A Case Study on the Stability of Performance Tests for
Serverless Applications

Simon Eismann®, Diego Elias Costa”, Lizhi Liao®, Cor-Paul Bezemer®,
Weiyi Shang®, André van Hoorn?, Samuel Kounev®

@ University of Wiirzburg, Wiirzburg, Germany
b Concordia University, Montreal, Canada
¢ University of Alberta, Edmonton, Canada
4 University of Hamburg, Hamburg, Germany

Abstract

Context. While in serverless computing, application resource management
and operational concerns are generally delegated to the cloud provider, ensur-
ing that serverless applications meet their performance requirements is still
a responsibility of the developers. Performance testing is a commonly used
performance assessment practice; however, it traditionally requires visibility
of the resource environment.

Objective. In this study, we investigate whether performance tests of
serverless applications are stable, that is, if their results are reproducible,
and what implications the serverless paradigm has for performance tests.

Method. We conduct a case study where we collect two datasets of perfor-
mance test results: (a) repetitions of performance tests for varying memory
size and load intensities and (b) three repetitions of the same performance
test every day for ten months.

Results. We find that performance tests of serverless applications are
comparatively stable if conducted on the same day. However, we also ob-
serve short-term performance variations and frequent long-term performance
changes.

Conclusion. Performance tests for serverless applications can be stable;

Email addresses: simon.eismann@uni-wuerzburg.de (Simon Eismann),
diego.costa@concordia.ca (Diego Elias Costa), 1_lizhi@encs.concordia.ca (Lizhi
Liao), bezemer@ualberta.ca (Cor-Paul Bezemer), shang@encs.concordia.ca (Weiyi
Shang), andre.van.hoorn@uni-hamburg.de (André van Hoorn),
samuel .kounev@uni-wuerzburg.de (Samuel Kounev)

Preprint submitted to Journal of Software and Systems March 17, 2022



however, the serverless model impacts the planning, execution, and analysis
of performance tests.

1. Introduction

Serverless computing combines Function-as-a-Service (e.g., AWS Lambda,
Google Cloud Functions, or Azure Functions) and Backend-as-a-Service (e.g.,
managed storage, databases, pub/sub, queueing, streaming, or workflows)
offerings that taken together provide a high-level application programming
model, offloading application resource management and operation aspects to
the cloud provider [29, [16]. The cloud provider opaquely handles resource
management tasks, such as deployment, resource allocation, or auto-scaling,
and bills the user on a pay-per-use basis [0, [7T]. While the cloud provider
takes care of resource management, managing the performance of serverless
applications remains a developer concern [36] [70]. Executing performance
tests as part of a CI/CD pipeline to monitor the impact of code changes
on system performance is a common and powerful approach to manage sys-
tem performance [10, 34]. One of the key requirements for reliable perfor-
mance tests is ensuring that an identical resource environment is used for all
tests [14].

However, with serverless applications, developers have no control over the
resource environment. Worse yet, cloud providers expose no information to
developers about the resource environment [73]. Therefore, information such
as the number of provisioned workers, worker utilization, worker version, vir-
tualization stack, or underlying hardware is unavailable. Furthermore, cold
starts (requests where a new worker has to be provisioned) are a widely dis-
cussed performance challenge [36] [70]. This begs the following question:

“Are performance tests of serverless applications stable?”

The performance variability of virtual machines in cloud environments
has been studied extensively [24, 58, [32]. However, many serverless plat-
forms are not deployed on traditional virtual machines [2]. Additionally, the
opaque nature of serverless platforms means that it is extremely challeng-
ing, if not impossible, to control or know how many resources are allocated
during a performance test [71]. Existing work on performance evaluation
of serverless platforms focuses on determining the performance characteris-



tics of such platforms but does not investigate the stability of performance
measurements [73] 49] 41, 59].

In this paper, we present an exploratory case study on the stability of
performance tests of serverless applications. Using the serverless airline ap-
plication [60], a representative, production-grade serverless application [37],
we conduct two sets of performance measurements: (1) multiple repetitions
of performance tests under varying configurations to investigate the perfor-
mance impact of the latter, and (2) three daily measurements for ten months
to create a longitudinal dataset and investigate the stability of performance
tests over time. This study makes three main contributions towards further-
ing the understanding of the performance variability of serverless applica-
tions:

e Contribution 1: We present the first study on the performance vari-
ability of serverless applications over longer periods of time. In partic-
ular, we collect daily measurements on the performance variability of
our application for ten months.

e Contribution 2: Our case study analyses the performance behavior
of a complex, realistic application, unlike the micro-benchmarks and
single-function applications often used by existing work.

e Contribution 3: We include a detailed replication package that en-
ables the replication of our study on future configurations of serverless
platforms.

We find that in our case study there are serverless-specific changes and
pitfalls to all performance test phases: design, execution, and analysis. In the
design phase, the load intensity of the test directly correlates to cost (Sec-
tion [6.1.1]), and reducing load intensity can deteriorate performance (Sec-
tion [6.1.2). In the execution phase, daily performance fluctuations (Sec-
tion [6.2.1) and long-term performance changes (Section impact the
decision when performance tests should be scheduled. In the analysis phase,
developers need to consider that there is still a warm-up period after remov-
ing all cold starts (Section and that cold starts can occur late in a
performance test even under constant load (Section [6.3.2)).

The rest of the paper is organized as follows: Section [2| gives an intro-
duction to performance testing and serverless applications. Next, Section
introduces related work on performance evaluation of serverless platforms as




well as on performance variability of virtual machines. Section [4] describes
the design of our case study and Section [5| discusses the results. Then, Sec-
tion [6] discusses the implications of our findings on the performance testing
of serverless applications. Section [7| presents the threats to the validity of
our study, Section [§] introduces our comprehensive replication package, and
finally, Section [J] concludes the paper.

2. Background

In the following, we give a short introduction to serverless applications
and performance testing.

2.1. Serverless Applications

Serverless applications consist of business logic in the form of serverless
functions—also known as Function-as-a-Service (FaaS)—and cloud provider-
managed services such as databases, blob storage, queues, pub/sub messag-
ing, machine learning, API gateways, or event streams.

Developers write business logic as isolated functions, configure the man-
aged services via Infrastructure-as-Code, and define triggers for the execution
of the business logic (serverless functions). Triggers can either be HTTP re-
quests or cloud events such as a new message in a queue, a new database
entry, a file upload, or an event on an event bus. The developer provides the
code for the serverless functions, the configuration of the managed services,
and the triggers; the cloud provider guarantees that the code is executed and
the managed services are available whenever a trigger occurs, independent of
the number of parallel executions. In contrast to classical IaaS platforms, de-
velopers are not billed for the time resources are allocated but rather for the
time resources are actively used. Under this pay-per-use model, developers
are billed based on the time the serverless functions run and per operation
performed by the managed services.

Serverless functions promise seamless scaling of arbitrary code. In order
to do so, each function is ephemeral, stateless, and is executed in a prede-
fined runtime environment. Additionally, every worker (function instance)
only handles a single request at a time. When a function trigger occurs, the
request is routed to an available function instance. If no function instance is
available, the request is not queued, instead, a new function instance is de-
ployed and the request is routed to it (known as cold start, other executions
are labeled as warm start). Cloud providers are continuously working on

4



reducing the cold start time through various techniques such as the utiliza-
tion of a fleet of template function instances that already run the supported
runtime environments, into which only the application-specific code needs to
be loaded, and the use of more lightweight virtualization techniques [69].

A number of potential benefits of serverless applications compared to
traditional cloud applications have been reported [I8, [19]. The pay-per-use
model is reported to reduce costs for bursty workloads, which often lead
to over-provisioning and low resource utilization in traditional cloud-based
systems. Furthermore, serverless applications are virtually infinitely scalable
by design and reduce the operational overhead, as the cloud provider takes
care of all resource management tasks. Finally, the heavy usage of managed
services is reported to increase development speed.

2.2. Performance Testing

Performance testing is the process of measuring and ascertaining a sys-
tem’s performance-related aspects (e.g., response time, resource utilization,
and throughput) under a particular workload [25]. Performance testing helps
to determine compliance with performance goals and requirements [55, [74]
20], identify bottlenecks in a system [68] 52], and detect performance regres-
sions [53], 146, 65]. A typical performance testing process starts with design-
ing the performance tests according to the performance requirements. These
performance tests are then executed in a dedicated performance testing en-
vironment, while the system under test (SUT) is continuously monitored to
collect system runtime information including performance counters (e.g., re-
sponse time and CPU utilization), the system’s execution logs, and event
traces. Finally, performance analysts analyze the results of the performance
testing.

During the execution of a software system, it often takes some time to
reach its stable performance level under given load. During performance
testing, the period before the software system reaches steady-state is com-
monly known as the warm-up period, and the period after that is considered
as the steady-state period. There are many reasons for the warm-up period,
such as filling up buffers or caches, program JIT compilation, and absorb-
ing temporary fluctuations in system state [4§]. Since performance during
the warm-up period may fluctuate, in practice, performance engineers often
remove the duration of the unstable phase (i.e., warm-up period) of the per-
formance test and only consider the steady-state period in the performance
test results. The most intuitive way to determine the warm-up period is to



simply remove a fixed duration of time (e.g., 30 minutes [39]) from the begin-
ning of the performance testing results. We refer to a review by Mahajan and
Ingalls [43] for an overview of existing techniques to determine the warm-up
period.

3. Related Work

Existing work related to this study can be grouped into performance
evaluations of serverless platforms and studies on the performance variability
of virtual machines.

3.1. Performance Fvaluation of Serverless Platforms

A number of empirical measurement studies on the performance of server-
less applications have been conducted. Lloyd et al. [41] examined the in-
frastructure elasticity, load balancing, provisioning variation, infrastructure
retention, and memory reservation size of AWS Lambda and Azure Func-
tions. They found that cold and warm execution times are correlated with
the number of containers per host, which makes the number of containers
per host a major source of performance variability. Wang et al. conducted
a large measurement study that focuses on reverse engineering platform de-
tails [73]. They found variation in the underlying CPU model used and low
performance isolation between multiple functions on the same host. When
they repeated a subset of their measurements about half a year later, they
found significant changes in the platform behavior. Lee et al. [33] analyzed
the performance of CPU, memory, and disk-intensive functions with differ-
ent invocation patterns. They found that file I/O decreases with increasing
numbers of concurrent requests and that the response time distribution re-
mained stable for a varying workload on AWS. Yu et al. [77] compared the
performance of AWS Lambda to two open-source platforms, OpenWhisk and
Fn. They found that Linux CPU shares offer insufficient performance isola-
tion and that performance degrades when co-locating different applications.
However, while the performance of FaaS platforms has been extensively stud-
ied, there has been little focus on the stability of these measurements over
time. Djemame et al. [13] investigate the performance properties of Apache
OpenWhisk, one of the most popular open-source function-as-a-service plat-
forms. They compared the performance of OpenWhisk with docker-based
and native execution, however, they do not consider performance variability
in their study.



There have also been a number of measurement tools and benchmarks
developed for serverless applications and platforms. Cordingly et al. [§] in-
troduced the Serverless Application Analytics Framework (SAAF), a tool
that allows profiling FaaS workload performance and resource utilization on
public clouds; however it does not provide any example applications. Figiela
et al. [21] introduced a benchmarking suite for serverless platforms and eval-
uated the performance of AWS Lambda, Azure Functions, Google Cloud
Functions, and IBM Functions. The workloads included in the benchmark-
ing suite consist of synthetic benchmark functions, such as a mersenne twister
or linpack implementation. Kim et al. [27] proposed FunctionBench, a suite
of function workloads for various cloud providers. The functions included in
FunctionBench closely resemble realistic workloads, such as video processing
or model serving, but they only cover single functions and not entire appli-
cations. Maissen et al. [45] propose Faasdom, an extensible benchmark suite
for the comparison of serverless platforms using micro-benchmarks with na-
tive support for AWS, Azure, Google, and IBM. In addition to performance
measurements, the benchmark tool also contains a cost calculator that de-
termines the costs incurred for the execution of a specific benchmark. In
their measurements, they find that performance varies between providers,
with AWS usually leading the pack. There have also been a number of ap-
proaches proposed that aim to model the impact of various factors on the
cost and performance of serverless applications [40] [17, [15] 20, 44].

Existing work mostly focuses on FaaS benchmarks and performance stud-
ies using micro-benchmarks and single function applications. In contrast, our
case study uses a realistic application consisting of many functions and ex-
ternal services.

For further details on the current state of the performance evaluation of
serverless offerings, we refer to an extensive multi-vocal literature review by
Scheuner et al. [59]. This review also finds that the reproducibility of the
surveyed studies is a major challenge. Therefore we include a comprehensive
replication package (see Section [§]) that enables other researchers to replicate
and extend our study.

3.2. Performance Variability of Virtual Machines

Due to the extensive adoption of virtual machines (VMs) in practice,
there exists much prior research on the performance variability of VMs. One
early work in this area is from Menon et al. [50], which quantifies the net-
work I/O related performance variation in Xen virtual machines. Their re-

7



sults also identify some key sources of such performance variability in VMs.
Afterwards, Kraft et al. [30], Boutcher and Chandra [7] apply various tech-
niques to assess the performance variation of VMs compared to a native
system with respect to disk 1/O. Taking the contention between different
VMs into account, Koh et al. [28] analyze ten different system-level perfor-
mance characteristics to study the performance interference effects in virtual
environments. Their results show that the contention on shared physical re-
sources brought by virtualization technology is one of the major causes of
the performance variability in VMs.

Huber et al. [23] compared the performance variability (for CPU and
memory) of two virtualization environments and use regression-based mod-
els to predict the performance overhead for executing services on these plat-
forms. Schad et al. [58], losup et al. [24], and Leitner and Cito [35] assessed
the performance variability across multiple regions and instance types of pop-
ular public clouds such as Amazon Web Services (AWS) and Google Compute
Engine (GCE). Based on these findings, Asyabi [5] proposed a novel hypervi-
sor CPU scheduler aiming to reduce the performance variability in virtualized
cloud environments.

To investigate the impact of the performance variability of VMs on perfor-
mance assurance activities (e.g., performance testing and microbenchmark-
ing), Laaber et al. [31, B2] evaluated the variability of microbenchmarking
results in different virtualization environments and analyzed the results from
a statistical perspective. They found that not all cloud providers and in-
stance types are equally suited for performance microbenchmarking. Costa
et al. [0] summarized some bad practices of writing microbenchmarks using
the JMH framework to mitigate the variation and instability of cloud environ-
ments when conducting performance microbenchmarking. Arif et al. [4] and
Netto et al. [51] compared performance metrics generated via performance
tests between virtual and physical environments. Their findings highlight
the inconsistency between performance testing results in virtual and physi-
cal environments.

The focus of existing work is on traditional software systems in virtualized
environments with static resource allocation and deployment. In this study,
we investigate the performance variability of serverless applications where
the resource allocation and deployment is not known to the developer and
might change between experiments.



AppSync
|
v v v v }

1 Search Flights 1 1 Create Charge | , Create Booking , | List Bookings 1 1 GetlLoyalty |

1 1
1 [ ! o 1 f 1
N 5 I (] N 5 £ () I & ()
1 [ 1 : : 1 1 f 1
: DynamoDB : : AP| Gateway : 1 SNS Step Functions AP| Gateway 1 : DynamoDB : : AP| Gateway :
""""" : ! i CTTTTTTTTTT v I
[ ! 1
N BN 2 N B
N /) . ) 2 i, ] /) .
1 1
, Lambda 1 ' Lambda Lambda Lambda : 1 Lambda 1
: v Vo ! I | ' : v :
. ' | ! |
! [ 3 3 ! ! 3 1
! [ S S ! ! S 1
: [ ! : 1
1 Payment ' | DynamoDB DynamoDB Payment | 1 DynamoDB !

Figure 1: Architecture and API endpoints of the serverless airline booking application.

4. Case Study Design

In this section, we present the design of our case study. We first introduce
our subject system, the Serverless Airline Booking (SAB) application, and
describe why we selected this system for our case study. Then, we describe
the experiment setup, the collected metrics, and the individual experiments.

4.1. Serverless Airline Booking (SAB)

The serverless airline booking application (SAB)El is a fully serverless web
application that implements the flight booking aspect of an airline on AWS.
It was presented at AWS re:Invent as an example for the implementation of a
production-grade full-stack app using AWS Amplify [37]. The SAB was also
the subject of the AWS Build On Serverless series [60]. Customers can search
for flights, book flights, pay using a credit card, and earn loyalty points with
each booking.

The frontend of the SAB is implemented using CloudFront, Amplify/S3,
Vue.js, the Quasar framework, and Stripe Elements. This frontend sends
GraphQL queries (resolved using AWS AppSync) to five backend APIs, as
shown in Figure

'https://github.com/aws-samples/aws-serverless-airline-booking


https://github.com/aws-samples/aws-serverless-airline-booking

e The Search Flights API retrieves all flights for a given date, arrival
airport, and departure airport from a DynamoDB table using the Dy-
namoDB GraphQL resolver.

e The Create Charge API is implemented as an API gateway that trig-
gers the execution of the CreateStripeCharge lambda function, which
manages the call to the Stripe API.

e The Create Booking API reserves a seat on a flight, creates an uncon-
firmed booking, and attempts to collect the charge on the customer’s
credit card. If successful, it confirms the booking, and awards loyalty
points to the customer. In case the payment collection fails, the re-
served seat is freed again, and the booking is canceled. This workflow
is implemented as an AWS Step Functions workflow that coordinates
multiple lambda functions. The functions ReserveBooking and Cancel-
Booking directly modify DynamoDB tables, the NotifyBooking function
publishes a message to SNS, which is later consumed by the Ingest-
Loyalty function that updates the loyalty points in a DynamoDB ta-
ble. The CollectPayment and RefundPayment functions call the Stripe
backend via an application from the Serverless Application Repository.

e The List Bookings API retrieves the existing bookings for a customer.
Similar to the Search Flights API, this is implemented using a Dy-
namoDB table and the DynamoDB GraphQL resolver.

e The Get Loyalty API retrieves the loyalty level and loyalty points for a
customer. An API Gateway triggers the lambda function FetchLoyalty,
which retrieves the loyalty status for a customer from a DynamoDB
table.

We selected SAB for our case study after investigating potential applications
from a review of serverless use cases [10], a serverless literature dataset [3],
and a recent survey on FaaS performance evaluation [59]. We chose SAB over
other potential applications due to its comparatively large size and its usage
of many different managed services. It is also running on AWS, the by far
most popular cloud provider for serverless applications [16], 36}, 38], and it uses
both Python and JavaScript to implement the serverless functions, the two
most popular programming languages for serverless applications [16), [36, [38].

10



4.2. Ezxperiment Setup

We deploy the frontend via Amplify [61] and the backend services via ei-
ther the Serverless Application Model [63] or CloudFormation [62] templates
depending on the service. The serverless nature of the application makes it
impossible to specify the versions of any of the used services, as DynamoDB,
Lambda, API Gateway, Simple Notification Service, Step Functions, and
AppSync all do not provide any publicly available version numbers.

For the load profile, customers start by querying the Search Flights API
for flights between two airports. If no flight exists for the specified airports
and date, the customer queries the Search Flights API again, looking for a
different flight. We populated the database so that most customers find a
flight within their first query. Next, they call the Create Charge API and
the Create Booking to book a flight and pay for it. After booking a flight,
each customer checks their existing bookings and loyalty status via the List
Bookings API and the Get Loyalty API. This load profile is implemented
using the TeaStore load driver [72].

In terms of monitoring data, we collect the response time of each API
call via the load driver. Additionally, we collect the duration, that is, the
execution time of every lambda function. We exclude the duration of the
lambdas ChargeCard and FetchLoyalty, as the response times of the APIs
Create Charge and Get Loyalty mostly consist of the execution times of these
lambdas. We cannot collect any resource-level metrics such as utilization or
number of provisioned workers, as AWS and most other major serverless
platforms do not report any resource level metrics.

For our experiments, we perform measurements with 5 req/s, 25 req/s,
50 req/s, 100 req/s, 250 req/s, and 500 req/s to cover a broad range of load
levels. Additionally, we vary the memory size of the lambda functions be-
tween 256 MB, 512 MB, and 1024 MB, which covers the most commonly used
memory sizes [I2]. For each measurement, the SAB is deployed, put under
load for 15 minutes, and then torn down again. We perform ten repetitions
of each measurement to account for cloud performance variability. Addi-
tionally, we run the experiments as randomized multiple interleaved trials,
which have been shown to further reduce the impact of cloud performance
variability [I]. To minimize the risk of manual errors, we fully automate the
experiments (for further details see Section [§). These measurements started
on July 5th, 2020, and continuously ran until July 17th, 2020.

Additionally, we set up a longitudinal study that ran three measurement
repetitions with 100 req/s and 512 MB every day at 19:00 from Aug 20th, 2020

11



to Jun 20th, 2021. The measurements were automated by a Step Functions
workflow that is triggered daily by a CloudWatch alarm and starts the ex-
periment controller VM, triggers the experiment, uploads the results to an
S3 bucket, and shuts down the experiment controller VM again.

To ensure reproducibility of our results, the fully automated measurement
harness and all collected data from these experiments are available in our
replication packageE]

5. Case Study Results

We now present the results of our empirical study in the context of our
three research questions. For each research question, we present the mo-
tivation of answering the question, our approach to answering it, and the
corresponding results.

5.1. RQ1: How do cold starts influence the warm-up period and stability of
serverless performance tests?

Motivation. A common goal of performance tests is to measure the steady-
state performance of a system under a given workload. Hence, it is essential
that practitioners understand how long it takes for serverless applications
to reach stable performance (i.e., how long is the warm-up period) in order
to plan the duration of their performance tests accordingly. Aside from the
general aspects that influence the initial performance instability, such as the
environment and application optimizations (e.g., CPU adaptive clocking and
cache setup), serverless applications also encounter cold starts. A cold start
occurs when a request cannot be fulfilled by the available function instances,
and a new instance has to be provisioned to process the upcoming request.
Cold starts can incur significantly higher response times [73] 21]. Hence, in
this RQ, we investigate: (1) how long is the warm-up period in our exper-
iments and (2) the role of cold starts in the stability of the warm-up and
steady-state experiment phases.

Approach. To determine the duration of the warm-up period, we initially
tried to use the MSER-5 method [75], which is the most popular method to
identify the warm-up period in simulations [43 22]. However, this approach

Znttps://github.com/ServerlessLoadTesting/ReplicationPackage

12


https://github.com/ServerlessLoadTesting/ReplicationPackage

Algorithm 1: Warm-up Period Identification Heuristic.
Result: warmuplnSeconds
threshold = 0.01;
stable = False;
warmuplnSeconds = 0;
global_mean = mean(ts);
while stable == False do
ts = removebsecs(ts) // Remove 5 seconds of data;
warmuplnSeconds += 5;
new_mean = mean(ts);
delta = abs((new_mean - global_mean) / global mean);
if delta < threshold then
‘ stable = True;
else
‘ global_mean = new_mean;
end

end

was not applicable due to the large outliers present in our data, a well-
documented flaw of MSER-5 [57]. Therefore, we employ a heuristic to identify
the warm-up period. Our heuristic, shown in Algorithm I} gradually removes
data from the beginning of the experiment in windows of five seconds and
evaluates the impact of doing so on the overall mean results. If the impact
is above a threshold (we used 1% in our experiments), we continue the data
removal procedure. Otherwise, we consider the seconds removed as the warm-
up period and the remainder as the steady-state phase of the performance test
experiment. Similar to MSER-5 [75], we label any measurement where the
detected warm-up period is larger than 40% of the measurement as unstable.
This regulation is necessary, as warm-up period detection approaches become
unreliable once the steady-state period is not considerably longer than the
warm-up period. In these scenarios, either longer measurements are required
until a steady-state can be detected or the system under test never reaches
a steady-state (e.g., due to a growing number of entries in a database).

To evaluate the impact of cold starts on the experiment stability, we an-
alyze the distribution of cold start requests across the two phases of perfor-
mance tests: warm-up period and steady-state period. Then, we evaluate the

13



influence of cold start requests on the overall mean response time, considering
only cold start requests that occurred after the warm-up period. To test for
statistically significant differences, we use the unpaired and non-parametric
Mann-Whitney U test [47]. In cases where we observe a statistical differ-
ence, we evaluate the effect size of the difference using the Cliff’s Delta effect
size [42], and we use the following common thresholds [56] for interpreting
the effect size:

negligible(N), if |d| < 0.147

. small(S), if 0.147 < |d| < 0.33
Effect size d = , )
medium(M), if 0.33 < |d| < 0.474
large(L), if 0474 < |d| <1

Note that not all request classes provide information about cold starts.
This information is only available for the six lambda functions, as the man-
aged services either do not have cold starts or do not expose them. There-
fore, we report the cold start analysis for the following six request classes:
CollectPayment, ConfirmBooking, CreateStripeCharge, IngestLoyalty, Noti-
fyBooking, and ReserveBooking. Finally, our experiment contains more than
45 hours of measurements, including performance tests with ten repetitions,
different workload levels, and function sizes.

Findings. The warm-up period lasts less than 2 minutes in the
vast majority of our experiments. Table[I|shows the maximum warm-up
period in seconds, observed across all experiments per workload level. In most
experiments, we observe that the maximum warm-up period out of the ten
repetitions lasts less than 30 seconds (37 out of 48 experiment combinations).
With exception of IngestLoyalty, all workload classes exhibit a shorter warm-
up period as the load increases. The average warm-up period in experiments
with 500 requests per second was 27 seconds, half of the warm-up period
observed in runs with 5 requests per second (52 seconds). The function Get
Loyalty never reaches a steady-state under high load, as it implements the
performance anti-pattern “Ramp” due to a growing number of entries in the
database [66]. We also note that, contrary to the workload, the function size
(memory size) has no influence on the warm-up period: in most cases, the
difference of the warm-up period across function sizes (256 MB, 512 MB,
1024 MB) is not significant (p > 0.05), with a negligible effect size for the
few significantly different cases (d < 0.147). In the following, we opt to

14



Table 1: Maximum warm-up period in seconds across ten repetitions of all function sizes.
We highlight warm-up periods over one minute with a dark background.

Workload (reqs/s)

Request Class 5 25 50 100 250 500

CollectPayment 15 10 10 10 10 10
ConfirmBooking 25 15 15 65 10 15
CreateStripeCharge 15 15 15 15 20 15
Get Loyalty 70 60 45 30 10 -
IngestLoyalty 15 25 55 75 125 155
List Bookings 115 70 55 45 25 15
NotifyBooking 20 40 40 15 60 10
Process Booking 65 45 20 10 10 15
ReserveBooking 20 20 10 10 10 15
Search Flights 135 80 50 30 30 20

conservatively consider the first 2 minutes of performance tests as part of the
warm-up period for any subsequent analysis.

The vast majority (>99%) of cold starts occur during the first
two minutes of the performance test (warm-up period). Cold start
requests that occur after the warm-up period (<1%) do not impact
the measurements. Table [2| depicts the average percentage of cold start
requests across different request classes, the share of cold start requests that
occur in the warm-up period, and whether cold starts after the warm-up
period significantly impact the mean response time. We consider cold starts
to impact the results, if there is a significant difference between the mean
response time with and without cold starts in the steady-state experiment
phase. As we observe similar results in all six request classes, below we
discuss only the CollectPayment results. On average, cold start requests in
CollectPayment make up for 0.93% of the total number of requests. However,
since they mostly concentrate in the first two minutes of the experiment
(99.5%), they are discarded from the final results as part of the warm-up
period. The remaining cold start requests (0.5%) that occur throughout the
run of our performance test did not significantly impact the response time
(Mann-Whitney U test with p > 0.05).

In the majority of experiments, removing the cold starts does
not shorten the warm-up period. Given that cold starts occur mostly

15



Table 2: Average occurrence of cold start requests in the performance tests per request
class. We consider the first 2 minutes as the warm-up period. We report cold starts as
impacting the results if there is a significant difference of the mean response time when
accounting for cold start requests after the warm-up period.

% Cold % Occurrence

Request Class Start <—2 min >2 min Impact?
CollectPayment 0.93 99.5 0.05 No
ConfirmBooking 0.72 99.5 0.05 No
CreateStripeCharge 0.44 99.9 0.01 No
IngestLoyalty 1.01 99.2 0.02 No
NotifyBooking 1.04 99.9 0.01 No
ReserveBooking 0.40 99.8 0.02 No

during the warm-up period, we wanted to assess if the warm-up period is
composed solely of cold start requests. Is it enough to simply drop cold start
requests from the experiment and consider all other requests as part of the
steady-state performance measurements? Table |3 shows the difference of the
warm-up period considering all requests (the one shown in Table , Versus
the warm-up period calculated by filtering the cold start requests from the
experiment. In the majority of the experiments (22 out of 36 combinations),
we observe no difference between dropping or keeping the cold start requests
in the duration of the warm-up period. Some request classes, however, exhib-
ited shorter periods of warm-up once we filter out cold start requests, as the
high response time of cold start requests contributes to the warm-up period.
For instance, the experiment with CreateStripesCharge showed a consistent
reduction of the warm-up period of at least 5 seconds (our heuristic’s window
size) for all the workload sizes. It is important to note, however, that the
warm-up period — while shorter in some classes—is not only influenced by
cold starts.

5.2. RQ2: How stable are the performance test results of a serverless ap-
plication deployed on common serverless platforms?

Motivation. In RQ1, we found that within a run, the results of a per-

formance test quickly become stable. The period of instability (warm-up)

usually lasts less than two minutes, and the number of cold start requests

that occur after this period does not impact the performance test results.

16



Table 3: Difference of the maximum warmup-period in seconds between experiments in-
cluding all requests vs. experiments filtering out the cold start requests.

Workload (reqs/s)

Request Class 5 25 50 100 250 500

CollectPayment ) ) - - -
ConfirmBooking - - — — —
CreateStripeCharge -10 -5 -5 -5 -5 -10
IngestLoyalty - - -10 - - -10
NotifyBooking - =20 -20 - = -
ReserveBooking -5 -5 - - -

However, results across multiple runs are likely to vary considerably. Prac-
titioners have no way to ensure that two different performance tests are
executed in similar resource environments, given that deployment details in
serverless applications are hidden from developers. Hence, for this RQ, we
study how the inherent variance in deployed serverless applications impacts
the stability between performance tests.

Approach. In this analysis, we evaluate the variation of the mean response
time across experiment runs and study the influence of experiment factors
such as the load level and function size. We focus on evaluating the steady-
state performance of performance tests. Hence, we discarded the data from
the first two minutes of the performance test runs (warm-up period) and
calculated the mean response time for the steady-state phase, that is, the
remaining 13 minutes of experiment data.

To evaluate the stability of the mean response time across runs, we first
exclude outliers within an experiment that fall above the .99 percentile.
Then, we calculate the coefficient of variation of the response time across
the ten repetitions, per workload level and function size. The coefficient of
variation is the ratio of the standard variation to the mean and is commonly
used as a metric of relative variability in performance experiments [, [35].
Similarly to RQ1, we test statistically significant differences using the Mann-
Whitney U test [47] and assess the effect size of the difference using the Cliff’s
Delta effect size [42].

Findings. We observe that the vast majority of experiments (160

17



256MB 512MB 1024MB
CollectPayment+ 3.3 | 2.6 | 3.6 | 1.5 3.0 | 3.0|25|3.8|2.0|55(3.2|32|41|28|34|34|23)|26

12

ConfirmBooking{ 3.4 | 4.0 {21 /34|20(15(133(21|15|19|17|16|3.0(29|21|18|17|15 11

CreateStripeCharge{ 3.6 | 2.6 |44 |18 |35|3.43.0(41|19|56|33|34]|40|3.0|33|3.7|21]|3.0
Get Loyalty{ 4.3 |45 |36(4.1|28|27|40|68|38|40|27|38|54|48|43|3.8|42]|1.2

10

Ingestloyalty{ 3.9 | 3.7 |26 |26 |22 1519|1616 |23|24|25|21(20|17|20/|18|1.7 9

10.3 /9.5 17.4 91

List Bookings

NotifyBooking{ 7.0 | 4.0 | 3.2 | 2.9 | 2.7 | 2.4 46|35 4427

6.9 54|54

Request Class

Process Booking 1 7.1 |55 |54

ReserveBooking -

Search Flights a8

5 Req/s
25 Req/s
50 Req/s -
5 Req/s
25 Req/s
50 Req/s
5 Req/s
25 Req/s
100 Req/s
w
500 Req/s - P

0
2

=3

Q
o
o
n
~N

100 Req/s
250 Req/s -
500 Req/s
100 Req/s
250 Req/s -
500 Rea/s

Figure 2: Coefficient of variation of the .99 mean across 10 repetitions per request class,
load level, and function size. We highlight in the heatmap coefficients above 5% of the

mearn.

out of 180) exhibits a coefficient of variation below 10% of the mean
response time. Figure 2/ shows a heat map of the coefficient of variation
observed in 10 repetitions of all experiments. With the exception of three
request classes, List Booking, Process Booking, and Search Flights, most of
the other experiments show a coefficient of variation of less than 5% of the
mean (125 out of the 132 experiments). The observed coefficient of varia-
tion is also in line with reported variation in other serverless benchmarks [§],
which was reported to be 5 to 10% when executing synthetic workloads in
the AWS infrastructure. This suggests that the studied serverless application
performance tests are more stable than most traditional performance tests of
cloud applications (IaaS). Cito and Leitner [35] reported that performance
variations of performance tests in cloud environments are consistently above
5%, reaching variations above 80% of the mean in several I/O-based work-
loads. The two classes with higher variability of the results, List Booking,
and Search Flights, both use an Amplify resolver to retrieve data from Dy-
namoDB without a lambda. Our findings indicate that this AWS-managed
resolver might suffer from a larger performance variability.

We observe improvement in the response time and result sta-
bility in scenarios with higher workloads. Figure 3| shows the response
time of the ConfirmBooking request class, in which we observe that as the
workload increases, the average response time decreases for all function sizes.

18



Function size = 256 MB  Function size = 512 MB Function size = 1024 MB
40 r g

%%?f | |

w
w
1

w
o
1

N
w
1
1
1

=

Response Time (ms)
N
o

é%*’-ﬁ- i

=
wv
1
1

;*=—__-_

=
o
1
1
1

5 25 50 100250500 5 25 50 100250500 5 25 50 100250500
Workload Workload Workload

Figure 3: Response time of ten repetitions of ConfirmBooking performance tests, per
workload level and function size.

5
S 151
®
©
2 T :
5 10 T z
e
C
(V]
(]
= 51
3
o . 1
5 25 50 100 250 500
Workload

Figure 4: Distribution of coefficients of variation across all request classes and function
size, per workload (reqs/s).

19



This is true across almost all experiments, where the response time observed
in the scenario with 500 requests per second is significantly faster than sce-
narios with only 5 requests per second (Mann-Whitney U p < 0.05), often
to large effect sizes (Cliff’s delta d > 0.474). Moreover, the stability of the
obtained average response time (across 10 repetitions) also improves slightly,
from 4.6% on average across all experiments with 5 reqs/s, to 3.3% on experi-
ments with 500 reqs/s (see Figure . Our findings suggest that the workload
in the studied serverless application showed an inverse relationship to mea-
sured performance, that is, the higher the workload we tested the faster was
the average response time, the opposite of what is expected in most typi-
cal systems (bare-metal, cloud environments). It is important to note that,
given the cost model of serverless infrastructure, performance tests with 500
requests per second cost 100 x more than tests with 5 requests per second.
Therefore, the small gain in stability is unlikely to justify the much higher
costs of running performance tests in practice.

While the response time improves on larger function sizes, the
stability of the tests is not affected significantly by the allocated
memory. We note in Figure [3| that the ConfirmBooking average response
time is considerably faster when the function size is 512 MB or larger. How-
ever, we do not observe any significant difference in the stability of the experi-
ments (coefficient of variation) across different function sizes (Mann-Whitney
U test p > 0.05). This means that the amount of memory allocated for the
function has an impact on its response time (expected), but exerts no signif-
icant influence on the stability of experiments.

5.8. RQ3: Does the performance of serverless applications change over time?

Motivation. RQ1 and RQ2 focus on the stability of performance tests
conducted within the same time frame. However, the opaque nature of the
underlying resource environments introduces an additional challenge: the
underlying resource environment may change without notice. This might
result in both short-term performance fluctuations (e.g., due to changing
load on the platform) or long-term performance changes (e.g., due to soft-
ware/hardware changes). Therefore, in this RQ, we conduct a longitudinal
study on the performance of our SUT, to investigate if we can detect short-
term performance fluctuations and long-term performance changes.

Approach. We analyze the results of our longitudinal study (described
in Section [4.2)), which consists of three measurement repetitions with 100

20



X CollectPayment Process Booking Search Flights X List Bookings X ReserveBooking

CreateStripeCharge Get Loyalty IngestLoyalty NotifyBooking ConfirmBooking
750 . «
. L " o PPN AR P
4 o e ittt i e Moo

500 " ot
i
§, 250
] x
S x
=
= 100
kel %
= x
3 50 : S
% WWM&W 0 £ Wwit e e,
w % S Y Wl 5 I g W W At S 0 |

25 e ;
x 0 CREES " s o i R - Mt ol

2020-08-20
2020-08-27
2020-09-03
2020-09-10
2020-09-18
2020-09-25
2020-10-03

2020-10-10
2020-10-24

2020-10-17
2020-10-31
2020-11-07
2020-11-14
2020-11-21
2020-11-28
2020-12-05
2020-12-12
2020-12-19
2020-12-27
2021-01-03
2021-01-10
2021-01-17
2021-01-24
2021-01-31
2021-02-07
2021-02-14
2021-02-21
2021-02-28
2021-03-07
2021-03-14
2021-03-21
2021-03-28
2021-04-04
2021-04-11
2021-04-18
2021-04-26
2021-05-03
2021-05-10
2021-05-17
2021-05-24
2021-05-31
2021-06-07
2021-06-14

O
Q
g
(0]

Figure 5: Mean response time for three daily performance measurements over a period of
ten months.

requests per second and 512 MB memory size every day for ten months.
First, to determine if there are any significant changes in the distribution of
the measurement results over time, we employ the change point detection
approach from Daly et al. [I0]. To reduce the sensibility to short-term fluc-
tuations, we use the median response time of the three daily measurements
and configure the approach with p = 0 and 100,000 permutations. Second,
upon visual inspection, it seemed that the variation between the three daily
measurement repetitions was less than the overall variation between measure-
ments. To investigate this, we conducted a Monte Carlo simulation that ran-
domly picks 100,000 pairs of measurements that were conducted on the same
day and 100,000 measurement pairs from different days. We calculated and
compared the average variation between the sample pairs from the same day
and from different days. Finally, to investigate if the observed performance
variation could be misinterpreted as a real performance change (regression),
we conducted a second Monte Carlo simulation. We randomly select two sets
of ten consecutive measurements that do not overlap and test for a signifi-
cant difference between the pairs using the Mann—-Whitney U test [47]. For
each detected significant difference, we calculate Cliff’s Delta [42] to quantify
the effect size. Similar to our first Monte Carlo simulation, we repeat this
selection and comparison 100,000 times. Further implementation details are

21



Table 4: Comparison of average performance variation between two measurements from
either the same day or different days based on a Monte Carlo simulation.

Request class Same-day Variation Overall Variation

ConfirmBooking 2.1% + 2.6% 2.8% + 3.0%
CreateStripeCharge 22% +21%  13.3% £ 11.0%
Get Loyalty 3.0% =+ 20.0% 7.0% + 22.0%
IngestLoyalty 1.6% + 1.6% 2.9% + 2.4%
List Bookings 7.0% =+ 59.3% 16.2% + 65.3%
NotifyBooking 2.3% + 8.5% 4.3% + 8.4%
Process Booking 3.5% £+ 16.9%  17.2% + 20.4%
ReserveBooking 2.4% + 3.2% 3.2% + 3.8%
CollectPayment 1.9% + 2.0% 8.3% + 6.1%

Search Flights

7.1% + 50.1%

13.2% + 49.6%

available in our replication packageﬂ

Findings. There were short-term performance fluctuations during
our longitudinal study, despite the fact that no changes were made
to the application. Figure [5| presents the average response time of each
API endpoint during the study periods. We can clearly observe fluctuations
in performance. For example, the response time of the API Process Booking
has demonstrated large fluctuation after October 2020. Table 4] compares
the variation of performance between measurements from the same day and
across different days (overall) using a Monte Carlo simulation. We find that
in all of the API endpoints, the average variation between two random mea-
surements is higher than the variation between measurements from the same
day. For example, Process Booking has an average variation of 17.2% when
considering all measurements, which is more than four times the average
variation between measurements from the same day (3.5%).

We detect long-term performance changes during the observa-
tion period. Figurel6] presents the detected long-term performance changes
in the different APIs, according to the change point detection. Although
some API endpoints have more change points than others, all of the API

Shttps://github.com/ServerlessLoadTesting/ReplicationPackage

22


https://github.com/ServerlessLoadTesting/ReplicationPackage

300

300

300

300

Sw CollectPayment Sw CreateStripeCharge
k=] E 600 | Lo B £ 6001 !
Iv]

§ g 500 1 1 1 % g 400 1

s 50 100 150 200 250 300 Wi 50 100 150 200 250
Day Day

Sw 150 Process Booking 5% Get Loyalty

] E l b 1 B Eo0 ! 1 [

v} 1 I 1 9] 1

9 %’ 100 [ SR | 1 2 g 80 1 I 1

k= 50 100 150 200 250 300 WS 50 100 150 200 250
Day Day

Sv Search Flights S List Bookings

SEx N : SEq o

3’ 40 [ | 3o

Qe Lt 1 Qg 30 1 1

ws 50 100 150 200 250 300 WS 50 100 150 200 250
Day Day

Sv IngestLoyalty Sv NotifyBooking

S E H S E30 H H

39> 1 3o 1 |

@ € 30 1 LE® 1 L

WS 50 100 150 200 250 300 WS 50 100 150 200 250
Day Day

Sv ReserveBooking Swa ConfirmBooking

5 E20 S E17{

3o | SR

o %’ 15 Lt A by e A Ay iynd At A ¢ g 154 4

(=] 50 100 150 200 250 300 WS 50 100 150 200 250

Day

Day

300

Figure 6: Detected change points for each workload class, note the different y-axis scales.

endpoints, except for ReserveBooking, have gone through at least one change
point (the change point in ConfirmBooking might also be a false positive, as
it is quite close to the experiment start). There exist as many as five change
points during the observation period for an API endpoint. The impact of
the performance change may be drastic. For example, the API endpoints
Search Flights and List Bookings have similar performance changes where
the response time is drastically reduced twice. On the other hand, the re-
sponse time of some API endpoints, for example, CollectPayment, increases
in each change point, leading to a potential unexpected negative impact on
the end-user experience. Finally, most of the change points for the different
API endpoints do not appear at the same time, which may further increase
the challenge of maintaining the performance of the serverless applications.

The short-term performance fluctuations and long-term perfor-
mance changes may have been considered as false performance re-
gressions. Table |5 shows the results of conducting the Mann-Whitney U
test and measuring Cliff’s delta between two groups of consecutive, non-
overlapping samples based on our Monte Carlo simulation. We find that for
four API endpoints, almost half of the comparisons have a statistically sig-
nificant performance difference, even though the serverless application itself
was identical throughout the observation period. On the other hand, most of
the differences have lower than medium effect sizes. In other words, the mag-

23



Table 5: Percentage of at least negligible, small, or medium differences according to Mann-
Whitney U test and Cliff’s delta based on Monte Carlo simulation.

Request class Negligible+ Small+ Medium+
ConfirmBooking 54.0%  17.4% 6.8%
CreateStripeCharge 11.0% 3.8% 1.7%
Get Loyalty 21.6% 71% 2.9%
IngestLoyalty 43.3%  14.0% 5.6%
List Bookings 19.2% 6.8% 3.1%
NotifyBooking 371%  11.9% 4.7%
Process Booking 14.0% 5.0% 2.3%
ReserveBooking 57.0%  18.5% 7.0%
CollectPayment 13.2% 4.4% 1.9%
Search Flights 24.3% 7.9% 3.3%

nitude of the differences may be small and negligible, such that the impact
on end users may not be drastic. However, there still exist cases whether
large effect sizes are observed. Practitioners may need to be aware of such
cases due to their large potential impact on end-user experience.

6. Discussion

According to Jiang et al. [25], performance tests consist of three stages:
(1) designing the test, (2) running the test, and (3) analyzing the test results.
Based on the findings from our case study, we identified multiple properties of
performance tests of serverless applications that practitioners should consider
in each of these stages, as shown in Figure [7]

6.1. Design Phase

During the design of a performance test, the key factors are the workload
(which types of requests in which order), the load intensity (the number of
requests), and the duration of the performance test.

6.1.1. Unintuitive performance scaling (D1).

One of the key selling points of serverless platforms is their ability to
seamlessly, and virtually infinitely scale with increasing traffic [I8]. There-
fore, the classical approach of running performance tests at increasing load

24



D1: Unintuitive E1: Short-term A1: Warm-up
performance performance period after
scaling fluctuations cold starts

> Performance Test Performance Test

) )

Performance Test >

Design Execution Analysis
D2: Load E2: Long-term A2: Cold starts
intensity to cost performance occur late
relationship changes in the test

Figure 7: Properties of serverless that influence the different performance test stages.

intensities, to see how much the performance deteriorates, becomes obsolete.
We find in our experiments that the performance still differs at different load
levels, however, and perhaps counterintuitively, the execution time decreases
with increasing load. This property impacts how to plan performance tests.
For example, a developer might run a performance test at 200 requests per
second and find that the performance satisfies the SLA; however when the
application is deployed and receives only 100 requests per second, it might
violate the SLA. Therefore, developers need to consider that the worst perfor-
mance is no longer observed at the highest load. Depending on the use case,
performance testing strategies could aim to: (a) quantify the expected per-
formance by aiming to match the production load level, (b) understand how
different load levels impact the performance by measuring a range of load
intensities, or (¢) aim to find the worst case performance with a search-based
approach.

6.1.2. Load intensity to cost relationship (D2).

Traditionally, the cost of a performance test is independent of the load
intensity and depends only on the number of deployed VMs and the duration
of the experiment. For a serverless application, this relationship is inverted
due to the pay-per-use pricing model of serverless. Due to this per-request
pricing, the costs of a performance test has a linear relationship to the total
number of requests in a performance test, for example, a performance test
with 50 requests per second costs ten times as much as a performance test
with 5 requests per second. This changes how developers should think about
the costs of a performance test. Additionally, increasing the load intensity
from five requests per second to 500 requests per second resulted in only a

25



minor increase in result stability in our case study. Therefore, running more
repetitions of a performance test at low load intensity instead of a single,
large test could result in more stable results at the same cost. However,
further experiments in this direction are required to determine how much
this increases the result stability.

6.2. Execution Phase

For the execution of a performance test, performance engineers need to
decide when and how the test is executed. The technical implementation
of a performance test is mostly unaffected by the switch to serverless ap-
plications, as most tooling for the performance testing of HT'TP APIs (e.g.,
for microservice applications) can be reused. However, we find that there
are two properties of serverless applications that influence the scheduling of
performance tests.

6.2.1. Short-term performance fluctuations (E1).

We find that the performance of serverless applications can suffer from
short-term (daily) performance variation. While performance variation has
also been observed for virtual machines [24, 35], we find that the variation
between measurements conducted on different days is larger than for mea-
surements conducted on the same day for serverless applications. Depending
on the goal of a performance test, this has different implications. If the goal is
to compare the performance of two alternatives (e.g., to answer the question
if the performance of an application changed between two commits), then
the measurements for both alternatives should be conducted on the same
day. On the other hand, if the goal of a performance test is to quantify the
performance of an application, the measurement repetitions should be spread
across multiple days as this will result in a more representative performance.

6.2.2. Long-term performance changes (E2).

We detect a number of long-term performance changes that caused the
performance of the application to permanently change in our case study, de-
spite no changes being made to the application itself. We hypothesize that
these performance changes are caused by updates to the software stack of
the serverless platform; however, most serverless services do not offer any
publicly available versioning that could be used to corroborate this. Unlike
the short-term fluctuations, this issue can not be combated by running a

26



larger number of measurement repetitions or by adopting robust measure-
ment strategies such as multiple randomized interleaved trials [1]. When
comparing two alternatives, they should be measured at the same time to
minimize the chance of a long-term performance change occurring between
the measurements, which is currently not necessarily the case, for example,
for performance regression testing. Quantifying the performance of a server-
less application is no longer a discrete task, but rather a continuous process,
as the performance of a serverless application can change over time.

6.3. Analysis Phase

In this phase, the monitoring data collected during the execution phase
is analyzed to answer questions related to the performance of the SUT. A
key aspect of this phase is the removal of the warm-up period to properly
quantify the steady-state performance.

6.3.1. Warm-up period after cold starts (A1).

The performance of a serverless application is generally separated into
cold starts, which include initialization overheads, and warm starts, which
are considered to have reached the steady-state phase and yield a more stable
performance. We find that a performance test can still have a warm-up
period even after excluding cold starts. A potential reason might be that,
for example, caches of the underlying hardware still need to be filled before
steady-state performance is reached. This indicates that in the analysis of
performance test results, the warm-up period still needs to be analyzed and
excluded. For our data, MSER-5, the current best practice to determine the
warm-up period [43, [75], was not applicable due to large outliers present in
the data, a well-documented flaw of MSER-5 [57]. Therefore, future research
should investigate suitable approaches for detecting the warm-up period of
serverless applications.

6.3.2. Cold starts occur late in the test (A2).

Another aspect about cold starts is that for a constant load, one could ex-
pect to find cold starts only during the warm-up period. In our experiments,
we found that while the vast majority of cold starts occur during the warm-
up period, some cold starts are scattered throughout the experiment. This
might be, for example, due to worker instances getting recycled [41]. While
these late cold starts did not significantly impact the mean execution time,
they might impact more tail-sensitive measures such as the 99 percentile.

27



Therefore, performance testers need to keep the possibility of late cold starts
in mind while analyzing performance testing results.

7. Threats to Validity

This section first introduces the limitations of our study and then dis-
cusses the threats to validity that arise from these limitations. We consider
the following to be the main limitations of this study:

L1 Single system under test. This study uses only a single system
under test, the serverless airline application.

L2 Single cloud platform. This study is limited to AWS and does not
consider any other cloud providers.

L3 Constant load. This study does not investigate the impact of varying
load patterns as the experiments all use constant load.

L4 Black-box view. As this study is conducted on a public cloud, it is
limited to the metrics exposed by the cloud provider.

In the following, we discuss the threats to the construct, internal, and exter-
nal validity that arise from these limitations [76]. Construct validity examines
the relation of the measurements to the proposed research questions. Inter-
nal validity examines the trustworthiness of the cause-and-effect relationship,
that is, the existence of alternative explanations for findings, and external
validity considers how well the results can be generalized.

7.1. Construct Validity

In our experiments, we measured only the response time and function
execution time; other metrics might show different effects. Out of the com-
monly used performance metrics, we did not consider CPU utilization and
throughput. However, measuring the throughput is unusual for serverless
applications due to their built-in scalability, and CPU utilization is currently
not exposed by AWS (Limitation L4)). Further, we limited our experiments
to performance tests with a constant load (Limitation L3|); performance
tests with varying load might behave differently. Constant load is commonly
used for performance tests, whereas varying load is more commonly used for
load and stress testing. However, further research is required to understand
the effects of performance tests under varying load.

28



7.2. Internal Validity

As the MSER-5 method for determining the duration of the warm-up
period was not applicable to our data, we used a custom heuristic. It might
be possible that this heuristic does not appropriately capture the length
of the warm-up period. Based on a visual inspection of a large subset of
the experiments, we found that the heuristic seems to capture the warm-
up period well. Our replication package can be used to repeat this visual
inspection.

Another threat to the validity of our results is that performance experi-
ments in the cloud can suffer from a high degree of uncertainty. To mitigate
this threat, we followed recommended practices for conducting and reporting
cloud experiments [54] and used randomized multiple interleaved trials [I]
to reduce measurement variability. Further, we provide a fully automated
measurement harness that enables the replication of our measurements. For
the longitudinal study, we perform three measurement repetitions each day
at the same time to mitigate measurement variability, but we do not attempt
to further control for performance variability as the study was intended to
investigate the variability.

7.3. Ezternal Validity

Our case study used only a single SUT (Limitation L1J), which might
limit the generalizability of our results. However, the serverless airline book-
ing application is larger (uses more functions) than the average serverless
application [I8|, 64], so independent parts of the application could also be
considered multiple applications. Further, most of the properties we measure
are more dependent on the underlying cloud platform than the application
itself. However, it is possible that a different application, such as a scientific
computing application with long-running functions might behave differently.
While our experiments were conducted on one application only, our method-
ology is applicable to any application. Another threat is that we conduct
measurements on a single cloud platform (Limitation L2]). Although AWS
is by far the most popular cloud provider for serverless applications, with
55%-70% of serverless applications running on AWS [18] [67, [T1], further re-
search is required to determine if our findings are transferable between cloud
providers.

29



8. Replication Package

Performance measurements of public cloud environments are per defini-
tion only a snapshot of the performance at the time of measurement [35] [1]
24]. The performance properties can change whenever the cloud provider
upgrades its hardware, switches to newer versions of the underlying oper-
ating system or virtualization technology, introduces new optimizations or
features for the offered services, or changes any number of configuration pa-
rameters [14, 24]. To increase our results’ longevity, we provide a replication
package that allows other researchers to replicate our findings and enables
tracking if and how the reported performance properties evolve over time.
This is in line with the recently proposed methodological principles for the
reproducible performance evaluation of public clouds by Papadopoulos et
al. [54].

Our replication packagelﬂ consists of two parts: (a) the experiment har-
ness used to run the performance measurements and (b) the data and analysis
scripts used in the presented analysis. We provide the experiment harness as
a Docker container that replicates all measurements conducted in this study
with a single CLI command from any Docker-capable machine. To simplify
the reuse of this harness in other studies, experiments can be specified as
JSON files, including measurement duration, load intensity, load pattern,
measurement repetitions, and system configuration. The second part of our
replication package is a CodeOcean capsule containing the collected mea-
surement data and the scripts for the analysis presented in this paper. The
CodeOcean capsule enables a one-click replication of our analysis either on
the measurement data we collected or on new measurement data collected
using our measurement harness.

9. Conclusion

Serverless applications delegate resource management tasks, such as de-
ployment, resource allocation, or auto-scaling, to the cloud provider |29 [16],
who bills users on a pay-per-use basis [0, [71]. A common and powerful
approach to manage system performance is the regular execution of perfor-
mance tests; however, performance tests require that an identical resource
environment is used for all tests, which cannot be guaranteed for a serverless

“https://github.com/ServerlessLoadTesting/ReplicationPackage

30


https://github.com/ServerlessLoadTesting/ReplicationPackage

application [14]. Therefore, we conducted an exploratory case study on the
stability of performance tests of serverless applications, including a longitu-
dinal study of daily measurements for ten months.

We find that in our case study there are serverless-specific changes and
pitfalls to all performance test phases: design, execution, and analysis. In
the design phase, the load intensity of the test directly correlates to cost, and
reducing load intensity can decrease performance. In the execution phase,
daily performance fluctuations and long-term performance changes impact
the decision when performance tests should be scheduled. In the analysis
phase, developers need to consider that there is still a warm-up period after
removing all cold starts and that cold starts can occur late in a performance
test under constant load.

Acknowledgments

The work was conducted by the SPEC RG DevOps Performance Working
Group.E] This work was supported by the AWS Cloud Credits for Research
program. The authors would like to thank Heitor Lessa for his support
with the serverless airline booking application, as well as David Daly and
Alexander Costas for their input on the change point detection.

References

[1] A. Abedi and T. Brecht. Conducting repeatable experiments in highly
variable cloud computing environments. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering,
ICPE 17, page 287292, New York, NY, USA, 2017. Association for
Computing Machinery.

[2] A. Agache, M. Brooker, A. lIordache, A. Liguori, R. Neugebauer, P. Pi-
wonka, and D.-M. Popa. Firecracker: Lightweight virtualization for
serverless applications. In 17th USENIX symposium on networked sys-
tems design and implementation (NSDI’20), pages 419434, 2020.

[3] M. Al-Ameen and J. Spillner. Systematic and open exploration of faas
and serverless computing research. In Proceedings of the European Sym-

Shttps://research.spec.org/devopswg

31


https://research.spec.org/devopswg

[10]

[11]

posium on Serverless Computing and Applications (ESSCA ’18), volume
2330, pages 30-35, 2018.

M. M. Arif, W. Shang, and E. Shihab. Empirical study on the dis-
crepancy between performance testing results from virtual and physical
environments. Empir. Softw. Eng., 23(3):1490-1518, 2018.

E. Asyabi, M. Sharifi, and A. Bestavros. ppxen: A hypervisor CPU
scheduler for mitigating performance variability in virtualized clouds.
Future Gener. Comput. Syst., 83:75-84, 2018.

[. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, et al. Serverless
computing: Current trends and open problems. In Research Advances
in Cloud Computing, pages 1-20. Springer, 2017.

D. Boutcher and A. Chandra. Does virtualization make disk scheduling
passé? ACM SIGOPS Oper. Syst. Rev., 44(1):20-24, 2010.

R. Cordingly, W. Shu, and W. J. Lloyd. Predicting performance and
cost of serverless computing functions with SAAF. In 2020 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 640-649. IEEE, 2020.

D. E. Costa, C.-P. Bezemer, P. Leitner, and A. Andrzejak. What’s
wrong with my benchmark results? Studying bad practices in JMH
benchmarks. IEEFE Transactions on Software Engineering, pages 1-1,
2019.

D. Daly, W. Brown, H. Ingo, J. O’Leary, and D. Bradford. The use
of change point detection to identify software performance regressions
in a continuous integration system. In Proceedings of the ACM/SPEC
International Conference on Performance Engineering, ICPE 20, page
67-75, New York, NY, USA, 2020. Association for Computing Machin-
ery.

J. Daly. Serverless community study. https://github.com/
jeremydaly/serverless—community-survey-2020, 2020.

32


https://github.com/jeremydaly/serverless-community-survey-2020
https://github.com/jeremydaly/serverless-community-survey-2020

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

Datadog. The state of serverless. https://www.datadoghq.com/
state-of-serverless/, 2020.

K. Djemame, M. Parker, and D. Datsev. Open-source serverless archi-
tectures: an evaluation of apache openwhisk. In 2020 IEEE/ACM 15th
International Conference on Utility and Cloud Computing (UCC), pages
329-335. IEEE, 2020.

S. Eismann, C.-P. Bezemer, W. Shang, D. Okanovic, and A. van Hoorn.
Microservices: A Performance Tester’s Dream or Nightmare? In Pro-
ceedings of the 2020 ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE), ICPE’20, pages 138—-149, April 2020.

S. Eismann, J. Grohmann, E. van Eyk, N. Herbst, and S. Kounev.
Predicting the costs of serverless workflows. In Proceedings of the
2020 ACM/SPEC International Conference on Performance Engineer-
ing (ICPE ’20), page 265-276, New York, NY, USA, April 2020. Asso-
ciation for Computing Machinery (ACM).

S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. Abad, and A. Iosup. A review of serverless use cases and
their characteristics. Technical report, SPEC RG, June 2020.

S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev.
Sizeless: Predicting the optimal size of serverless functions. In Proceed-
ings of the 22nd International MIDDLEWARE Conference, 2021.

S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. Abad, and A. Tosup. Serverless applications: Why, when,
and how? IEEFE Software, 38(1):32-39, 2021.

S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. Abad, and A. Iosup. The state of serverless applications:
Collection, characterization, and community consensus. Transactions
on Software Engineering, 2021.

T. Elgamal. Costless: Optimizing cost of serverless computing through
function fusion and placement. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 300-312. IEEE, 2018.

33


https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/

[21]

[22]

23]

[29]

K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski. Perfor-
mance evaluation of heterogeneous cloud functions. Concurrency and
Computation: Practice and Experience, 30(23):e4792, 2018.

K. Hoad, S. Robinson, and R. Davies. Automating warm-up length
estimation. Journal of the Operational Research Society, 61(9):1389-
1403, 2010.

N. Huber, M. von Quast, M. Hauck, and S. Kounev. Evaluating and
modeling virtualization performance overhead for cloud environments.
In CLOSER 2011 - Proceedings of the 1st International Conference on
Cloud Computing and Services Science, Noordwijkerhout, Netherlands,
7-9 May, 2011, pages 563-573. SciTePress, 2011.

A. Tosup, N. Yigitbasi, and D. Epema. On the performance variability of
production cloud services. In 2011 11th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing, pages 104-113, 2011.

Z. M. Jiang and A. E. Hassan. A survey on load testing of large-scale
software systems. IEEE Trans. Software Eng., 41(11):1091-1118, 2015.

M. Kalita and T. Bezboruah. Investigation on performance testing and
evaluation of PReWebD: a .NET technique for implementing web appli-
cation. IET Softw., 5(4):357-365, 2011.

J. Kim and K. Lee. Functionbench: A suite of workloads for serverless
cloud function service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD), pages 502-504, 2019. doi: 10.1109/
CLOUD.2019.00091.

Y. Koh, R. C. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. An
analysis of performance interference effects in virtual environments. In
Proceedings of the 2007 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS '07), pages 200-209. IEEE
Computer Society, 2007.

S. Kounev, C. Abad, I. T. Foster, N. Herbst, A. Iosup, S. Al-Kiswany,
A. A-E. Hassan, B. Balis, A. Bauer, A. B. Bondi, K. Chard, R. L.
Chard, R. Chatley, A. A. Chien, A. J. J. Davis, J. Donkervliet,
S. Eismann, E. Elmroth, N. Ferrier, H.-A. Jacobsen, P. Jamshidi,

34



[32]

[33]

[34]

[35]

G. Kousiouris, P. Leitner, P. G. Lopez, M. Maggio, M. Malawski, B. Met-
zler, V. Muthusamy, A. V. Papadopoulos, P. Patros, G. Pierre, O. F.
Rana, R. P. Ricci, J. Scheuner, M. Sedaghat, M. Shahrad, P. Shenoy,
J. Spillner, D. Taibi, D. Thain, A. Trivedi, A. Uta, V. van Beek, E. van
Eyk, A. van Hoorn, S. Vasani, F. Wamser, G. Wirtz, and V. Yussupov.
Toward a Definition for Serverless Computing. In C. Abad, I. T. Foster,
N. Herbst, and A. Iosup, editors, Serverless Computing (Dagstuhl Sem-
inar 21201), volume 11 (5), chapter Chapter 5.1, page TBA. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 2021.
doi: 10.4230/DagRep.11.5.1.

S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kilpatrick.
10 performance prediction in consolidated virtualized environments. In
ICPE’11 - Second Joint WOSP/SIPEW International Conference on
Performance Engineering (ICPE ’11), pages 295-306. ACM, 2011.

C. Laaber and P. Leitner. An evaluation of open-source software mi-
crobenchmark suites for continuous performance assessment. In Proceed-
ings of the 15th International Conference on Mining Software Reposito-
ries, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, pages 119-130.
ACM, 2018.

C. Laaber, J. Scheuner, and P. Leitner. Software microbenchmarking
in the cloud. How bad is it really?  Empirical Software Engineering
(EMSE), 24(4):2469-2508, April 2019.

H. Lee, K. Satyam, and G. Fox. Evaluation of production serverless
computing environments. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD), pages 442-450, 2018.

P. Leitner and C.-P. Bezemer. An exploratory study of the state of
practice of performance testing in Java-based open source projects. In
Proceedings of the 8th ACM/SPEC on International Conference on Per-
formance Engineering, ICPE 17, page 373-384, New York, NY, USA,
2017. Association for Computing Machinery.

P. Leitner and J. Cito. Patterns in the chaos—a study of performance
variation and predictability in public laaS clouds. ACM Trans. Internet
Technol., 16(3), Apr. 2016.

35



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

P. Leitner, E. Wittern, J. Spillner, and W. Hummer. A mixed-method
empirical study of function-as-a-service software development in indus-
trial practice. Journal of Systems and Software, 149:340-359, 2019.

H. Lessa. Production-grade full-stack apps with AWS Amplify. https:
//www . youtube . com/watch?v=DcrtvgaVdCU, 2019.

E. Levinson. Serverless community survey 2020. https://www.nuweba.
com/blog/serverless-community-survey-2020-results, 2020.

L. Liao, J. Chen, H. Li, Y. Zeng, W. Shang, J. Guo, C. Sporea, A. Toma,
and S. Sajedi. Using black-box performance models to detect perfor-
mance regressions under varying workloads: an empirical study. Empir.
Softw. Eng., 25(5):4130-4160, 2020.

C. Lin and H. Khazaei. Modeling and optimization of performance
and cost of serverless applications. IEFE Transactions on Parallel and
Distributed Systems, 32(3):615-632, 2020.

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. Server-
less computing: An investigation of factors influencing microservice per-
formance. In 2018 IEEE International Conference on Cloud Engineering
(IC2E), pages 159-169. IEEE, 2018.

J. D. Long, D. Feng, and N. Cliff. Ordinal Analysis of Behavioral Data.
John Wiley & Sons, Inc., 2003.

P. S. Mahajan and R. G. Ingalls. Evaluation of methods used to de-
tect warm-up period in steady state simulation. In Proceedings of the
36th conference on Winter simulation (WSC ‘04), pages 663—671. IEEE
Computer Society, 2004.

N. Mahmoudi and H. Khazaei. Performance modeling of serverless com-
puting platforms. IEEE Transactions on Cloud Computing, 2020.

P. Maissen, P. Felber, P. Kropf, and V. Schiavoni. Faasdom: A bench-
mark suite for serverless computing. In Proceedings of the 14th ACM In-
ternational Conference on Distributed and Event-based Systems (DEBS
'20), pages 73-84, 2020.

36


https://www.youtube.com/watch?v=DcrtvgaVdCU
https://www.youtube.com/watch?v=DcrtvgaVdCU
https://www.nuweba.com/blog/serverless-community-survey-2020-results
https://www.nuweba.com/blog/serverless-community-survey-2020-results

[46]

[47]

[48]

[52]

[53]

H. Malik, H. Hemmati, and A. E. Hassan. Automatic detection of per-
formance deviations in the load testing of large scale systems. In Pro-

ceedings of the 35th International Conference on Software Engineering
(ICSE ’13), pages 1012-1021. IEEE Computer Society, 2013.

H. B. Mann and D. R. Whitney. On a test of whether one of two random
variables is stochastically larger than the other. Ann. Math. Statist., 18
(1):50-60, 03 1947.

R. K. Mansharamani, A. Khanapurkar, B. Mathew, and R. Subra-
manyan. Performance testing: Far from steady state. In Workshop
Proceedings of the 34th Annual IEEE International Computer Software
and Applications Conference, COMPSAC Workshops 2010, pages 341—
346. IEEE Computer Society, 2010.

G. McGrath and P. R. Brenner. Serverless computing: Design, imple-
mentation, and performance. In 2017 IEEFE 37th International Con-
ference on Distributed Computing Systems Workshops (ICDCSW ’17),
pages 405-410, 2017.

A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in the xen virtual
machine environment. In Proceedings of the 1st International Confer-
ence on Virtual Execution Environments (VEE "05), pages 13-23. ACM,
2005.

M. A. S. Netto, S. Menon, H. V. Vieira, L. T. Costa, F. M. de Oliveira,
R. S. Saad, and A. F. Zorzo. Evaluating load generation in virtualized
environments for software performance testing. In Proceedings of the
25th IEEE International Symposium on Parallel and Distributed Pro-
cessing (IPDPS 2011), Workshop Proceedings, pages 993-1000. IEEE,
2011.

T. H. Nguyen, M. Nagappan, A. E. Hassan, M. Nasser, and P. Flora.
An industrial case study of automatically identifying performance

regression-causes. In Proceedings of the 11th Working Conference on
Mining Software Repositories (MSR ’14), pages 232-241, 2014.

T. H. D. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. N. Nasser,
and P. Flora. Automated detection of performance regressions using

37



statistical process control techniques. In Third Joint WOSP/SIPEW
International Conference on Performance Engineering (ICPE’12), pages
299-310. ACM, 2012.

A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski,
A. Ali-eldin, C. Abad, J. N. Amaral, P. Tuma, and A. Iosup. Method-
ological principles for reproducible performance evaluation in cloud com-
puting. IEEE Transactions on Software Engineering, pages 1-1, 2019.

B. A. Pozin and 1. V. Galakhov. Models in performance testing. Pro-
gram. Comput. Softw., 37(1):15-25, 2011.

J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine.
Exploring methods for evaluating group differences on the NSSE and
other surveys: Are the t-test and Cohen’s d indices the most appropriate
choices. In Annual meeting of the Southern Association for Institutional
Research, pages 1-51, 2006.

B. Sandik¢i and I. Sabuncuoglu. Analysis of the behavior of the transient
period in non-terminating simulations. European Journal of Operational
Research, 173(1):252-267, 2006.

J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime measurements
in the cloud: Observing, analyzing, and reducing variance. Proc. VLDB
Endow., 3(1-2):460-471, Sept. 2010.

J. Scheuner and P. Leitner. Function-as-a-service performance evalua-
tion: A multivocal literature review. Journal of Systems and Software

(JSS), 2020.

A. W. Services. Build on serverless - architect an air-
line  booking  application. https://pages.awscloud.com/
GLOBAL-devstrategy-OE-BuildUnServerless-2019-reg-event.
html, 2019.

A. W. Services. Aws amplify - fastest, easiest way to build mobile and
web apps that scale. https://aws.amazon.com/amplify/, 2021.

A. W. Services. Aws cloud formation - speed up cloud provisioning with
infrastructure as code. https://aws.amazon.com/cloudformation/,
2021.

38


https://pages.awscloud.com/GLOBAL-devstrategy-OE-BuildOnServerless-2019-reg-event.html
https://pages.awscloud.com/GLOBAL-devstrategy-OE-BuildOnServerless-2019-reg-event.html
https://pages.awscloud.com/GLOBAL-devstrategy-OE-BuildOnServerless-2019-reg-event.html
https://aws.amazon.com/amplify/
https://aws.amazon.com/cloudformation/

[63]

[64]

A. W. Services. Aws serverless application model -build serverless
applications in simple and clean syntax. https://aws.amazon.com/
serverless/sam/, 2021.

M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini. Serverless
in the wild: Characterizing and optimizing the serverless workload at
a large cloud provider. In 2020 USENIX Annual Technical Conference
(USENIXATC 20), pages 205218, 2020.

W. Shang, A. E. Hassan, M. N. Nasser, and P. Flora. Automated de-
tection of performance regressions using regression models on clustered
performance counters. In Proceedings of the 6th ACM/SPEC Interna-

tional Conference on Performance Engineering (ICPE °15), pages 15—
26. ACM, 2015.

C. U. Smith and L. G. Williams. New software performance antipatterns:
More ways to shoot yourself in the foot. In Int. CMG Conference, pages
667-674. Citeseer, 2002.

T. N. Stack. Guide to serverless technologies. https://thenewstack.
io/ebooks/serverless/guide-to-serverless-technologies/,
2018.

M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. N. Nasser,
and P. Flora. Leveraging performance counters and execution logs to
diagnose memory-related performance issues. In Proceedings of the 2013
IEEE International Conference on Software Maintenance (ICSM ’13),
pages 110-119. IEEE Computer Society, 2013.

P. Vahidinia, B. Farahani, and F. S. Aliee. Cold start in serverless
computing: Current trends and mitigation strategies. In Proceedings

of the 2020 International Conference on Omni-layer Intelligent Systems
(COINS ’20), pages 1-7. IEEE, 2020.

E. van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann. A
SPEC RG cloud group’s vision on the performance challenges of FaaS
cloud architectures. In Companion of the 2018 ACM/SPEC Interna-

tional Conference on Performance Engineering (ICPE ’18), page 21-24,
New York, NY, USA, 2018. ACM.

39


https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/
https://thenewstack.io/ebooks/serverless/guide-to-serverless-technologies/
https://thenewstack.io/ebooks/serverless/guide-to-serverless-technologies/

[71]

[72]

[74]

[75]

E. van Eyk, J. Grohmann, S. Eismann, A. Bauer, L. Versluis, L. Toader,
N. Schmitt, N. Herbst, C. L. Abad, and A. Iosup. The SPEC-RG refer-
ence architecture for FaaS: From microservices and containers to server-
less platforms. IEEE Internet Computing, 23(6):7-18, nov 2019.

J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann,
and S. Kounev. TeaStore: A Micro-Service Reference Application for
Benchmarking, Modeling and Resource Management Research. In Pro-
ceedings of the 26th IEEE International Symposium on the Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems,
MASCOTS 18, page 223-236, September 2018.

L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. Peeking behind
the curtains of serverless platforms. In 2018 USENIX Annual Technical
Conference (USENIXATC ’18), pages 133-146, 2018.

E. J. Weyuker and F. I. Vokolos. Experience with performance testing
of software systems: Issues, an approach, and case study. IFEFE Trans.
Software Eng., 26(12):1147-1156, 2000.

K. White, M. Cobb, and S. Spratt. A comparison of five steady-state
truncation heuristics for simulation. In 2000 Winter Simulation Confer-
ence Proceedings (Cat. No.0OCH37165), volume 1, pages 755-760 vol.1,
2000.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, and B. Regnell. Ez-
perimentation in Software Engineering. Springer, 2012.

T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and
H. Chen. Characterizing serverless platforms with serverlessbench. In
Proceedings of the 11th ACM Symposium on Cloud Computing (SoCC
'20), pages 30—44, 2020.

40



	Introduction
	Background
	Serverless Applications
	Performance Testing

	Related Work
	Performance Evaluation of Serverless Platforms
	Performance Variability of Virtual Machines

	Case Study Design
	Serverless Airline Booking (SAB)
	Experiment Setup

	Case Study Results
	RQ1: How do cold starts influence the warm-up period and stability of serverless performance tests?
	RQ2: How stable are the performance test results of a serverless ap-plication deployed on common serverless platforms?
	RQ3: Does the performance of serverless applications change over time?

	Discussion
	Design Phase
	Unintuitive performance scaling (D1).
	Load intensity to cost relationship (D2).

	Execution Phase
	Short-term performance fluctuations (E1).
	Long-term performance changes (E2).

	Analysis Phase
	Warm-up period after cold starts (A1).
	Cold starts occur late in the test (A2).


	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Replication Package
	Conclusion

