reported performance of approaches for retrieving duplicate issue reports
is significantly overestimated in literature. In order to improve the performance of the automated retrieval of duplicate issue reports, we
propose to leverage the resolution field of issue reports. Our experiments show that a relative improvement in the performance of a
median of 7-21.5% and a maximum of 19-60% can be achieved by leveraging the resolution field of issue reports for the automated
retrieval of duplicates.

Index Terms—Text analysis, software engineering, performance evaluation

F

1 INTRODUCTION

An issue tracking system (ITS) is an essential project com-
ponent that allows users and project members to report and
track software issues during the development of a large
software project [8]. For example, users can receive emails
when issue reports are resolved or assigned. Furthermore,
they can discuss the issues with team members directly. An
issue can represent a bug, a new feature, or a change request.
Thus, many software projects rely on issue tracking systems
for managing maintenance activities [17].

The identification of duplicately-reported issues is nec-
essary since all too often, the same software issue might
be reported more than once using a different vocabulary
or software use cases. In popular software projects, such as
Mozilla Firefox and the Eclipse IDE, the number of duplicate
issue reports can be as large as 20-30% [3] of all reported
issues. Manual identification of such duplicates requires a
significant investment in effort and time [3, 9, 17, 25]. How-
ever, early identification of duplicate reports is important as
it prevents multiple developers from wastefully working on
the same software issues.

Several prior studies have proposed approaches to auto-
matically identify duplicate issue reports [1, 2, 16, 17, 22, 28,

• Mohamed Sami Rakha, Cor-Paul Bezemer and Ahmed E. Hassan are with
the Software Analysis and Intelligence Lab (SAIL), School of Computing,
Queen’s University, Canada.
E-mail:{rakha, bezemer, ahmed}@cs.queensu.ca

30, 34] which help the triagers [4] to decide whether a newly
reported issue is a duplicate of a previously-reported issue.
These approaches use the textual, categorical and contextual
features of each reported issue to find the most similar re-
ports. Prior research on automatically identifying duplicate
issue reports can be roughly divided into two subdomains.
The first subdomain focuses on classifying whether a newly-
reported issue was already previously-reported [6, 15]. The
second subdomain focuses on retrieving existing issue re-
ports that are the possible duplicates of a newly-reported
issue. In this paper, we focus on the retrieval of duplicate
issue reports, hence, the second subdomain.

In general, many of these approaches are evaluated
on a small subset of the reports that are available in an
ITS [1, 16, 20, 22, 30, 31, 36]. For example, Sun et al. [31]
select reports from a time frame and indicate that they
unlabel an issue report as duplicate, if the report that it
duplicates was not reported in the same time frame. In
this type of evaluation, which we call the classical evaluation
throughout this paper, the assumption is that duplicately-
reported issues are reported shortly after the original report.
However, as we show in this paper, this assumption is
incorrect in many cases.

Instead, we propose a realistic evaluation for the au-
tomated retrieval of duplicate issue reports that uses all
issue reports that are available in the ITS of a project. In
this paper, we conduct an experiment using data from the
ITSs of the Mozilla foundation, the Eclipse foundation and

2

OpenOffice in which we show that the classical evaluation
relatively overestimates the performance of BM25F [26] and
REP [30], two popular approaches for retrieving duplicate
issue reports, by a median of 17-42%. Our results show that
our proposed realistic evaluation should be used in future
studies to report the performance of automated approaches
for retrieving duplicate issue reports.

In the second part of our paper, we evaluate two ap-
proaches for improving the performance of the BM25F and
REP approaches. First, we evaluate the impact of limiting
the set of issue reports that is searched by the approaches
using a time-based threshold (e.g., search only in the last
6 months). However, such a limitation does not lead to a
significant improvement in performance.

Second, we propose an approach that extends BM25F
and REP with the use of the resolution field of issue reports.
By using this field, we can filter issue reports in the results
of BM25F and REP that are more likely to be duplicate
candidates considering their resolution field value. For ex-
ample, an issue report that was fixed a long time ago, is
unlikely to be a duplicate of an issue report that has been
reported recently. Our results show that using the resolution
field during the retrieval of duplicate issue reports relatively
improves the performance of BM25F and REP by a median
of 7-21.5% and a maximum of 19-60%. We use the recall
rate and mean average precision (MAP) as performance
metrics [16, 22, 31].

In particular, in this paper we address the following
research questions:
RQ1: How much do the realistic evaluation and classical

evaluation differ?
The classical evaluation assumes that duplicate reports are
reported shortly after the original report (i.e., short-term
duplicates). However, there are long-term duplicates that also
need to be retrieved, which is taken into account by the
realistic evaluation. In this RQ, we study the differences be-
tween the realistic and classical evaluations over the lifetime
of each studied ITS. We find that the classical evaluation
significantly overestimates the performance of BM25F and
REP for the three studied ITSs. The median observed relative
difference in the performance metrics is 17-42%.

RQ2: How does limiting the issue reports that are
searched by time impact the performance of auto-
mated approaches according to the realistic evalua-
tion?
In RQ1, we observe that it is not possible to simply ignore all
long-term duplicates without overestimating the performance
of automated approaches for the retrieval of duplicate issue
reports, as is done by the classical evaluation. In RQ2, we
study whether it is possible to use a time-based threshold to
ignore some of the long-term duplicates without impacting
the performance. We find that it is not possible to limit the
issue reports that are searched by the latest n-months with-
out significantly impacting the performance of automated
approaches for retrieving duplicate issue reports. However,
we show that it is possible to limit the issue reports that are
searched using a time-based threshold without a noticeable
difference in performance in practice.

RQ3: How does leveraging the resolution field of an
issue report impact the performance according to the
realistic evaluation?

In RQ3, we build upon our findings in RQ1 and RQ2 by
proposing an enhancement to existing approaches that filters
candidate issue reports based on their resolution value (e.g.,
FIXED or WONTFIX), the time since their resolution and
their rank in the returned list of duplicate candidates. Our
results show that we can leverage the resolution field of
issue reports to improve the automated retrieval of duplicates.
Our proposed enhancement improves the performance of the
automated retrieval of duplicates by a median of 7-21.5% and
a maximum of 19-60%.

Our work is the first to explore the design of the perfor-
mance evaluation of automated approaches for retrieving
duplicate issue reports. We expect and hope that future
work will dig even deeper into the concept of realistic
evaluation (while defining it better).

The rest of the paper is organized as follows. Sec-
tion 2 presents background information and discusses re-
lated prior work. Section 3 presents our experimental setup.
Section 4 describes an exploratory study that motivates our
work. Section 5 presents the results of our experiments.
Section 6 discusses threats to the validity of our study and
Section 7 concludes the paper.

2 BACKGROUND

2.1 Duplicate Issue Reports

In the ITS of a software project, developers, testers and
users can report issues that describe software bugs, new
features or improvements. To report an issue, users fill in
a form with details about that issue. As this form contains
several free text fields, users can describe the same issue
in different ways. Thus, the same issue may be reported
multiple times. To avoid wasting resources, all duplicate
issue reports must be marked as DUPLICATE by a triager.
Then, developers that want to address an issue report do
not have to worry about working on an issue that is already
resolved or assigned to another developer.

In general, developers select one issue report of a set
of duplicate reports to survive, i.e., the master report. This
master report is often the report that contains the most
detailed information about the issue, such as a discussion
of developers. Hence, the goal of retrieving duplicate issue
reports is to link all newly-reported issues to their corre-
sponding master report if they are duplicates. In contrast to
the manual retrieval, prior work on automated approaches
for retrieving duplicate issue reports classifies the oldest
issue report of a set of duplicate reports as the master
report [22, 28, 30, 31].

2.2 Automated Retrieval of Duplicate Issue Reports

To assist triagers with the tedious process of retrieving
duplicate issue reports, automated approaches have been
previously proposed [1, 2, 16, 17, 22, 28, 30, 34]). Most of
these approaches use information retrieval techniques [5].
Information retrieval is the activity of finding the needed
information from a set of information sources (the corpus),
such as text documents, images and audio. Most informa-
tion retrieval approaches calculate a score that is based on
the similarity of the available information sources to a query.

3

To calculate the similarity score of text documents, the
documents are usually separated into terms (e.g., as in the
vector space model (VSM) [29]). A term can be a single word
or a longer phrase. Each term has a value which represents
its importance in a document. The terms within a document
are ranked by their importance and the similarity score of a
document is calculated based on that ranking.

Term Frequency-Inverse Document Frequency (TF-
IDF) [10] is a common approach to measure the importance
of a term in a text document. TF-IDF represents the ability
of each term to uniquely retrieve a document in the corpus.
The basic formula of TF-IDF is:

TF-IDF = tf(t, d) ⇤ idf(t,D) (1)

Where tf(t, d) is the frequency of the term t in a docu-
ment d, while idf(t,D) is the total number of documents in
the corpus divided by the number of documents that have
the term t. The TF-IDF vector of a document is the vector
containing the TF-IDF statistic of all terms in that document.
Every document in the corpus has a TF-IDF vector, allowing
documents to be compared using the distance between
their vectors. Several approaches are used to measure the
distance between two TF-IDF vectors, such as the cosine
similarity [10], Dice similarity [10], BLEU similarity [24]
and Jaccard similarity [23]. In this paper, we perform our
experiments using two popular approaches for retrieving
duplicate issue reports that are based on TF-IDF: BM25F
and REP [22, 30, 36].

BM25F [26] is an advanced document similarity ap-
proach that is based on the TF-IDF vectors of documents [7,
26]. The BM25F approach computes the similarity between
a query (i.e., the newly-reported issue) and a document (i.e.,
one of the previously-reported issues) based on the common
words that are shared between them. BM25F considers the
retrieval of structured documents which are composed of
several fields (e.g., title, header and description). Each field
in turn corresponds to a TF-IDF vector, to which different
degrees of importance in the retrieval process can be given
by assigning weights to the vector. For example, words
appearing in the summary field of an issue report may
be of a greater importance than words appearing in the
description field of an issue report.

In order to find the best matching documents for a query,
BM25F ranks the documents based on their TF-IDF statistics
for words in the query. The BM25F approach is similar to
the full-text search1 function that is used in Bugzilla, which
uses TF-IDF to retrieve duplicate issue reports based on the
summary and description fields. BM25F employs several
parameters that are automatically optimized using a set of
already-known duplicate issue reports, to which we refer
throughout this paper as the tuning data for BM25F.

REP [30] extends the BM25F approach into the BM25Fext

by considering the frequency of the shared words in the new
issue report and previously-reported issues, when searching
for the best-matching reports. In addition, the REP approach
includes the categorical fields of issue reports in the retrieval
process, while BM25F does not include such fields. The
REP approach calculates the similarities between the query
and a document based on seven features. A feature is a

1http://dev.mysql.com/doc/internals/en/full-text-search.html

TABLE 1: Example of a list of results returned by REP for
OpenOffice.

ID Title REP

Query 90892 Copying and pasting appends line break

Rank1 55631 Cannot copy from Writer to any other
software unless pasted

22.38

Rank2 90511 Linefeed added by copy & paste 20.45 (*)
Rank3 67683 Can’t paste from clipboard after copying

from certain programs
20.02

Rank4 45970 Copying outline entry to clipboard
copies things that weren’t highlighted

19.57

Rank5 81023 cropped image loses crop when copy/-
pasted

19.46

(*) The correct duplicate candidate for the query.

measurable value of similarity between two issue reports,
such as the similarity between the summary fields of the
reports. Two features for the textual fields (i.e., summary
and description) are calculated based on an extended TF-
IDF formula of BM25F. The other five features represent the
categorical fields (i.e., component, priority, product, type,
and version). These features equal one if the field value
in reports that are compared is the same, and zero or

1
1+(|v1�v2|) (for priority and version) if they are not. For
example, if the priority fields of two issue reports are 1 and
3, their feature is 1

1+(|1�3|) =
1
3 . The REP approach includes

a ranking function that combines the textual and categorical
features as follows:

REP (d, q) =
7X

i=1

wi ⇥ featuresi (2)

Where d and q are two issue reports that are compared.
The variable wi is the weight for each feature. These weights
are automatically optimized using a stochastic gradient de-
scent algorithm [33], which uses a set of duplicate reports
to find these weights. We refer throughout this paper to
that set of duplicate reports as the tuning data for REP. The
featuresi variable holds the feature value for each of the
textual and categorical fields. For each newly-reported issue,
the REP function is used to retrieve a list of possible master
issue reports (candidates). Table 1 shows an example of a
REP ranking for a newly-reported duplicate issue #90892
in OpenOffice. The result is a list of duplicate candidates
based on their REP score. In this example, REP returned the
correct master report #90511 marked by (⇤) at rank 2 in the
top 5 list.

2.3 Performance Evaluation of Automated Retrieval of
Duplicate Issue Reports

Prior research (see Table 2) has used an evaluation process
in which the data is limited to the issues that are reported in
a chosen evaluated time period. During the evaluation, all
issues that are reported outside the evaluated time period
are ignored. We refer to this evaluation process that is
widely used by prior research as the classical evaluation.
Figure 2a illustrates how the classical evaluation process
works. For each evaluated time period, the following steps
are applied:

http://dev.mysql.com/doc/internals/en/full-text-search.html

4

TABLE 2: An overview of prior work that used data sets
that were limited to a one year period to evaluate the
performance of an automated approach for the retrievel of
duplicate issue reports. The data sets that were limited are
highlighted in bold.

Study Used data set(s)

Aggarwal et al. [1] Mozilla 2010, Eclipse 2008, OpenOffice
2008-2010

Hindle et al. [16] Mozilla 2010, Eclipse 2008, OpenOffice
2008-2010, Android 2007-2012

Jalbert et al. [17] Mozilla Feb-Oct 2005
Lazar et al. [20] Mozilla 2010, Eclipse 2008, OpenOffice

2008-2010
Nguyen et al. [22] Mozilla 2010, Eclipse 2008, OpenOffice

2008-2010
Sun et al. [31] Mozilla before June 2007, Eclipse 2008,

OpenOffice 2008
Sun et al. [30] Mozilla 2010, Eclipse 2008, OpenOffice

2008-2010, Eclipse 2001-2007
Zhou et al. [35] Eclipse 2008
Zou et al. [36] Eclipse 2008

1) An evaluated time period is selected. The issue reports
are divided into two parts: (1) tuning data (200 du-
plicates) and (2) testing data (i.e., the remaining data
after removing the 200 tuning duplicates). Note that the
testing data contains both duplicate and unique issue
reports.

2) 200 duplicate issue reports are used to tune the auto-
mated approach (i.e., BM25F or REP).

3) The automated approach retrieves the duplicate candi-
dates for the issue reports in the testing data.

4) The performance metrics of the retrieval are calculated.
The main drawback of using the classical evaluation

is that the previously-reported issues that do not reside
in the chosen evaluation period are ignored. The classical
evaluation is valid only when duplicate issues are reported
shortly after the master report. In such case, the master
report of a duplicate issue report will then be within the
testing period. Hence, the approaches were evaluated on
their capabilities of identifying short-term duplicate issue
reports only. However, as we will show in this paper, this
assumption does not hold, leading to a relative overestima-
tion of performance. But first, we discuss related work.

2.4 Related Work
Research on automatically identifying duplicate issue re-
ports can be roughly divided into two subdomains. The
first subdomain focuses on determining whether a newly-
reported issue was already reported before. Hence, work
in this subdomain focuses on identifying whether a new
issue report has a duplicate report in the ITS, or whether it
describes a new issue.

The second subdomain focuses on finding (retrieving)
existing issue reports that are the most similar to a new
issue report. Hence, work in this subdomain does not give
a decisive answer to whether a newly-reported issue was
already reported before. Instead, a list of n candidate reports
is returned containing the reports that are the most likely
to be a duplicate of the newly-reported issue. The task of

deciding whether the newly-reported issue is a duplicate is
left to the reporter or triager [25].

In this paper, we focus on revisiting the performance
evaluation that was used in prior work in the second sub-
domain. First, we discuss prior work in both subdomains.

2.4.1 Determining Whether a Newly-Reported Issue was
Already Reported Before
Hiew et al. [15] proposed an approach that labels a newly-
reported issue as ‘duplicate’ or ‘unique’. Their approach
extracts a TF-IDF vector from the summary and description
field of the new report, and groups similar reports together
in so-called ‘centroids’. Based on a threshold for the similar-
ity of the vectors within a centroid, the new issue report is
labeled as a duplicate or unique report.

Feng et al. [12] proposed an approach to predict whether
two issue reports are duplicates of each other. Their ap-
proach uses a classifier (such as Naive Bayes, Decision
Tree or SVM) to predict whether a newly-reported issue
is a duplicate, based on the (1) profile of the reporter and
(2) the list of candidate reports that were retrieved while
entering the report. The intuition behind using this data is
that (1) some reporters may tend to submit more duplicate
reports, as they do not use the search functionality and
(2) due to the writing style of a reporter, the candidate
reports that are retrieved may be similar but not duplicates
of the new issue report.

Banerjee et al. [6] use an approach that is similar to Feng
et al.’s work. However, Banerjee et al. use a random forest
classifier along with 24 document similarity measures and
evaluate their approach on a much larger dataset.

2.4.2 Retrieving Duplicate Issue Reports
Prior research has proposed several approaches for the
retrieval of duplicate issue reports. Below, we summarize
the prior work based on the type of extracted data that is
used in the retrieval.

Textual Similarity-Based Approaches
The textual fields in issue reports are the summary and
description field [3]. Runeson et al. [28] propose a natural
language processing approach to automatically rank
duplicate candidates. The issue reports are considered as
text documents. The textual contents of the issue reports are
preprocessed (i.e., using tokenization, stemming and stop
word removal) and then a vector of term (word) frequencies
(TF) is calculated for each issue report. The distances
between the frequency vector of each newly-reported
issue to the frequency vectors of the previously-reported
issues are calculated using the cosine, Dice and Jaccard
similarity [23, 24]. Wang et al. [34] extend Runeson et
al.’s work [28] by not only considering TF, but also IDF.
In addition, they consider execution traces to retrieve
duplicate issue reports.

Sureka et al. [32] use character-based features to
measure the text similarity between the issue reports. Using
character-based features has several advantages, such as
natural-language independence.

Textual and Categorical Similarity-Based Approaches
In addition to textual fields, an issue report contains

5

Fig. 1: Overview of the experimental setup.

categorical fields such as the component, version, and
platform. Several approaches [17, 19, 30] have demonstrated
that categorical fields can be useful for improving the
performance of the automated retrieval of duplicate issue
reports. The most important approach of this type is
REP [30] which is explained in more detail in Section 2.2.

Topic-Based Approaches
Topic-based approaches extract topics from the textual
fields of issue reports using an automated approach, such
as LDA, and use these topics to calculate the similarity
between reports. Nguyen et al. [22] propose a topic-based
approach that extends BM25F using machine learning.
Alipour et al. [2], Lazar et al. [20] and Aggarwal et al. [1]
extend the REP approach with topic-based features.

In this paper, we use two approaches from the first
two aforementioned groups in our experiments. We apply
the BM25F [26] approach as an example for the textual
similarity-based approaches, and the REP [30] approach
as an example for the textual and categorical similarity-
based approaches. We use these approaches because of
their popularity and reproducibility due to their available
implementations, which allows us to compare our results
with prior work. We do not use a topic-based approach
since there exists no readily available implementation for
this type of approach. Nevertheless, the used approaches
in this paper form the foundation of the topic-based ap-
proaches which increases the applicability of the findings in
this paper to all types of duplicate retrieval approaches in
literature nowadays.

3 EXPERIMENTAL SETUP

In this section, we present the studied ITSs, the process of
preparing the data that is used for our experiments and the
used performance evaluation metrics. Figure 1 presents an
overview of the experimental setup.

TABLE 3: The number of analyzed issue reports in each
studied ITS for the evaluation periods used in prior studies.

ITS # of issues # of duplicates Period

Mozilla 60,797 10,043 2010
Eclipse 46,000 3,815 2008

OpenOffice 31,345 4,228 2008-2010

3.1 Studied ITSs
In this paper, we choose the studied ITSs based on two
criteria:

• Size: There should be a considerable number of issue
reports (i.e., thousands of issue reports) in the ITS.

• Usage in prior work: The ITSs should be used in prior
research on the automated retrieval of duplicates.

Therefore, we choose to study the ITSs from two popular
software foundations and one popular software system, i.e.,
the Mozilla foundation (hereafter referred to as Mozilla),
the Eclipse foundation (hereafter referred to as Eclipse) and
OpenOffice. The Mozilla foundation hosts a variety of open
source software projects such as Firefox, SeaMonkey, and
Bugzilla. The Eclipse foundation is an open source commu-
nity that includes a large set of toolkits which support a
wide range of software development technologies. OpenOf-
fice is a popular Apache Software Foundation project that
supports office work such as text editing and spreadsheet
calculations.

In this paper, we collect the XML file and historical
information of each issue report in the three studied ITSs.
We collect the XML for each report using a simple crawler
that increments the id parameter of the XML URL.2

We focus on the same periods (see Table 3) as used by
prior research [1, 16, 20, 22, 30]. Using the same data periods
makes it possible to compare our results with prior research.

2Example issue report XML: https://bugzilla.mozilla.org/show
bug.cgi?ctype=xml&id=10000

https://bugzilla.mozilla.org/show_bug.cgi?ctype=xml&id=10000
https://bugzilla.mozilla.org/show_bug.cgi?ctype=xml&id=10000

6

Table 3 presents the number of issue reports and duplicate
reports for each studied ITS.3

To determine the ground truth of whether an issue report
is a duplicate, we use the labels that were provided by the
developers that use the ITSs. Hence, all duplicate issue re-
ports were manually labelled as being a DUPLICATE in the
resolution field of the report. Because we recently crawled
(i.e., in December 2015) relatively old data (i.e., reports that
were submitted before 2011), we can safely assume that the
labels are correct and stable.

3.2 Pre-processing of Issue Reports
Before running the automated approaches for retrieving
duplicates, a set of pre-processing steps must be applied
to the textual contents of every issue report [1, 16, 22, 30].
These steps are:

• Parsing tokens: parsing the words in the textual fields
of the issue reports (i.e., summary and description) that
are separated by a certain text delimiter, such as a space.

• Stemming: finding the stem of words that have different
forms such as verbs. For example, the words “argue”
and “arguing” are reduced to the stem “argu”.

• Removing stop words: removing words that do not add a
significant meaning, such as “does”, “be”, and “the”.

In this paper, we use the following fields of an issue report:
issueID, description, summary, component, priority, type,
version and report date. We follow a bucket structure [30]
where all the duplicate reports are placed inside the same
bucket in which the earliest reported issue report is called
the master report. We use the same text preprocessing imple-
mentation used by Sun et al. [30] and Nguyen et al. [22].

3.3 Implementation of the Experiments
In this paper, we use the BM25F and REP implementations
that are provided by Sun et al4. In addition, we made the
implementation and results of our experiments available as
a replication package5.

3.4 Performance Evaluation Metrics
Prior work on automatically retrieving duplicate issue re-
ports [16, 22, 30, 31] uses the recall rate and the mean
average precision (MAP) to evaluate the performance of
the proposed approaches. These performance metrics are
calculated for the newly-reported duplicate issues only, as
there are no correct candidate reports for non-duplicates.
Note that this is a limitation of all approaches for retrieving
duplicate issue reports. The recall rate is defined as:

RecalltopN=
retrievedtopN

retrievedtopN +missedtopN

retrievedtopN is the number of duplicate reports that
successfully had their master reports retrieved in the topN

3Note that these numbers are higher than reported in prior work.
In the remainder of this paper we will show that the numbers that
are reported in prior work are incorrect. Hence, we present the correct
numbers in Table 3.

4http://www.comp.nus.edu.sg/⇠specmine/suncn/ase11/index.
html

5http://sailhome.cs.queensu.ca/replication/realistic vs classical/

(a) Classical Evaluation

(b) Realistic Evaluation

Fig. 2: Classical evaluation versus realistic evaluation.

ranked list of candidates. The missedtopN is the number
of duplicate reports that did not have their master reports
retrieved in the topN candidate list. The larger the list of
master report candidates, the higher the recall rate. In this
paper, we choose N=5 and N=10, where N represents the
candidate list size. As suggested by Runeson et al. [28], the
small size of the list (i.e., N=5 and N=10) results in an ac-
ceptable visualization space and prevents triagers of having
to investigate a large number of duplicate candidates.

The MAP indicates in which rank the correctly retrieved
duplicate candidate can be found in the returned list of
candidates. The MAP is measured as follows:

MAP=
1

Q

P
Q

n=1

1

rank(n)

where Q is the total number of accurately-found dupli-
cate candidates, while rank is the position of the master
report in the list. A MAP value close to 1 means that the
accurate candidates are appearing on the first rank of the re-
turned list all the time. In this paper, we limit the maximum
size of the list to 1,000 for computational reasons. Similar
to prior work, we use the recall rate and MAP metrics to
evaluate the performance of the automated approaches for
retrieving duplicates.

4 EXPLORATORY STUDY

As explained in Section 2.3, the classical evaluation ignores
a significant portion of the issue reports in an ITS when
retrieving duplicate candidates. In this section, we first
propose a more realistic evaluation, which does not ignore
issue reports. Second, we describe an exploratory study that
is conducted to get an indication of how the classical evalu-
ation of the automated approaches for retrieving duplicate
issue reports overestimates the performance. We compare
the evaluation that is conducted in prior work (i.e., the
classical evaluation) with a realistic evaluation using the
same issue reports. Finally, we conduct an analysis of the
sensitivity of the choice of the tuning data.

4.1 Realistic Evaluation
We propose to use an evaluation in which no data is ignored.
We refer to this type of evaluation as the realistic evaluation.
We chose this name because this type of evaluation closely
resembles the way in which an ITS works in practice.

http://www.comp.nus.edu.sg/~specmine/suncn/ase11/index.html
http://www.comp.nus.edu.sg/~specmine/suncn/ase11/index.html
http://sailhome.cs.queensu.ca/replication/realistic_vs_classical/

7

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

10 50 10
0

20
0

10
00 25

%
50

%
10

0%

20
0_

lon
g

20
0_

sh
ort

10
0_

sh
ort

+lo
ng

Number of Duplicates in the Tuning Data

To
p5

 R
ec

al
l R

at
e

Mozilla (BM25F)

●

●

●
●

0.00

0.25

0.50

0.75

1.00

10 50 10
0

20
0

10
00 25

%
50

%
10

0%

20
0_

lon
g

20
0_

sh
ort

10
0_

sh
ort

+lo
ng

Number of Duplicates in the Tuning Data

To
p5

 R
ec

al
l R

at
e

Eclipse (BM25F)

● ●
● ● ●

0.00

0.25

0.50

0.75

1.00

10 50 10
0

20
0

10
00 25

%
50

%
10

0%

20
0_

lon
g

20
0_

sh
ort

10
0_

sh
ort

+lo
ng

Number of Duplicates in the Tuning Data

To
p5

 R
ec

al
l R

at
e

OpenOffice (BM25F)

●
●

0.00

0.25

0.50

0.75

1.00

10 50 10
0

20
0

10
00 25

%
50

%
10

0%

20
0_

lon
g

20
0_

sh
ort

10
0_

sh
ort

+lo
ng

Number of Duplicates in the Tuning Data

To
p5

 R
ec

al
l R

at
e

Mozilla (REP)

● ●

●

●

0.00

0.25

0.50

0.75

1.00

10 50 10
0

20
0

10
00 25

%
50

%
10

0%

20
0_

lon
g

20
0_

sh
ort

10
0_

sh
ort

+lo
ng

Number of Duplicates in the Tuning Data

To
p5

 R
ec

al
l R

at
e

Eclipse (REP)

● ●

0.00

0.25

0.50

0.75

1.00

10 50 10
0

20
0

10
00 25

%
50

%
10

0%

20
0_

lon
g

20
0_

sh
ort

10
0_

sh
ort

+lo
ng

Number of Duplicates in the Tuning Data

To
p5

 R
ec

al
l R

at
e

OpenOffice (REP)

Fig. 3: The Recalltop5 of the BM25F and REP approaches (as obtained by the realistic evaluation) after tuning with different
tuning data sizes for 5 runs per tuning data size.

TABLE 4: The combinations of a duplicate report and its master report that are considered by the classical and realistic
evaluation. Note that all other combinations of D and M do not occur as D is not in the testing data for those combinations.

Previous data Tuning data Testing data Considered in classical
evaluation?

Considered in realistic
evaluation?

M(aster) D(uplicate) No Yes
M D Yes Yes

M, D Yes Yes
D, M Does not occur (D cannot be reported before M)

Figure 2b illustrates how the realistic evaluation works
compared to the classical evaluation. The only difference
between the realistic evaluation and the classical evaluation
is that the classical evaluation ignores the issue reports that
are reported before the evaluated time period, while the
realistic evaluation does not. Hence, the following steps are
taken during the realistic evaluation:

1) Use exactly the same tuning data as used during the
classical evaluation.

2) Consider both tuning and previous data when search-
ing for master candidates for the reports in the testing
data.

3) Calculate the performance metrics for the automated
retrieval on the testing data.

Table 4 shows for each combination of duplicate D in the
testing data and its master report M whether the combina-
tion is considered by the classical and realistic evaluation.

In the remainder of this section, we present our ex-
ploratory study on the differences between the classical and
realistic evaluation.

TABLE 5: The number of considered duplicate issue reports
for both types of evaluation for the studied ITSs in the
exploratory study.

of duplicates Ignored
(classical) (realistic) by classical (%)

Mozilla (2010) 7,551 10,043 -23.5%
Eclipse (2008) 2,918 3,815 -23.5%
OpenOffice (2008-2010) 3,299 4,228 -22.0%

4.2 Classical vs. Realistic Evaluation Processes

We compare the classical and realistic evaluation processes
for the time periods that are evaluated by prior work [1,
16, 20, 22, 30, 31, 36]. We compare the number of duplicate
reports that are considered by both evaluations and the
difference in performance that is yielded by the two types
of evaluation.

Number of considered duplicates: The number of consid-
ered duplicates is the total number of newly-reported dupli-
cates within the testing data that have a master report in the
previously-reported issues. Because the classical evaluation

8

TABLE 6: Performance comparison of the classical evalua-
tion and the realistic evaluation for the studied ITSs.

Classical Realistic Overestimation
Absolute Relative

Mozilla (2010)
BM25F

Recalltop5 0.52 0.28 +0.24 +85.7%
Recalltop10 0.59 0.34 +0.25 +74.2%
MAP 0.47 0.26 +0.21 +74.5%

REP
Recalltop5 0.58 0.43 +0.15 +39.8%
Recalltop10 0.66 0.51 +0.15 +32.9%
MAP 0.49 0.38 +0.11 +32.1%

Eclipse (2008)
BM25F

Recalltop5 0.60 0.49 +0.11 +22.4%
Recalltop10 0.67 0.55 +0.12 +21.8%
MAP 0.54 0.46 +0.08 +17.4%

REP
Recalltop5 0.67 0.55 +0.12 +21.8%
Recalltop10 0.73 0.62 +0.11 +18.1%
MAP 0.57 0.48 +0.09 +17.4%

OpenOffice (2008-2010)
BM25F

Recalltop5 0.53 0.41 +0.12 +29.2%
Recalltop10 0.61 0.48 +0.13 +27.1%
MAP 0.45 0.36 +0.09 +22.2%

REP
Recalltop5 0.58 0.45 +0.13 +29.4%
Recalltop10 0.66 0.53 +0.13 +26.0%
MAP 0.49 0.38 +0.11 +28.9%

limits the issue reports that are searched, newly-reported
issues may fail to be recognized as a duplicate because their
master reports are in the ignored issue reports [31]. Hence,
the number of considered duplicates is likely to be lower
in the classical evaluation than in the realistic evaluation,
because the classical evaluation only focuses on short-term
duplicates. Table 5 shows the difference in the number
of considered duplicates for both types of evaluation. We
observe that up to 23.5% of the duplicate reports are ignored
when we apply the classical evaluation as compared to
the realistic evaluation. These observations indicate that
applying the classical evaluation ignores a considerable
percentage of duplicates that the triager has to manually
identify without benefiting from the proposed automated
approaches.⇤

⇥

�

�

Observation 1: The classical evaluation completely
ignores up to 23.5% of the duplicates from the per-
formance calculation for the same evaluated time
periods.

Performance overestimation: To determine the difference in
performance between the classical and realistic evaluation,
we conduct the following steps:

1) Use the first 200 duplicate issue reports in the evalu-
ated time period to tune the automated approaches for
retrieving duplicate issue reports.

2) Use the other issue reports in the evaluated time period
as testing data and run the automated approaches on
each issue report in the testing data.

3) Calculate the Recalltop5, Recalltop10 and MAP of the
automated approaches using the classical and realistic
evaluation.

Table 6 presents the absolute and relative difference in
performance metrics for both types of evaluation processes
for the BM25F and REP approaches. We define the relative
overestimation of the classical evaluation process of a per-
formance metric as:

Overestimationrelative = (
metricclassical

metricrealistic
� 1) ⇤ 100 (3)

where metricclassical is the metric as yielded by the classical
evaluation process, while metricrealistic is the metric as
yielded by the realistic evaluation process.

Table 6 shows that for the three studied ITSs, the classi-
cal evaluation relatively overestimates all observed perfor-
mance metrics. For the BM25F approach, the relative over-
estimation is up to 85.7%, 74.2% and 74.5% for Recalltop5,
Recalltop10 and MAP, respectively. For the REP approach, the
relative overestimation is up to 39.8%, 32.9% and 32.1% for
Recalltop5, Recalltop10 and MAP, respectively.⇤

⇥

�

�

Observation 2: For the BM25F approach, the clas-
sical evaluation relatively overestimates the perfor-
mance metrics with up to 85.7%, 74.2% and 74.5%
for the Recalltop5, Recalltop10 and MAP. For the REP
approach, the classical evaluation relatively overes-
timates the performance metrics with up to 39.8%,
32.9% and 32.1% for the Recalltop5, Recalltop10 and
MAP.

Our two observations for the differences between the
classical evaluation and realistic evaluation motivate the
study that is presented in the rest of this paper.

4.3 The Sensitivity of the Choice of the Tuning Data
As explained in Section 2, both REP and BM25F have param-
eters that are tuned to find their optimal values [26, 30]. The
BM25F approach has 10 parameters while the REP approach
has 19 parameters. In prior work on retrieving duplicate
issue reports [1, 16, 20, 22, 30, 31], the number of the dupli-
cate issue reports in the tuning data set was always fixed to
N = 200. In this section, we do a preliminary investigation
of whether the choice of N impacts the performance of the
automated approaches for retrieving duplicate issue reports.
We conduct the realistic evaluation after tuning BM25F and
REP with a tuning data set that contains 10, 50, 100, 200,
1000, 25%, 50% and 100% of the available duplicate issue
reports in each ITS. In addition, we investigate whether
the contents of the tuning set impact the performance,
by conducting the realistic evaluation after tuning with a
tuning data set of (1) 200 long-term duplicates, (2) 200
short-term duplicates and (3) 100 long-term and short-term
duplicates. We selected short-term duplicates as duplicates
that were reported within six months, and we selected long-
term duplicates as duplicates that were reported at least
two years apart. We take the following steps to conduct our
investigation:

9

1) Randomly select N duplicate issue reports from the ITS
for the aforementioned values of N .

2) Tune BM25F and REP for each ITS.
3) Calculate the performance metrics for each ITS and au-

tomated approach for the time periods that are shown
by Table 3.

We repeat the steps above five times for each value of N
(except for N = 100%, as no random selection is possible)
and the three settings with long and short-term duplicates.
Figure 3 shows the results of our investigation.

We observe that for Eclipse and OpenOffice, the choice of
tuning data does not affect the performance of the approach
greatly. For Mozilla, the differences are larger. In particular,
there are some choices of tuning data which negatively
affect the performance of BM25F. Throughout this paper, we
used the exact same tuning data for our runs of the realistic
and classical evaluation. Hence, our results are not affected
by the choice of tuning data. However, our observations
are yet another indication of how a simplistic evaluation
(e.g., using a single run) of the performance of automated
approaches for the retrieval of duplicate issue reports can
lead to an overestimation of the reported performance.
Future studies should address in more depth the impact of
tuning in the retrieval of duplicate issue reports using our
proposed realistic evaluation.

5 EXPERIMENTAL RESULTS

In this section, we present the results of our experiments.
For every research question, we discuss the motivation,
approach and results.

RQ1: How much do the realistic evaluation and classical
evaluation differ?
Motivation. In Section 4, we showed that there is a differ-
ence between the classical and realistic evaluation for the
evaluated time periods that are used in prior work [1, 16,
20, 22, 30, 31, 36]. However, the observations for the eval-
uated time periods may not generalize to data from other
periods. Therefore, we study whether the observations in
the exploratory study generalize to all the available periods
in the studied ITSs.
Approach. For each studied ITS, we randomly select 100
chunks of data. Each chunk of data follows the same struc-
ture as presented previously in Figure 2. Hence, the first 200
duplicate reports of a chunk of data are used as tuning data,
while all other reports in the chunks are used as testing
data. We calculate the Recalltop5, Recalltop10 and MAP per-
formance metrics using the classical and realistic evaluation.
The testing periods that are specified in Table 3 are only used
in our exploratory study. In RQ1, the randomly-selected
chunks cover the lifetime of each studied ITS. Note that
the chunks of one year can start at any day of the year.
Hence, the chunks January 1, 2010 to January 1, 2011 and
January 2, 2010 to January 2, 2011 are considered different
chunks. By randomly selecting 100 of such chunks for each
ITS, we ensure that the evaluated chunks cover the whole
lifetime an ITS. The lifetimes of the studied ITSs are 2001-
2010, 2002-2008, and 1998-2010 for OpenOffice, Eclipse and
Mozilla, respectively. We compare the distributions of each

performance metric yielded by the classical and realistic
evaluation for each ITS using a paired Mann-Whitney U
statistical test [13]. We use the following hypotheses:

H0: The classical and realistic evaluations yield the
same performance.
H1: The classical and realistic evaluations yield differ-
ent performance.

We reject H0 and accept H1, when p < 0.01. In addition,
we calculate the effect size, as the effect size quantifies the
difference between the two distributions. We use Cliff’s
Delta as it does not require the normality assumption of a
distribution to quantify the effect size [21]. The following
thresholds are used for the Cliff’s Delta (d) [27]:

8
>>><

>>>:

trivial for |d| 0.147

small for 0.147 < |d| 0.33

medium for 0.33 < |d| 0.474

large for 0.474 < |d| 1

(4)

In addition, we calculate the relative overestimation (see
Section 4) and kurtosis [18] of the distributions. Kurtosis
explains the peakedness of a distribution. The Gaussian
distribution has a kurtosis of 3. A kurtosis higher than
3 means that the distribution has a higher peak than the
Gaussian distribution, while a kurtosis lower than 3 means
that the distribution has a lower peak. A high kurtosis
means that the values in the distribution share a relatively
strong agreement on the average of the distribution, while a
low kurtosis means that there is no clear agreement on the
average.
Results. The classical evaluation relatively overestimates
the performance of automated approaches for the retrieval
of duplicate issue reports with a median of 17-42%. Figures
4 and 5 show the distributions of the performance metrics
that are yielded by the classical and realistic evaluation
for the 100 randomly-selected chunks of data for each
studied ITS. The results show that the realistic evaluation
yields a significantly-lower performance than the classical
evaluation. For all studied ITSs and metrics, the observed
effect size is large. Figure 6 shows the distribution of the
relative overestimation of the classical evaluation for the
performance metrics for all the studied ITSs. The classi-
cal evaluation relatively overestimates the performance of
automated approaches for the retrieval of duplicates by a
median of 17-42%. These results support our suggestion that
the classical evaluation should not be used to evaluate the
performance for the automated retrieval of duplicate issue
reports but instead, researchers should use our proposed
realistic evaluation.

The yielded performance varies greatly for both eval-
uation types. Figures 4 and 5 show that the yielded per-
formance metrics for both evaluation types show a large
variation for all the studies ITSs. Table 7 shows the kurtosis
for the observed performance metrics. For all metrics and
studied ITSs, the kurtosis is close to 3, which indicates that
there is a large variation in the performance of the approach
for the evaluated chunk (i.e., year). The exception is the REP
approach for Eclipse. However, Figure 5 (b) shows that the
variations is still considerably large.

10

0.
2

0.
4

0.
6

0.
8

To
p5

 R
ec

al
l R

at
e Classical

Realistic

Effect Size = 1.000 (large) * 0.
2

0.
4

0.
6

0.
8

To
p1

0
R

ec
al

l R
at

e

Classical

Realistic

Effect Size = 1.000 (large) * 0.
2

0.
4

0.
6

0.
8

M
AP

Classical Realistic

Effect Size = 0.995 (large) *

(a) Mozilla

0.
2

0.
4

0.
6

0.
8

To
p5

 R
ec

al
l R

at
e Classical

Realistic

Effect Size = 0.998 (large) * 0.
2

0.
4

0.
6

0.
8

To
p1

0
R

ec
al

l R
at

e

Classical

Realistic

Effect Size = 0.998 (large) * 0.
2

0.
4

0.
6

0.
8

M
AP

Classical Realistic

Effect Size = 0.978 (large) *

(b) Eclipse

0.
2

0.
4

0.
6

0.
8

To
p5

 R
ec

al
l R

at
e Classical

Realistic

Effect Size = 0.700 (large) * 0.
2

0.
4

0.
6

0.
8

To
p1

0
R

ec
al

l R
at

e

Classical

Realistic

Effect Size = 0.719 (large) * 0.
2

0.
4

0.
6

0.
8

M
AP

Classical Realistic

Effect Size = 0.671 (large) *

(c) OpenOffice

* p < 0.001

Fig. 4: Classical evaluation vs. realistic evaluation for the BM25F approach for 100 evaluated years of data that were
randomly selected over the lifetime of the studied ITSs. The dotted red line represents the performance value that is
observed in the exploratory study for the classical evaluation in Section 4.1.

11

0.
2

0.
4

0.
6

0.
8

To
p5

 R
ec

al
l R

at
e Classical

Realistic

Effect Size = 0.998 (large) * 0.
2

0.
4

0.
6

0.
8

To
p1

0
R

ec
al

l R
at

e

Classical

Realistic

Effect Size = 1.000 (large) * 0.
2

0.
4

0.
6

0.
8

M
AP

Classical Realistic

Effect Size = 0.993 (large) *

(a) Mozilla

0.
2

0.
4

0.
6

0.
8

To
p5

 R
ec

al
l R

at
e Classical

Realistic

Effect Size = 0.978 (large) * 0.
2

0.
4

0.
6

0.
8

To
p1

0
R

ec
al

l R
at

e

Classical

Realistic

Effect Size = 0.979 (large) * 0.
2

0.
4

0.
6

0.
8

M
AP

Classical Realistic

Effect Size = 0.956 (large) *

(b) Eclipse

0.
2

0.
4

0.
6

0.
8

To
p5

 R
ec

al
l R

at
e Classical

Realistic

Effect Size = 0.700 (large) * 0.
2

0.
4

0.
6

0.
8

To
p1

0
R

ec
al

l R
at

e

Classical

Realistic

Effect Size = 0.705 (large) * 0.
2

0.
4

0.
6

0.
8

M
AP

Classical Realistic

Effect Size = 0.666 (large) *

(c) OpenOffice

* p < 0.001

Fig. 5: Classical evaluation vs. realistic evaluation for the REP approach for 100 evaluated years of data that were randomly
selected over the lifetime of the studied ITSs. The dotted red line represents the performance value that is observed in the
exploratory study for the classical evaluation in Section 4.1.

12

0
20

60
10

0

Top5 Top10 MAP

Mozilla
R

el
at

ive
 O

ve
re

st
im

at
io

n
(%

)

0
20

60
10

0

Top5 Top10 MAP

Eclipse

R
el

at
ive

 O
ve

re
st

im
at

io
n

(%
)

0
20

60
10

0

Top5 Top10 MAP

OpenOffice

R
el

at
ive

 O
ve

re
st

im
at

io
n

(%
)

(a) BM25F

0
20

60
10

0

Top5 Top10 MAP

Mozilla

R
el

at
ive

 O
ve

re
st

im
at

io
n

(%
)

0
20

60
10

0

Top5 Top10 MAP

Eclipse
R

el
at

ive
 O

ve
re

st
im

at
io

n
(%

)

0
20

60
10

0

Top5 Top10 MAP

OpenOffice

R
el

at
ive

 O
ve

re
st

im
at

io
n

(%
)

(b) REP

Fig. 6: Performance relative overestimation by the classical evaluation.

TABLE 7: The kurtosis comparison of the classical and realistic evaluation for the studied ITSs.

Mozilla Eclipse OpenOffice

Classical Realistic Classical Realistic Classical Realistic
BM25F

Kurtosis (Recalltop5) 2.40 1.92 3.20 4.10 3.14 3.98
Kurtosis (Recalltop10) 2.56 2.03 3.52 4.28 3.25 4.18
Kurtosis (MAP) 3.79 2.03 2.47 3.42 3.18 4.36

REP
Kurtosis (Recalltop5) 2.45 2.01 7.20 8.45 2.87 2.84
Kurtosis (Recalltop10) 2.23 2.15 7.64 8.10 3.10 2.74
Kurtosis (MAP) 2.95 1.93 5.35 7.18 2.83 2.65

The values that are highlighted in bold indicate a distribution that is more varied than the normal distribution (i.e., kurtosis < 3).

Figure 4 and 5 show a dotted red line for the classical
evaluation performance for the tested year periods by the
prior work (see Section 4).

As clearly demonstrated by the figures and Table 7, a
single value is not sufficient to accurately report about the
performance of an approach for automatically retrieving
duplicate issue reports. These results indicate that future
studies on the automated retrieval of duplicates should
report their performance as ranges of performance metric
values (i.e., with confidence intervals) to give more accurate
results.

The realistic evaluation considers more duplicate issues

for the same evaluated time periods. Figure 7 shows the
number of duplicates that are considered by the classical
and realistic evaluations. In the early stages of a project,
there is not much difference between the number of dupli-
cate issues considered by both types of evaluation. How-
ever, as a project evolves (i.e., its ITS grows), the classical
evaluation ignores up to 30%, 26%, and 27% for Mozilla,
Eclipse, and OpenOffice, respectively. These results em-
phasize the importance of using the realistic evaluation,
especially for an ITS that has been around for some time
(i.e., long-lived software projects).

The performance of automated retrieval of duplicate

13

2000 2004 2008

0
50

00
00

10
00

00
0

Cumulative # of Duplicates

100 Runs

C
um

ul
at

ive
 #

 o
f C

on
si

de
re

d
D

up
lic

at
es

●●●
●●
●

●

●●
●●
●●
●●
●●

●

●●
●●
●●●

●

●

●●●●
●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●
●●●

●

●

●

●●

●

●●●●●●
●●

●

●●

●●●●
●●●
●●

2000 2004 2008

0
50

00
00

10
00

00
0

Cumulative # of Duplicates

100 Runs

C
um

ul
at

ive
 #

 o
f C

on
si

de
re

d
D

up
lic

at
es

●Realistic Evaluation Classical Evaluation

(a) Mozilla

2003 2005 2007 2009

0
20

00
00

40
00

00

Cumulative # of Duplicates

100 Runs
C

um
ul

at
ive

 #
 o

f C
on

si
de

re
d

D
up

lic
at

es

●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●
●●●●●
●●●●

●

●●●●
●●●●●●●

●●●●●●●
●●●
●●●

●●●
●●●
●●●
●●

2003 2005 2007 2009

0
20

00
00

40
00

00

Cumulative # of Duplicates

100 Runs
C

um
ul

at
ive

 #
 o

f C
on

si
de

re
d

D
up

lic
at

es

●Realistic Evaluation Classical Evaluation

(b) Eclipse

2004 2006 2008 2010

0
50

00
0

15
00

00
25

00
00

Cumulative # of Duplicates

100 Runs

C
um

ul
at

ive
 #

 o
f C

on
si

de
re

d
D

up
lic

at
es

●

●

●●●●●

●

●●●●●●

●

●

●●●●●
●●●●
●●●
●●●
●●●●
●●●●

●●●
●●●
●●●
●●
●●
●●
●●
●●●

●●
●●
●●●
●●●●
●●●●●●●●●●●●

●

●●●●●

●

●●●●●
●●●●●
●

2004 2006 2008 2010

0
50

00
0

15
00

00
25

00
00

Cumulative # of Duplicates

100 Runs

C
um

ul
at

ive
 #

 o
f C

on
si

de
re

d
D

up
lic

at
es

●Realistic Evaluation Classical Evaluation

(c) OpenOffice

2000 2004 2008

0
20

40
60

80
10

0

Ratio to Cumulative Difference

100 Runs

R
at

io
 (%

)

(d) Mozilla

2003 2005 2007 2009

0
20

40
60

80
10

0

Ratio to Cumulative Difference

100 Runs

R
at

io
 (%

)

(e) Eclipse

2004 2006 2008 2010

0
20

40
60

80
10

0

Ratio to Cumulative Difference

100 Runs
R

at
io

 (%
)

(f) OpenOffice

Fig. 7: The number of considered duplicates issues over the evaluated time periods (100 runs).

issue reports is negatively impacted by the number of issue
reports that must be searched. Figure 8 shows a hexagon
bin plot6 for the number of issue reports that must be
searched for each newly-reported issue. A hexagon bin plot
is a special type of scatter plot that avoids overplotting of
large datasets by combining many data points into hexagon-
shaped bins. These bins indicate the approximate number of
issue reports that must be searched to retrieve the duplicate
of a specific newly-submitted issue report. The approxima-
tion here refers only to the visual clustering of the data into
different levels of colors. For example, the hexagon figure for
the realistic evaluation of Mozilla has four levels of colors
from dark green (i.e., 60,000 to 80,000 newly reported issues)
to bright green (i.e., 10,000 to 20,000 newly reported issues).

We observe that the realistic evaluation searches each
previously-reported issue in the ITS to retrieve a duplicate.
However, the number of issue reports that must be searched
has a negative impact on the performance. Figure 9 shows
the Recalltop5 over time for the BM25F and REP approaches.
In case of the realistic evaluation, the maximum perfor-
mance is achieved at the earliest years when the number
of issue reports that must be searched is the smallest. For

6Hexbin package: https://cran.r-project.org/web/packages/
ggplot2/index.html

example, the Recalltop5 for the BM25F approach applied to
OpenOffice drops from 0.63 to around 0.3. The drop in
performance is not as clear for Eclipse, but the maximum
performance is still achieved in the early year runs for the
Eclipse ITS. Similar observations hold for Recalltop10 and
MAP, hence, we omit those figures from this paper. These
results highlight the impact of selecting a certain time period
for measuring the performance using realistic evaluation.
Choosing a time period at the early stages of a project may
lead to an unexpected high performance in contrast to later
time periods. Future studies should use a wide range of time
periods to evaluate an automated approach for retrieving
duplicate issue reports in order to achieve more confidence
in the performance metrics.

⇤

⇥

�

�

Observation 3: The classical evaluation yields in-
accurate results. Reporting a range of values of
a performance metric as yielded by the realistic
evaluation gives a more adequate representation of
the performance of an automated approach for the
retrieval of duplicate issue reports.

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html

14

0

25000

50000

75000

0 200000 400000 600000
Newly−reported issue

Is
su

e
re

po
rts

 th
at

 m
us

t b
e

se
ar

ch
ed

2000
4000
6000

count

Classical Evaluation

0

200000

400000

600000

0 200000 400000 600000
Newly reported issue

Is
su

e
re

po
rts

 th
at

 m
us

t b
e

se
ar

ch
ed

20000
40000
60000

count

Realistic Evaluation

(a) Mozilla

0

10000

20000

30000

40000

50000

0 100000 200000
Newly−reported issue

Is
su

e
re

po
rts

 th
at

 m
us

t b
e

se
ar

ch
ed

500
1000
1500
2000

count

Classical Evaluation

0

100000

200000

0 50000 100000 150000 200000 250000
Newly−reported issue

Is
su

e
re

po
rts

 th
at

 m
us

t b
e

se
ar

ch
ed

5000
10000
15000
20000

count

Realistic Evaluation

(b) Eclipse

0

5000

10000

15000

20000

0 30000 60000 90000 120000
Newly−reported issue

Is
su

e
re

po
rts

 th
at

 m
us

t b
e

se
ar

ch
ed

250
500
750
1000
1250

count

Classical Evaluation

0

30000

60000

90000

120000

0 30000 60000 90000 120000
Newly−reported issue

Is
su

e
re

po
rts

 th
at

 m
us

t b
e

se
ar

ch
ed

2500
5000
7500
10000

count

Realistic Evaluation

(c) OpenOffice

Fig. 8: The number of issue reports that must be searched for each newly-reported issue.

15

2000 2004 2008

0.
2

0.
4

0.
6

0.
8

Mozilla

100 Runs

To
p5

 R
ec

al
l

●●●●●●

●

●
●●●
●●●
●●●

●

●●
●
●●●

●
●

●

●
●●
●●
●

●●●●●
●●●●●

●●●●●●●●●●●●
●
●
●
●●●●●●●●●

●●●
●●●●

●

●

●

●●● ●●●●●●●●
●

●●
●●●
●●●●●●

2000 2004 2008

0.
2

0.
4

0.
6

0.
8

100 Runs

To
p5

 R
ec

al
l

●Realistic Evaluation Classical Evaluation

2003 2005 2007 2009

0.
2

0.
4

0.
6

0.
8

Eclipse

100 Runs
To

p5
 R

ec
al

l

●●
●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●

●●●●●●●
●

●●●●●●
●●
●
●

●●●●●
●
●●
●●●

2003 2005 2007 2009

0.
2

0.
4

0.
6

0.
8

100 Runs
To

p5
 R

ec
al

l

●Realistic Evaluation Classical Evaluation

2004 2006 2008 2010

0.
2

0.
4

0.
6

0.
8

OpenOffice

100 Runs

To
p5

 R
ec

al
l

●

●

●
●●●●

●

●●

●●●●

●

●

●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●

●●●

●
●
●●●●

●●●●●●
●●●●●

●●●
●
●

●

●●●●●

●

●●
●●
●●●●●●●

2004 2006 2008 2010

0.
2

0.
4

0.
6

0.
8

100 Runs

To
p5

 R
ec

al
l

●Realistic Evaluation Classical Evaluation

(a) BM25F

2000 2004 2008

0.
2

0.
4

0.
6

0.
8

Mozilla

100 Runs

To
p5

 R
ec

al
l

●●●●●●

●

●●●●
●●●
●
●●

●

●
●

●●●●
●●

●

●
●●
●●●
●●●●●

●
●
●
●
●●●●●●

●●●●
●●

●●
●●
●●●●●●
●

●
●●
●●
●●

●●

●
●

● ●●
● ●●●●●

●
●●●
●●

●●●
●●●●●●

2000 2004 2008

0.
2

0.
4

0.
6

0.
8

100 Runs

To
p5

 R
ec

al
l

●Realistic Evaluation Classical Evaluation

2003 2005 2007 2009

0.
2

0.
4

0.
6

0.
8

Eclipse

100 Runs

To
p5

 R
ec

al
l

●●
●●

●

●●●●●●●●●●●●●●●
●
●●●

●●●●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●●●●
●
●

●

●●

●

●●●●●
●●
●●
●
●●●

●
●

●●●●

●

●
●

●
●●●●●●

●
●

●●●

2003 2005 2007 2009

0.
2

0.
4

0.
6

0.
8

100 Runs

To
p5

 R
ec

al
l

●Realistic Evaluation Classical Evaluation

2004 2006 2008 2010
0.

2
0.

4
0.

6
0.

8

OpenOffice

100 Runs

To
p5

 R
ec

al
l

●

●

●

●●
●●

●

●●
●●●●

●

●

●●●●●
●●
●●●
●●
●●●●●●

●●●●

●
●●●●●●
●●●●●●●●
●●●●

●●●
●●
●
●●●●●●●●●●

●
●
●●

●●●●
●

●

●●●●●

●

●●●●●●●
●●●●

2004 2006 2008 2010
0.

2
0.

4
0.

6
0.

8

100 Runs

To
p5

 R
ec

al
l

●Realistic Evaluation Classical Evaluation

(a) REP

Fig. 9: The Recalltop5 yielded by the classical and realistic evaluation over time.

Difference in days

D
up

lic
at

es
 (%

)

0 1000 2000 3000 4000 5000

0
20

40
60

80

53

14
9 7 4 3 2 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

(a) Mozilla
Difference in days

D
up

lic
at

es
 (%

)

0 1000 2000 3000 4000 5000

0
20

40
60

80

71

11
6 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) Eclipse
Difference in days

D
up

lic
at

es
 (%

)

0 1000 2000 3000 4000 5000

0
20

40
60

80

58

118 6 5 4 3 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

(c) OpenOffice

Fig. 10: The REP approach: the distribution of the difference in days between the newly-reported duplicate issues and their
masters in the top 5 candidates list.

16

0.
2

0.
4

0.
6

0.
8

Unlimited 84 78 72 66 60 54 48 42 36 30 24 18 12 6

Mozilla

Limitation by month

To
p5

 R
ec

al
l R

at
e

Effect Size (months) = * (84), * (78), * (72), * (66), ** (60), ** (54), ** (48), ** (42), *** (36), **** (30), **** (24), **** (18), **** (12), **** (6)

0.
2

0.
4

0.
6

0.
8

Unlimited 84 78 72 66 60 54 48 42 36 30 24 18 12 6

Eclipse

Limitation by month

To
p5

 R
ec

al
l R

at
e

Effect Size (months) = * (84), * (78), * (72), * (66), * (60), * (54), * (48), ** (42), ** (36), *** (30), **** (24), **** (18), **** (12), **** (6)

0.
2

0.
4

0.
6

0.
8

Unlimited 84 78 72 66 60 54 48 42 36 30 24 18 12 6

OpenOffice

Limitation by month

To
p5

 R
ec

al
l R

at
e

Effect Size (months) = * (84), * (78), * (72), * (66), * (60), ** (54), ** (48), ** (42), *** (36), **** (30), **** (24), **** (18), **** (12), **** (6)

Effect Size: * trivial, ** small, *** medium, **** large
Fig. 11: The Recalltop5 yielded after limiting the issue reports that are searched by n-months for REP. The red dotted line is
the median recall before applying any limitation.

RQ2: How does limiting the issue reports that are
searched by time impact the performance of automated
approaches according to the realistic evaluation?
Motivation. In our exploratory study and RQ1, we found
that the classical evaluation overestimates the performance
of approaches for the automatic retrieval of duplicate issue
reports. The intuitive explanation for our finding is that the
performance with the realistic evaluation drops as the ITS
ages [6], as more long-term duplicates come into the ITS,
which are ignored by the classical evaluation. As the results
of RQ1 show, simply ignoring these long-term duplicates
results in an overestimation of the performance.

Figure 10 shows the distribution of the number of days
between the reporting of a duplicate issue and its master
report. As Figure 10 shows, the chances of a newly-reported
issue being a duplicate of an old issue report are negligible.

In this RQ, we investigate whether it is possible to ignore
some of the long-term duplicates in the search without
impacting the performance of automated approaches for the
retrieval of duplicate issue reports. Ignoring issue reports in
the search can be beneficial in terms of a reduced search
time.
Approach. In this RQ, we reuse the same realistic evaluation
runs of RQ1 (i.e., 100 randomly-selected runs over the
lifetime of each studied ITS). However, we ignore some of
the searched issue reports using an age-based threshold. For
each newly-reported duplicate issue, we limit the searched
issue reports to the ones that have a maximum age of n

months. We evaluate values for n ranging from 6 months to
84 months (in steps of 6 months). Similar to RQ1, we use the
Mann-Whitney U test and Cliff’s Delta effect size to study
the impact of limiting the issue reports that are searched.

17

0.
2

0.
4

0.
6

0.
8

Unlimited 84 78 72 66 60 54 48 42 36 30 24 18 12 6

Mozilla

Limitation by month

To
p1

0
R

ec
al

l R
at

e

Effect Size (months) = * (84), * (78), * (72), ** (66), ** (60), ** (54), ** (48), *** (42), *** (36), **** (30), **** (24), **** (18), **** (12), **** (6)

0.
2

0.
4

0.
6

0.
8

Unlimited 84 78 72 66 60 54 48 42 36 30 24 18 12 6

Eclipse

Limitation by month

To
p1

0
R

ec
al

l R
at

e

Effect Size (months) = * (84), * (78), * (72), * (66), * (60), * (54), * (48), ** (42), *** (36), **** (30), **** (24), **** (18), **** (12), **** (6)

0.
2

0.
4

0.
6

0.
8

Unlimited 84 78 72 66 60 54 48 42 36 30 24 18 12 6

OpenOffice

Limitation by month

To
p1

0
R

ec
al

l R
at

e

Effect Size (months) = * (84), * (78), * (72), * (66), * (60), ** (54), ** (48), ** (42), *** (36), **** (30), **** (24), **** (18), **** (12), **** (6)

Effect Size: * trivial, ** small, *** medium, **** large
Fig. 12: The Recalltop10 yielded after limiting the issue reports that are searched by n-months for REP. The red dotted line is
the median recall before applying any limitation.

Results. It is not possible to limit the issue reports that are
searched without decreasing the performance of automated
approaches for retrieving duplicate issue reports. Figures 11,
12 and 13 show the influence of limiting the issue reports
that are searched on the performance of the automated
retrieval of duplicates by the REP approach. These figures
show the performance in the case of the realistic evaluation
without limitation along with the performance distributions
after each limitation by n months.

The limitation by relatively small thresholds for n (i.e.,
6 to 30 months) shows a large decrease in the performance
of the automated retrieval of duplicates. Larger thresholds,
such as n=48 or larger, show a significant change compared
to no limitation (i.e., n=1) but with trivial effect-size. The
decrease in performance shows that all long-term dupli-

cates are important in terms of impact on the performance
when it comes to evaluating the performance of automated
approaches for the retrieval of duplicate issue reports.
Hence, it is not possible to limit the issue reports that are
searched without significantly overestimating the perfor-
mance of these approaches. However, in practice, limiting
the searched issue reports to those with a maximum age
of 48 months would not noticeably affect the performance
(i.e., the effect size of the difference is trivial). Similar results
are observed for the BM25F approach, hence we omit these
figures from this paper. These results indicate that limiting
the searched issue reports by n-months could be a viable
enhancement when trying to improve the performance of
automated approaches for the retrieval of duplicates for
long-lived software projects. However, there will always be

18

0.
2

0.
4

0.
6

0.
8

Unlimited 84 78 72 66 60 54 48 42 36 30 24 18 12 6

Mozilla

Limitation by month

M
AP

Effect Size (months) = * (84), * (78), * (72), * (66), ** (60), ** (54), ** (48), ** (42), *** (36), *** (30), **** (24), **** (18), **** (12), **** (6)

0.
2

0.
4

0.
6

0.
8

Unlimited 84 78 72 66 60 54 48 42 36 30 24 18 12 6

Eclipse

Limitation by month

M
AP

Effect Size (months) = * (84), * (78), * (72), * (66), * (60), * (54), * (48), * (42), ** (36), *** (30), **** (24), **** (18), **** (12), **** (6)

0.
2

0.
4

0.
6

0.
8

Unlimited 84 78 72 66 60 54 48 42 36 30 24 18 12 6

OpenOffice

Limitation by month

M
AP

Effect Size (months) = * (84), * (78), * (72), * (66), * (60), * (54), ** (48), ** (42), ** (36), *** (30), **** (24), **** (18), **** (12), **** (6)

Effect Size: * trivial, ** small, *** medium, **** large

Fig. 13: The MAP yielded after limiting the issue reports that are searched by n-months for REP. The red dotted line is the
median recall before applying any limitation.

Fig. 14: Overview of the threshold optimization approach.

a statistically significant effect on the observed performance.
A tradeoff needs to be made between getting the most
realistic view of the performance of an automated approach
for retrieving duplicate issue reports, and the decreased cost
of having to search a smaller set of issue reports to retrieve
a list of master candidates.

⇤

⇥

�

�

Observation 4: The limitation of the issue reports
that are searched by n months significantly de-
creases the performance of the automated retrieval
of duplicate issue reports while applying the realis-
tic evaluation. However, for larger values of n, this
decrease has a trivial effect size.

19

RQ3: How does leveraging the resolution field of an
issue report impact the performance according to the
realistic evaluation?

Motivation. In the results of RQ2, we found that limiting
the issue reports that are searched based on the time since
their reporting date negatively affects the performance of
approaches for the retrieval of duplicate issue reports. In-
stead, we propose to use a filtering mechanism based on the
resolution field and the elapsed time since the resolution of
an issue report when searching for duplicates. The intuition
behind using the resolution field is that the resolution,
combined with the time since the resolution, is related to
the chances of a newly-submitted report being a duplicate.
For example, if an issue report was resolved as FIXED
several years ago, the chances of a newly-submitted report
being a duplicate of that issue report are relatively small,
because the occurrence of the fixed issue is unlikely. On the
other hand, the chances of a newly-submitted report being a
duplicate of an issue that will not be fixed (i.e., WONTFIX),
are large regardless of the time since the resolution.

As Figure 10 shows, the majority of duplicates are short-
term duplicates. However, long-term duplicates still need
to be retrieved in some cases. Our hypothesis is that by
filtering issue reports that are unlikely to be the master of
a new issue report, we can improve the performance of
automated approaches for the retrieval of duplicate issue
reports. Hence, the resolution field of an issue report may
help with the retrieval of duplicate reports, as we can
prioritize certain reports in the ranking. We are the first to
use the resolution field of the issue reports to improve the
performance of the automated retrieval of duplicates.
Approach. Our approach is based on applying several filters
to the ranked list of master candidates that is outputted
by the automated approaches (i.e., BM25F and REP). These
filters are based on the resolution field (e.g., FIXED or
INVALID) and the time since the resolution of the issue
reports in the returned candidate list at the time of each
newly-reported duplicate issue. The idea of our approach
is that we have a time-based threshold for each resolution
value and each rank in the returned list of candidates. Then,
we filter each candidate from the returned list for which
its resolution was much longer than the threshold for its
resolution value and rank. Hence, if the threshold for FIXED
reports at rank 2 is 10 days, we filter a report that was
resolved as FIXED more than 10 days ago, when it is at
rank 2 in the returned list.

To find the optimal thresholds for these filters, we use a
genetic algorithm [11]. We evaluate our proposed filtration
on the same 100 chunks of data that were used in RQ1 while
applying the realistic evaluation. We designed the following
formula for the thresholds (in days):

thresholdresolution,rank =
tresolution

(rank)rresolution
(5)

where tresolution is the optimized resolution time variable
and rresolution is the optimized rank variable for a resolution
value. The rank is the actual location of the issue report
in the candidate list. The idea of using rresolution as the
power of rank is to ‘punish’ the master candidates that
have a low ranking (i.e., low similarity). An issue report

is filtered from the list of candidates when the time since its
resolution (timediff) changed is larger than the threshold
for that resolution field value and rank.

Extracting the resolution field. To extract the resolution
field at the time of reporting a new issue, we extract the
resolution history of each master candidate in the ITS. We
then extract the resolution field at the time of reporting
the new duplicate issue. By repeating this extraction for all
master candidates for each newly-reported duplicate issue,
we get an accurate view of the resolution field values.

Optimizing the thresholds. In order to find the optimal
thresholds that are used in the filters, we use the NSGA-
II [11] genetic algorithm to find the thresholds for each
possible value for the resolution field.7 Figure 15 shows
the vector that is optimized by the NSGA-II algorithm. The
vector consists of 14 variables (i.e., a time variable and a
rank variable for each of the 7 possible resolution field
values).

A genetic algorithm follows a process that closely resem-
bles natural evolution to optimize a solution based on an
objective. In our case, the objectives are to optimize the stud-
ied performance metrics: (1) Recalltop5, (2) Recalltop10 and
(3) MAP. The idea of a genetic algorithm is to make small
changes to an input vector (i.e., the vector in Figure 15), and
evaluate how these changes affect the metrics that need to be
optimized. The genetic algorithm then guides the evolution
of the vector towards its optimized value considering the
objective.

Figure 14 presents an overview of our threshold opti-
mization process. Below we detail each step of our process.

1) Initialize the time variables (i.e., tWONTFIX ,
tINV ALID, ..., tREMIND) in the input vector to
the largest possible value, which is the age of the ITS at
the time of the evaluated period. Hence, if an ITS is 8
years old at the time of a certain chunk of data, all time
variables are initialized to 8 ⇤ 365 = 2, 920 days.

2) Initialize the rank variables (i.e., rWONTFIX ,
rINV ALID, ..., rREMIND) to the highest rank that
is considered for the metric that is being optimized.
For example, if Recalltop10 is being optimized, all rank
variables are initialized to 10.

3) To select training data for the genetic algorithm, we
need a set of duplicate candidate lists. To collect such
a set, divide the chunk of data into tuning and testing
data using the same approach as in RQ1 (i.e., use the
first 200 duplicate reports as tuning data and the other
reports as testing data). Tune the automated approach
using the tuning data, and run the tuned approach
for the duplicate reports that were reported within n-
months before the testing data (see Figure 16). Collect
the list that is returned for each duplicate report, and
use all collected lists as the training data for the genetic
algorithm.

4) Run the genetic algorithm with the goal of optimizing
the performance (i.e., recall rate or MAP) of the training
data set. In each iteration, the genetic algorithm slightly
changes the input vector. The time and rank variables in
the input vector are then used to adjust the thresholds,
and the performance of the training data is calculated

7In particular, we use the MOEA framework [14].

20

Fig. 15: The vector of threshold variables that is optimized by the NSGA-II algorithm.

TABLE 8: An example of the optimized threshold variables for OpenOffice with Recalltop5 as objective.

Optimized variables Resulting thresholds for the top 3 ranks (in days)
Resolution tresolution rresolution Threshold for rank 1 Threshold for rank 2 Threshold for rank 3

WONTFIX 3108.73 4.54 (3108.73
14.54

) = 3108.73 (3108.73
24.54

) = 133.63 (3108.73
34.54

) = 21.21

INVALID 217.72 3.86 (217.72
13.86

) = 217.72 (217.72
23.86

) = 14.99 (217.72
33.86

) = 3.13

WORKSFORME 51.99 4.26 (51.99
14.26

) = 51.99 (51.99
24.26

) = 2.71 (51.99
34.26

) = 0.48

FIXED 286.19 1.79 (286.19
11.79

) = 286.19 (286.19
21.79

) = 82.76 (286.19
31.79

) = 40.05

LATER 1675.40 3.46 (1675.40
13.46

) = 1675.40 (1675.40
23.46

) = 152.25 1675.40
33.46

= 37.43

REMIND 1813.77 0.79 (1813.77
10.79

) = 1813.77 (1813.77
20.79

) = 1048.98 1813.77
30.79

= 761.48

CUSTOM 2278.83 2.67 (2278.83
12.67

) = 2278.83 (2278.83
22.67

) = 358.07 (2278.83
32.67

) = 121.30

Fig. 16: Training periods selection for thresholds optimiza-
tion for each chunk of the 100.

after filtering the candidate lists based on the new
thresholds.

5) After 1,000 iterations, stop the genetic algorithm and
select the best-performing vector of variables. Figure 17
shows the relative improvement in performance after
running the genetic algorithm for 100, 500, 1,000, 1,500
and 2,000 iterations for the REP approach. We used
1,000 iterations in our experiments because the relative
improvement in performance did not change consider-
ably after 1,000 iterations.

We used the default settings [14] of the MOEA frame-
work for the parameters of the NSGA-II algorithm. Increas-
ing the number of iterations to more than 1,000 did not
further change the results that are presented in this RQ. Note
that this process is repeated for each of the 100 chunks of
data that we evaluate, as the chunks are randomly selected
from the lifetime of the ITS. Hence, the thresholds need to
be optimized for every run of the experiment. In addition,
we run the algorithm for each studied ITS and automated
approach.

An example of optimized thresholds. Table 8 shows an
example of the optimized variables (i.e., tresolution and
rresolution) that are generated for one run of OpenOffice
using the NSGA-II algorithm. In addition, we show the
resulting thresholds for the top 3 ranks. We observe that the
optimized thresholds for the WORKSFORME issue reports
are the most strict. Intuitively, the strict thresholds can be

explained by the unlikeliness of an issue report that was
resolved as WORKSFORME being reported again, as the
WORKSFORME resolution status indicates that the report
probably did not describe a real issue. In addition, we
observe that the thresholds for the WONTFIX reports are
the highest. The explanation for the height of the thresholds
is that the issue reports that are resolved as WONTFIX are
likely to contain actual issues, which may occur again.
Results. The proposed filtration approach improves the
performance of the automated retrieval of duplicate issue
reports by a median of 10-22%. Figures 18 and 19 show
the Recalltop5, Recalltop10 and MAP distributions pre and
post-filtration for the 100 runs of the studied ITSs after
optimizing the thresholds with 2 months of training data.
The results show that the performance post-filtration is
significantly better for all the studied ITSs. Figure 20 shows
the distribution of the relative improvement of all studied
performance metrics in all studied ITSs using BM25F or REP.
The median relative improvement of the recall rate ranges
from 10-22%. Similarly, the MAP has a median relative
improvement in the range of 7-18%. While these improve-
ments may look small, common relative improvements of
prior work in this research area are in the range of a few
percent [1, 16, 22, 30, 36]. Hence, our relative improvement
can be considered large. The maximum improvement is
achieved when the ITS ages with a relative improvement
of up to 60%. These results highlight that the resolution
field of issue reports can help to improve the automated
retrieval of duplicate issue reports. The main drawback of
using the resolution field is that it does not help in the early
stages of the lifetime of a project since there are only a small
number of resolved issue reports, making it difficult to find
the optimized thresholds. However, in the early stages there
are less issue reports to be searched and hence it is much
easier to retrieve duplicate reports. Therefore, using the
resolution field in an ITS with relatively few issue reports
is unnecessary.

21

0.
0

0.
2

0.
4

0.
6

100 500 1000 1500 2000

Number of Iterations

To
p5

 −
 R

el
at

ive
 Im

pr
ov

em
en

t

0.
0

0.
2

0.
4

0.
6

100 500 1000 1500 2000

Number of Iterations

M
AP

 −
 R

el
at

ive
 Im

pr
ov

em
en

t

(a) Mozilla

0.
0

0.
2

0.
4

0.
6

100 500 1000 1500 2000

Number of Iterations

To
p5

 −
 R

el
at

ive
 Im

pr
ov

em
en

t

0.
0

0.
2

0.
4

0.
6

100 500 1000 1500 2000

Number of Iterations

M
AP

 −
 R

el
at

ive
 Im

pr
ov

em
en

t

(b) Eclipse

0.
0

0.
2

0.
4

0.
6

100 500 1000 1500 2000

Number of Iterations

To
p5

 −
 R

el
at

ive
 Im

pr
ov

em
en

t

0.
0

0.
2

0.
4

0.
6

100 500 1000 1500 2000

Number of Iterations

M
AP

 −
 R

el
at

ive
 Im

pr
ov

em
en

t

(c) OpenOffice

Fig. 17: The relative improvement in performance after running the genetic algorithm for various numbers of iterations for
the REP approach.

Longer training periods do not increase the performance.
Figure 21 shows the performance of the REP approach after
applying various values of n for the number of months
used in the training data. There is no significant difference
between the performance of the various values of n. We
observed similar behaviour for the BM25F approach, hence
we omit the figures for BM25F from the paper.⇤

⇥

�

�

Observation 5: While applying the realistic eval-
uation, leveraging the resolution field value and
the rank to filter the returned master candidates
improves the overall performance of automated ap-
proaches for the retrieval of duplicate reports with
a median of 10-21.5% for recall and 7-18% for MAP.
The thresholds that are used by the filters can be
optimized automatically using a genetic algorithm.

6 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our
conclusions.

External Validity. One of the external threats to our
results is generalization. In this paper, we studied three
ITSs of open source software systems of different sizes and

from different domains. Developers in open-source software
projects could have different behavior for retrieving dupli-
cate issue reports compared to developers from commercial
software. In addition, all our studied projects make use
of the Bugzilla issue tracking system. Our findings might
not hold true for other software projects with other types
of issue tracking systems. In order to address this threat,
additional case studies on other projects, (both open source
and commercial), with other types of issue tracking systems
(e.g., JIRA) are needed. Our study shows that we should
not simply ignore data during the evaluation of approaches
for retrieving duplicate issue reports while expecting that
there is no impact on the evaluated performance of these
approaches. However, more studies are needed to under-
stand whether such impact is a significant one on a large
number of projects.

Construct Validity. In our experiments, we tested the
automated retrieval of duplicates using two approaches
which can threaten the generality of our findings to other
approaches. A majority of approaches for retrieving dupli-
cate issue reports share the same base technique (TF-IDF).
In this paper, we apply REP and BM25F as these are by
far the most used TF-IDF-based approaches for the retrieval
of duplicate issue reports [1, 16, 22, 30, 36]. REP [30]

22

0.
2

0.
4

0.
6

0.
8

Mozilla

To
p5

 R
ec

al
l R

at
e

Pre−Filter

Post−Filter

Effect Size = 0.643 (large) *
0.

2
0.

4
0.

6
0.

8

Mozilla

To
p1

0
R

ec
al

l R
at

e Pre−Filter
Post−Filter

Effect Size = 0.664 (large) *

0.
2

0.
4

0.
6

0.
8

Mozilla

M
AP

Pre−Filter

Post−Filter

Effect Size = 0.634 (large) *

(a) Mozilla

0.
2

0.
4

0.
6

0.
8

Eclipse

To
p5

 R
ec

al
l R

at
e

Pre−Filter

Post−Filter

Effect Size = 0.973 (large) *

0.
2

0.
4

0.
6

0.
8

Eclipse

To
p1

0
R

ec
al

l R
at

e Pre−Filter
Post−Filter

Effect Size = 0.977 (large) *
0.

2
0.

4
0.

6
0.

8

Eclipse

M
AP

Pre−Filter

Post−Filter

Effect Size = 0.937 (large) *

(b) Eclipse

0.
2

0.
4

0.
6

0.
8

OpenOffice

To
p5

 R
ec

al
l R

at
e

Pre−Filter

Post−Filter

Effect Size = 0.486 (large) *

0.
2

0.
4

0.
6

0.
8

OpenOffice

To
p1

0
R

ec
al

l R
at

e Pre−Filter
Post−Filter

Effect Size = 0.504 (large) *

0.
2

0.
4

0.
6

0.
8

OpenOffice

M
AP

Pre−Filter

Post−Filter

Effect Size = 0.404 (medium) *

(c) OpenOffice

* p < 0.001

Fig. 18: The impact of using the resolution field on the results of the BM25F approach (2 months training data).

23

0.
2

0.
4

0.
6

0.
8

Mozilla

To
p5

 R
ec

al
l R

at
e

Pre−Filter

Post−Filter

Effect Size = 0.850 (large) *
0.

2
0.

4
0.

6
0.

8

Mozilla

To
p1

0
R

ec
al

l R
at

e Pre−Filter
Post−Filter

Effect Size = 0.883 (large) *

0.
2

0.
4

0.
6

0.
8

Mozilla

M
AP

Pre−Filter

Post−Filter

Effect Size = 0.803 (large) *

(a) Mozilla

0.
2

0.
4

0.
6

0.
8

Eclipse

To
p5

 R
ec

al
l R

at
e

Pre−Filter

Post−Filter

Effect Size = 0.958 (large) *

0.
2

0.
4

0.
6

0.
8

Eclipse

To
p1

0
R

ec
al

l R
at

e Pre−Filter
Post−Filter

Effect Size = 0.963 (large) *

0.
2

0.
4

0.
6

0.
8

Eclipse

M
AP

Pre−Filter

Post−Filter

Effect Size = 0.909 (large) *

(b) Eclipse

0.
2

0.
4

0.
6

0.
8

OpenOffice

To
p5

 R
ec

al
l R

at
e

Pre−Filter

Post−Filter

Effect Size = 0.488 (large) *

0.
2

0.
4

0.
6

0.
8

OpenOffice

To
p1

0
R

ec
al

l R
at

e Pre−Filter
Post−Filter

Effect Size = 0.492 (large) *

0.
2

0.
4

0.
6

0.
8

OpenOffice

M
AP

Pre−Filter

Post−Filter

Effect Size = 0.431 (medium) *

(c) OpenOffice

* p < 0.001

Fig. 19: The impact of using the resolution field on the results of the REP approach (2 months training data).

24

0
10

20
30

40
50

Top5 Top10 MAP

Mozilla
R

el
at

ive
 Im

pr
ov

em
en

t (
%

)

0
10

20
30

40
50

Top5 Top10 MAP

Eclipse

R
el

at
ive

 Im
pr

ov
em

en
t (

%
)

0
10

30
50

Top5 Top10 MAP

OpenOffice

R
el

at
ive

 Im
pr

ov
em

en
t (

%
)

(a) BM25F

0
10

20
30

40
50

Top5 Top10 MAP

Mozilla

R
el

at
ive

 Im
pr

ov
em

en
t (

%
)

0
10

20
30

40
50

Top5 Top10 MAP

Eclipse

R
el

at
ive

 Im
pr

ov
em

en
t (

%
)

0
10

30
50

Top5 Top10 MAP

OpenOffice

R
el

at
ive

 Im
pr

ov
em

en
t (

%
)

(b) REP

Fig. 20: The relative improvement in performance after filtering the results using our approach.

and BM25F [26] have always been treated as two separate
approaches in prior research [22, 30, 36]. The REP approach
depends on a ranking function that combines the BM25Fext
approach (which is an extended version of BM25F by Sun et
al. [30]) along with categorical fields of issue reports. Nowa-
days, even the most recent approaches make only small
increments to the REP or BM25F approach [1, 16, 22, 36].
Therefore, studying the REP and BM25F approach covers
the majority of the spectrum of the approaches for retrieving
duplicate issue reports. Hence, the observations in this
paper are highly probable to hold for similar approaches
in literature which increases the applicability and impact
of our findings. Our findings are general in nature, e.g.,
it is intuitive that excluding issue reports will affect the
performance evaluation of other approaches for the retrieval
of duplicate issue reports as well. Nevertheless, future stud-
ies are necessary to study whether our results are indeed
generalizable to the evaluation of approaches that are not
based on BM25F or REP.

In the MAP metric calculation, we used 1,000 as maxi-
mum list size. The list size of 1,000 includes more than 90%
of all duplicates which yields accurate results for calculating

the MAP metric for all available duplicates. We did not
use 100% MAP because this is extremely computationally
intensive [22]. In addition, our choice of list size does not
significantly affect the results as the practical applicability
of the candidates that are ranked outside the top 1,000 is
negligible.

For the experiments that are applied on each studied
ITS, we can select from a large number of chunks of data
with a one-year length (e.g., January, 2010 to December, 2010
and February, 2011 to January, 2012). However, running the
approaches for retrieving duplicate issue reports is costly in
terms of time, hence we limit the number of chunks that
we evaluate to 100 randomly-selected chunks. Evaluating
100 chunks of one-year length should give a high enough
confidence as the evaluated chunks randomly cover the full
lifetime of the studied ITSs.

We evaluated only how leveraging the resolution field
impacts the performance in RQ3. The main motivation
behind the selection of the resolution field is that intuitively,
the resolution is related to the chances of a newly-submitted
report being a duplicate. For example, if an issue report
was resolved as fixed several years ago, the chances of a

25

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2 4 6 8

Training Size by n Months

To
p5

 R
ec

al
l R

at
e

(a) Mozilla

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2 4 6 8

Training Size by n Months

To
p5

 R
ec

al
l R

at
e

(b) Eclipse

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2 4 6 8

Training Size by n Months

To
p5

 R
ec

al
l R

at
e

(c) OpenOffice

Fig. 21: The REP approach: applying the proposed approach
using different n-training months. The red dotted line is
the median recall when applying 2 months for training as
was done to yield the leftmost distribution. There are no
significant differences in the performance.

newly-submitted report being a duplicate of that report are
relatively small. Hence, we use the resolution field in combi-
nation with thresholds for the time and rank to give a lower
priority. At this moment, we have no such intuition for
the other available fields. We encourage and expect future
work to first explore theoretical or intuitive underpinnings
and then to search for fields that can further improve the
performance of the automated retrieval of duplicate reports.

7 CONCLUSION
In an issue tracking system (ITS), users of a project can
submit issue reports that describe a bug, a feature request
or a change request. As a result, some issues are reported
multiple times by different users. In order to minimize the
effort spent on such duplicate issue reports, automated ap-
proaches have been proposed for retrieving these duplicate
reports.

In general, these approaches are evaluated using a small
subset of issue reports available in an ITS. In the first part of
this paper, we show that this type of evaluation relatively
overestimates the performance of these approaches by a
median of 17-42% for the ITSs of the Mozilla foundation,
the Eclipse foundation and OpenOffice using BM25F and
REP, two popular approaches for retrieving duplicate issue
reports. Instead, we propose to use a type of evaluation that
uses all issue reports available in the ITS, yielding a more
realistic performance of the approach.

In the second part of this paper, we show that using the
resolution field value of an issue report during the retrieval
of duplicate reports can yield a relative performance im-
provement of a median of 10-22% for recall and 7-18% for
MAP.

The main takeaways of our paper are as follows:
1) In future studies on automated retrieval of duplicate

issue reports:
a) Instead of a single value, a range of values of a

performance metric should be reported, and
b) The realistic evaluation as proposed in this paper

should be used instead of the classical evaluation as
traditionally used.

2) Using the resolution field value of an issue report can
significantly improve the performance of the retrieval
of duplicate issue reports.

We acknowledge that our proposed realistic evaluation re-
quires considerably more computational power than the
classical evaluation. However, the wide availability of com-
putation clusters makes the realistic evaluation feasible for
all researchers. In addition, the results presented in this
paper show that the relative overestimation reported by the
classical evaluation is a serious issue. Hence, researchers
should no longer relegate the issue by estimating perfor-
mance using the classical evaluation because of the high
computational costs of the realistic evaluation.

8 ACKNOWLEDGMENTS

This study would not have been possible without the tools
shared by Sun et al. [30], as well as the High Performance
Computing (HPC) systems that are provided by Compute
Canada8 and the Centre for Advanced Computing9.

REFERENCES

[1] K. Aggarwal, T. Rutgers, F. Timbers, A. Hindle,
R. Greiner, and E. Stroulia. Detecting duplicate bug
reports with software engineering domain knowledge.
In SANER 2015: International Conference on Software
Analysis, Evolution and Reengineering, pages 211–220.
IEEE, 2015.

[2] A. Alipour, A. Hindle, and E. Stroulia. A contextual
approach towards more accurate duplicate bug report
detection. In MSR 2013: Proceedings of the 10th Working
Conference on Mining Software Repositories, pages 183–
192, 2013.

8https://www.computecanada.ca/
9http://cac.queensu.ca/

https://www.computecanada.ca/
http://cac.queensu.ca/

26

[3] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an
open bug repository. In Eclipse 2005: Proceedings of the
2005 OOPSLA Workshop on Eclipse Technology eXchange,
pages 35–39. ACM, 2005.

[4] J. Anvik, L. Hiew, and G. C. Murphy. Who should
fix this bug? In ICSE 2006: Proceedings of the 28th
International Conference on Software Engineering, pages
361–370. ACM, 2006.

[5] R. Baeza-Yates and W. B. Frakes. Information retrieval:
data structures & algorithms. Prentice Hall, 1992.

[6] S. Banerjee, Z. Syed, J. Helmick, M. Culp, K. Ryan,
and B. Cukic. Automated triaging of very large bug
repositories. Information and Software Technology, 2016.

[7] M. W. Berry and M. Castellanos. Survey of text mining.
Computing Reviews, 45(9):548, 2004.

[8] D. Bertram, A. Voida, S. Greenberg, and R. Walker.
Communication, collaboration, and bugs: The social
nature of issue tracking in small, collocated teams.
In CSCW 2010: Proceedings of the ACM Conference on
Computer Supported Cooperative Work, pages 291–300.
ACM, 2010.

[9] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim.
Duplicate bug reports considered harmful really? In
ICSM 2008: Proceedings of the IEEE International Confer-
ence on Software Maintenance, pages 337–345. IEEE, 2008.

[10] G. Chowdhury. Introduction to modern information re-
trieval. Facet publishing, 2010.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6(2):182–
197, 2002.

[12] L. Feng, L. Song, C. Sha, and X. Gong. Practical
duplicate bug reports detection in a large web-based
development community. In Asia-Pacific Web Confer-
ence, pages 709–720. Springer, 2013.

[13] E. A. Gehan. A generalized Wilcoxon test for com-
paring arbitrarily singly-censored samples. Biometrika,
52(1-2):203–223, 1965.

[14] D. Hadka. Beginner’s Guide to the MOEA Framework:
Appendix A. https://github.com/MOEAFramework/
MOEAFramework/releases/download/v2.12/
MOEAFramework-2.12-BeginnersGuidePreview.pdf,
2011.

[15] L. Hiew. Assisted detection of duplicate bug reports,
Jan 2006.

[16] A. Hindle, A. Alipour, and E. Stroulia. A contextual
approach towards more accurate duplicate bug report
detection and ranking. Empirical Software Engineering,
21:1–43, 2015.

[17] N. Jalbert and W. Weimer. Automated duplicate detec-
tion for bug tracking systems. In DSN 2008: Proceedings
of the 38th IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC, pages 52–61.
IEEE, 2008.

[18] D. Joanes and C. Gill. Comparing measures of sample
skewness and kurtosis. Journal of the Royal Statistical
Society: Series D (The Statistician), 47(1):183–189, 1998.

[19] N. Kaushik and L. Tahvildari. A comparative study of
the performance of IR models on duplicate bug detec-
tion. In CSMR 2012: Proceedings of the 16th European
Conference on Software Maintenance and Reengineering,

pages 159–168. IEEE Computer Society, 2012.
[20] A. Lazar, S. Ritchey, and B. Sharif. Improving the ac-

curacy of duplicate bug report detection using textual
similarity measures. In MSR 2014: Proceedings of the
11th Working Conference on Mining Software Repositories,
pages 308–311. ACM, 2014.

[21] J. D. Long, D. Feng, and N. Cliff. Ordinal analysis of
behavioral data. Handbook of psychology, 2003.

[22] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and
C. Sun. Duplicate bug report detection with a combi-
nation of information retrieval and topic modeling. In
ASE 2012: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012,
pages 70–79. ACM, 2012.

[23] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and
S. Wanapu. Using of Jaccard coefficient for keywords
similarity. In Proceedings of the International MultiCon-
ference of Engineers and Computer Scientists, volume 1,
page 6, 2013.

[24] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu:
a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th annual meeting on
association for computational linguistics, pages 311–318.
Association for Computational Linguistics, 2002.

[25] M. S. Rakha, W. Shang, and A. E. Hassan. Studying the
needed effort for identifying duplicate issues. Empirical
Software Engineering, 2015.

[26] S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25
extension to multiple weighted fields. In CIKM 2004:
Proceedings of the Thirteenth ACM International Confer-
ence on Information and Knowledge Management, pages
42–49. ACM, 2004.

[27] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek,
and L. Devine. Exploring methods for evaluating
group differences on the nsse and other surveys: Are
the t-test and Cohens’d indices the most appropriate
choices. In annual meeting of the Southern Association for
Institutional Research, 2006.

[28] P. Runeson, M. Alexandersson, and O. Nyholm. Detec-
tion of duplicate defect reports using natural language
processing. In ICSE 2007: Proceedings of the 29th Interna-
tional Conference on Software Engineering, pages 499–510.
IEEE Computer Society, 2007.

[29] G. Salton, A. Wong, and C.-S. Yang. A vector space
model for automatic indexing. Communications of the
ACM, 18(11):613–620, 1975.

[30] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang. Towards more
accurate retrieval of duplicate bug reports. In ASE 2011:
Proceedings of the 26th IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 253–262.
IEEE, 2011.

[31] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A
discriminative model approach for accurate duplicate
bug report retrieval. In ICSE 2010: Proceedings of the
32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, pages 45–54. ACM, 2010.

[32] A. Sureka and P. Jalote. Detecting duplicate bug report
using character n-gram-based features. In APSEC 2010:
Proceedings of the 2010 Asia Pacific Software Engineer-
ing Conference, pages 366–374. IEEE Computer Society,
2010.

https://github.com/MOEAFramework/MOEAFramework/releases/download/v2.12/MOEAFramework-2.12-BeginnersGuidePreview.pdf
https://github.com/MOEAFramework/MOEAFramework/releases/download/v2.12/MOEAFramework-2.12-BeginnersGuidePreview.pdf
https://github.com/MOEAFramework/MOEAFramework/releases/download/v2.12/MOEAFramework-2.12-BeginnersGuidePreview.pdf

27

[33] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and
C. Burges. Optimisation methods for ranking functions
with multiple parameters. In CIKM 2006: Proceedings of
the 15th ACM International Conference on Information and
Knowledge Management, pages 585–593. ACM, 2006.

[34] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using nat-
ural language and execution information. In ICSE
2008: Proceedings of the 30th International Conference on

Software Engineering, pages 461–470. ACM, 2008.
[35] J. Zhou and H. Zhang. Learning to rank duplicate bug

reports. In Proceedings of the 21st International Confer-
ence on Information and Knowledge Management (CIKM),
pages 852–861, New York, NY, USA, 2012. ACM.

[36] J. Zou, L. Xu, M. Yang, X. Zhang, J. Zeng, and S. Hi-
rokawa. Automated duplicate bug report detection
using multi-factor analysis. IEICE Transactions on In-
formation and Systems, E99.D(7):1762–1775, 2016.

View publication statsView publication stats

https://www.researchgate.net/publication/319878728

	1 Introduction
	2 Background
	2.1 Duplicate Issue Reports
	2.2 Automated Retrieval of Duplicate Issue Reports
	2.3 Performance Evaluation of Automated Retrieval of Duplicate Issue Reports
	2.4 Related Work
	2.4.1 Determining Whether a Newly-Reported Issue was Already Reported Before
	2.4.2 Retrieving Duplicate Issue Reports

	3 Experimental Setup
	3.1 Studied ITSs
	3.2 Pre-processing of Issue Reports
	3.3 Implementation of the Experiments
	3.4 Performance Evaluation Metrics

	4 Exploratory Study
	4.1 Realistic Evaluation
	4.2 Classical vs. Realistic Evaluation Processes
	4.3 The Sensitivity of the Choice of the Tuning Data

	5 Experimental Results
	6 Threats to Validity
	7 Conclusion
	8 Acknowledgments

