
Noname manuscript No.
(will be inserted by the editor)

Analyzing Techniques for Duplicate Question
Detection on Q&A Websites for Game Developers

Arthur Kamienski · Abram Hindle ·
Cor-Paul Bezemer

Received: date / Accepted: date

Abstract Game development is currently the largest industry in the enter-
tainment segment and has a high demand for skilled game developers that can
produce high-quality games. To satiate this demand, game developers need
resources that can provide them with the knowledge they need to learn and
improve their skills. Question and Answer (Q&A) websites are one of such
resources that provide a valuable source of knowledge about game develop-
ment practices. However, the presence of duplicate questions on Q&A websites
hinders their ability to effectively provide information for their users. While
several researchers created and analyzed techniques for duplicate question de-
tection on websites such as Stack Overflow, so far no studies have explored
how well those techniques work on Q&A websites for game development. With
that in mind, in this paper we analyze how we can use pre-trained and unsu-
pervised techniques to detect duplicate questions on Q&A websites focused on
game development using data extracted from the Game Development Stack
Exchange and Stack Overflow. We also explore how we can leverage a small
set of labelled data to improve the performance of those techniques. The pre-
trained technique based on MPNet achieved the highest results in identifying
duplicate questions about game development, and we could achieve a better
performance when combining multiple unsupervised techniques into a single
supervised model. Furthermore, the supervised models could identify dupli-
cate questions on websites different from those they were trained on with little
to no decrease in performance. Our results lay the groundwork for building
better duplicate question detection systems in Q&A websites for game devel-
opers and ultimately providing game developers with a more effective Q&A
community.

Keywords Q&A communities · Game development

Arthur Kamienski · Abram Hindle · Cor-Paul Bezemer
University of Alberta
Edmonton, AB, Canada
E-mail: {kamiensk,hindle1,bezemer}@ualberta.ca

2 Arthur Kamienski et al.

1 Introduction

The video game industry is currently the largest entertainment industry in the
world, having accumulated almost 180 billion dollars in revenue in 2020 and
surpassing global movie and North American sports industries [69]. Behind all
of the games the industry produces, there is a large number of game devel-
opers that help conceive, create, and build each of them. A strong growth is
still expected for the future of the video game industry and the game devel-
opment community needs to be prepared to supply skilled workers to satiate
this demand.

Several online and offline resources seek to teach game development skills to
aspiring developers, thereby being an important asset to train new developers.
An example of such resources is Question and Answer (Q&A) websites, which
are popular choices for knowledge sharing among game developers. Some of
the largest Q&A websites for game development, such as Unity Answers1,
the Unreal Engine 4 (UE4) AnswerHub2, and the Game Development Stack
Exchange3, host hundreds of thousands of discussions about many aspects of
game development and are a valuable source of knowledge for those seeking
to learn about those topics.

However, maintaining a healthy and active Q&A community that can effec-
tively help its members is a hard task and comes with several challenges. One
of these challenges is dealing with the large number of duplicate questions
posted by users [81], which can negatively impact the websites. For exam-
ple, users who are willing to answers questions have the additional burden of
manually filtering through and marking questions which are duplicate, while
question askers may experience increased wait times to get their responses.

Duplicate questions can be even more hurtful for Q&A websites for game
development. According to our prior work, the four largest websites that dis-
cuss game development topics have been in decline over the last few years [25]
due to factors such as low user interaction and a decrease in the number of
answered and resolved questions over time. As answering duplicate questions
requires unnecessary effort from answerers, and may cause a delay in getting an
answer to a question, it is important to identify such questions so that they can
be dealt with appropriately [81]. Additionally, detecting duplicate questions is
a hard task for websites such as Unity Answers and the UE4 AnswerHub, as
they do not provide users with a feature of manually tagging duplicate ques-
tions. As a consequence, these Q&A websites and their moderators have to
dedicate many resources to reducing the effects of this phenomenon.

With that in mind, several researchers have proposed methods to auto-
matically identify duplicate questions, which reduce the effort of manually
identifying such questions and can help prevent the posting of new dupli-
cates [2, 58, 65, 66, 76, 77, 81]. While researchers have put a lot of effort into

1 https://answers.unity.com, accessed September 6th, 2021.
2 https://answers.unrealengine.com, accessed September 6th, 2021.
3 https://gamedev.stackexchange.com, accessed September 6th, 2021.

Duplicate question detection on Q&A websites for game development 3

identifying duplicates on large and popular Q&A websites such as Quora4

and Stack Overflow, little is known about how duplicate question detection
techniques adapt to the context of game development.

Previous work has shown that the performance of duplicate detection tech-
niques in Stack Overflow can vary according to the programming language
being discussed [2, 65, 66, 76, 77]. Similarly, the performance of these tech-
niques may be affected by the specific characteristics of different communi-
ties or different question topics such as game development. Aside from the
different programming languages and technologies, Q&A websites for game
development also discuss topics that are specific to the game development do-
main and are not related to software engineering. For example, our previous
study [25] showed that game developers discuss topics such as game design,
sound, physics, and camera positioning, which do not necessarily involve pro-
gramming. While some of the knowledge learned in other Q&A websites may
transfer well to the game development context, no other studies have analyzed
how the techniques perform on game development Q&A websites, either when
trained on their own data, or on the data from other domains. Moreover, prior
research [63] has shown that Natural Language Processing techniques have
difficulties when performing sentiment analysis on game-related text, which
supports the need for investigating how they perform in other tasks involving
game-related data.

Identifying duplicate questions on Q&A websites for game development is
an arduous task, as sources of labelled data are scarce and developing custom-
tailored techniques from scratch can be very computationally expensive. Fur-
thermore, it is very hard to reuse previously proposed techniques developed for
the software engineering domain (e.g., Stack Overflow), as almost no studies
provide resources for implementing and reusing their proposed approaches.

Therefore, in this paper, we analyze how existing pre-trained and unsuper-
vised techniques can be used to detect duplicate game development questions
and provide a viable approach for Q&A websites that do not have a large num-
ber of labelled duplicate questions. We also introduce new techniques which
have not been previously used for the task of detecting duplicate questions in
the software engineering domain. We evaluate the performance of those tech-
niques using labelled game development data from the Stack Exchange data
dump. We also use the labelled data to train supervised models and evalu-
ate their performance at detecting duplicate questions in different datasets,
including the ones that were not used for training them. More specifically, we
explore the following research questions (RQs):

- RQ1. What is the performance of unsupervised and pre-
trained techniques for duplicate question detection on game de-
velopment Q&A data?

There are several techniques for measuring the similarity between two
documents that do not rely on a labelled set of data. These techniques
are valuable for websites that do not offer a feature for tagging duplicate

4 https://www.quora.com, accessed September 6th, 2021.

4 Arthur Kamienski et al.

questions, thus not having a source of data for training supervised models.
In this research question, we test and compare seven different techniques
to evaluate how they perform on the task of identifying duplicate ques-
tions about game development. We chose techniques with varying levels
of complexity and computational cost, as a way providing websites with
different options to choose from depending on their needs and resources.
We find that computing the similarity between all question elements (i.e.,
title, body, tags, and answers) using a model based on MPNet [59] provides
the best results for the task.

- RQ2. How can we leverage labelled data to improve the per-
formance of unsupervised techniques?

Despite being relatively small, the set of labelled duplicate questions
we acquired from the studied websites can still prove useful for improving
the results we obtained in RQ1. Furthermore, the techniques we explored
in RQ1 use different methods for characterizing duplicate questions, and
aggregating them into a single metric may help us achieve even higher
performance. In this question, we use the similarity scores obtained by the
unsupervised techniques and the set of labelled data to build a supervised
model to compare questions and provide a new similarity score. Using this
model, we could almost double the recall-rate@k score of the best technique
we found in RQ1 for game development questions on Stack Overflow. We
also found that we can use the supervised models for classifying duplicate
questions on different websites with little to no decrease in performance.

The answers to these questions can provide important knowledge regarding
the task of identifying duplicate questions on Q&A websites for game develop-
ers. By analyzing how to use existing unsupervised and pre-trained techniques
and how to leverage labelled data to aid in this task, we lay the groundwork
for Q&A websites with low resources (such as those focused on game devel-
opment) and future researchers to build systems that can detect duplicate
questions more reliably. Our main contributions are:

– We explore and compare seven unsupervised and pre-trained techniques
for duplicate question detection of ranging complexities, laying the ground-
work for the development of unsupervised duplicate detection systems for
Q&A websites for game developers that have no or a small number of
identified duplicate questions;

– We show that using answers can improve the performance of the studied
techniques;

– We show that a small set of labelled data can be used for improving the
performance of duplicate detection systems;

– We show that supervised models can be used for detecting duplicate ques-
tion on websites other than the ones in which they were trained with little
to no decrease in performance;

– We provide recommendations for developing systems for duplicate question
detection, such as the best approaches for choosing candidate question

Duplicate question detection on Q&A websites for game development 5

pairs prior to training and evaluating supervised models, and outlining the
common pitfalls that can occur when designing those systems;

– We provide a replication package containing all data and techniques used in
this paper, allowing researchers to use, reproduce, and evaluate our results
in future studies.

Paper outline: The remainder of this paper is organized as follows: Section 2
discusses background and related work. Section 3 describes our methodology
and we present our findings in Section 4. In Section 5 we discuss the matter
of comparing our methodology to those of other studies, and in Section 6 we
discuss the implications of our findings. Section 7 presents the threats to the
validity of our study. Finally, Section 8 concludes the paper.

2 Background and related work

In this section we provide an overview of some of the concepts discussed in
this paper and of other related work.

2.1 Q&A websites

Question and Answer (Q&A) websites are places of knowledge sharing and
community interaction. In those websites, users can ask their peers questions
about their specific problems, or answer questions asked by others. Using those
posts, community members can share information among themselves and pro-
vide a more approachable, personal and customized experience to those who
need it. These websites, perhaps due to the faster and easier way with which
they allow users to acquire information, have become some of the most popular
websites on the internet, receiving millions of accesses and posts each month.

Some Q&A websites cover a broad range of topics (e.g., Quora), while
others cater to specific communities of users that share similar interests. Cur-
rently, there are Q&A websites covering a range of topics, from cooking5 and
photography6 to academic research7. The large amounts of data generated by
these websites are a valuable asset to understanding how users discuss these
topics, share knowledge, and interact among themselves.

Software developers have become specially fond of Q&A websites, with
many websites focusing on specific aspects of technology and software develop-
ment. Stack Overflow, the most popular of these websites aimed at developers,
currently holds millions of posts regarding varied topics about programming
and technology, receiving 100 million monthly visitors and ranking among the
50 most popular websites in the world [37].

Many researchers have previously studied Stack Overflow and its many
aspects [3]. For example, Barua et al. [4] have analyzed the topics discussed

5 https://cooking.stackexchange.com/, accessed September 6th, 2021.
6 https://photo.stackexchange.com/, accessed September 6th, 2021.
7 https://www.researchgate.net/topics, accessed September 6th, 2021.

6 Arthur Kamienski et al.

by developers, while Wu et al. [71] have explored how developers utilize the
code discussed in it, and Bazelli et al. [5] have explored the personality traits
of Stack Overflow users.

Researchers have also analyzed Q&A websites focused on discussing varied
topics, such as health [19] and social [14] Q&A websites. Many of these studies
searched for ways of improving these websites, such as helping users find infor-
mation [43, 82] and facilitating their interactions [42, 55, 57, 68], and analyzed
users’ motivations for participating in the websites [7, 10, 13, 15, 23, 80].

Kamienski and Bezemer [25] were the first to analyze Q&A websites for
game development. In their study, they found that three of the largest of
those Q&A websites, namely Unity Answers, the UE4 AnswerHub, the Game
Development Stack Exchange were in decline, with a decrease in user activity
over the past few years. They also found similar results for questions about
game development on Stack Overflow. Their findings stress the importance of
studying and improving those Q&A websites to provide a better and more
effective community for game developers.

2.2 Duplicate document detection on websites

Detecting duplicate documents is an important task for many types of web-
sites. In forums, social networks, and Q&A communities alike, the presence of
multiple posts with the same or closely related content may flood the website
and hinder the ability of its users of finding the information they want. This
effect is similar to spamming, and can also be detrimental by increase the
amount of resources the websites have to dedicate to deal with the issue.

Many of the websites that suffer from having multiple duplicate posts have
a system of manual duplicate detection. In those websites, users have to man-
ually tag duplicate content, while referencing the original ones. Another com-
mon approach is to have moderators manually filter and approve posts before
they can be published. These manual approaches require a lot of effort from
users and moderators.

With that in mind, several researchers have looked into ways of relieving the
burden of manually identifying duplicate documents by proposing automated
duplicate document detection techniques [8, 30]. Specifically in the software
engineering context, researchers have invested great effort into studying and
developing automated detection techniques for duplicate pull requests [27, 28,
67] and bug reports [16, 17, 45, 46].

Software engineering researchers have also focused on studying duplicate
questions on Stack Overflow. While some studies have analyzed different as-
pects of duplicate questions (e.g., their main characteristics [12] and impacts
in the community [1]), the majority of work focused on developing systems to
automatically detect duplicate questions. For example, Zhang et al. [81] intro-
duced DupPredictor, which uses title, description, topic and tag similarities
to identify duplicates. Building on that, Ahasanuzzaman et al. [2] described

Duplicate question detection on Q&A websites for game development 7

Dupe, which increased the performance of the previous approach by using a
two-step ranking system and a different set of question similarity metrics.

Others have since improved on those results by using different sets of tech-
niques and similarity measures. Zhang et al. [76, 77] have achieved a higher
performance when detecting duplicates by introducing several new features
(e.g., features based on Doc2Vec and association rules). More recently, Wang
et al. [65, 66] could also achieve a higher performance when using different
neural network architectures, such as Long Short-Term Memory (LSTM) and
Convolutional Neural Networks (CNN).

Other studies have sought to aid and improve the development of duplicate
question detection techniques by creating and analyzing features, methodolo-
gies, and the quality of labelled datasets [20, 33, 58, 72, 78, 79].

Researchers have also tackled the problem of detecting duplicate questions
on other Q&A websites such as Quora or those belonging to the Stack Ex-
change network8 [18, 21, 41, 51, 54, 83]. Studies have also explored how to use
domain adaptation to create duplicate detection techniques with no labelled
data [24, 29, 39, 50, 52, 56, 73]. As far as we know, no other studies have
analyzed duplicate questions about game development, or made any efforts to
develop and evaluate duplicate detection models for this specific domain.

3 Methodology

In this section we describe our methodology for collecting and processing the
data we used in our study, and applying techniques for duplicate question
detection. Fig. 1 shows an overview of the steps we have taken in our method-
ology. The code, data, and models used in this study are available online in
our replication package9 to allow future researchers to use, reproduce, and
evaluate our results.

3.1 Data collection

In this study, we used two sets of game development questions that were ex-
tracted from the Game Development Stack Exchange and Stack Overflow to
test and evaluate the performance of the duplicate question detection tech-
niques. We chose these two websites as they are the largest sources of labelled
game development Q&A data. While part of our methodology is not reliant
on labelled data, we still need these labels to evaluate our approach. Other
larger websites such as Unity Answers and the UE4 AnswerHub do not offer
a duplicate tagging feature, hindering our ability to use their data for our
analyses. We also used a third set of general software development questions

8 https://stackexchange.com/, acessed July 4, 2021.
9 Our replication package is available online at https://github.com/asgaardlab/done-2

1-arthur-duplicate gamedev questions-code.

8 Arthur Kamienski et al.

RQ1 RQ2

?

?

?

XML

HMTL

1
2
3
4
5
6
7
8
9

10
11
12
13

?

?

?

? ?

?

How to

Identify

Duplicate

Questions

w/ labels!

1
2
3
4
5
6
7
8
9

10
11
12
13

TRAIN

TRAIN

TRAIN

TEST

Stack Over�ow
Data dump

Game Dev.
Stack Exchange

posts
Parse XML �les Unsupervised

techniques
Select

candidate pairs
Tune

parameters

Train duplicate
question
classi�er

Create train and
test sets

Compare
questions

Remove HTML
tags

Stack Over�ow
Game Dev.

posts

Select relevant
posts

Game Dev.
Stack Exchange

Data dump

Sampled
Stack Over�ow

posts

Stemming and
tokenizing

Rank question
pairs

Undersample
train set

Score question
pairs with
classi�er

Training supervised modelsComparing
questions

Data
preprocessingData collection

Fig. 1 Overview of the steps we have taken in our methodology.

from Stack Overflow as a way of analyzing how the techniques perform on a
different domain.

We collected the three sets of questions from the June 2021 Stack Exchange
data dump10. To build these question sets, we first downloaded all of the posts
(i.e., questions, answers, and comments) for Stack Overflow and the Game
Development Stack Exchange, along with the lists of relationships between
posts.

From the two initial datasets, we selected the questions and answers from
the list of posts. We also selected only the duplicate question relationships
from the list of all post relationships, excluding those relationships that contain
references to deleted questions that are not present in the datasets.

We followed the same methodology as Kamienski and Bezemer [25] to cre-
ate the set of questions about game development from Stack Overflow. Thus,
we selected the questions from the set of Stack Overflow posts by searching
for questions marked with one of the following tags: ‘game-engine’, ‘game-
physics’, ‘game-development’, ‘gameobject’, ‘2d-games’, ‘unrealscript’, ‘unreal-
engine4’, ‘unreal-development-kit’, ‘unreal-blueprint’, ‘unityscript’, ‘unity-ui’,
‘unity-editor’, ‘unity-networking’, ‘unity-webgl’, ‘unity5’, ‘unity5.3’, ‘unity3d’,
‘unity3d-5’, ‘unity3d-mecanim’, ‘unity3d-unet’, ‘unity3d-2dtools’, ‘unity3d-gui’,
‘unity3d-terrain’, ‘unity3d-editor’, ‘unity2d’.

We created our third set of questions by sampling a small number of ques-
tions from Stack Overflow. Despite containing questions about multiple topics

10 https://archive.org/details/stackexchange, accessed September 6th, 2021.

Duplicate question detection on Q&A websites for game development 9

other than game development, this dataset allows us to test our approaches on
a different set of data and analyze how they perform on a distinct yet related
domain. We chose to sample a similar number of questions to those in the other
datasets to eliminate the risk of performance variations caused by disparate
amounts of data. Therefore, we randomly selected a number of questions equal
the mean number of game development questions in the other two datasets
mentioned above. We used the same approach to randomly sample duplicate
question pairs, thus maintaining a similar proportion of duplicates across all
datasets. We performed this process five times using different random seeds to
obtain five distinct samples with the same number of questions and duplicate
pairs. We performed our following experiments separately for each of those five
samples. However, for the remainder of this paper we refer to the five samples
as a single dataset (Stack Overflow - General Development) and report the
mean and standard deviation obtained for each of our results.

Table 1 shows the summary of each of the three datasets of questions
we used in our study. We defined a duplicate question as a question that
has a duplicate relation with another one in the dataset, in a unidirectional
relationship. We refer to the questions referenced by duplicate questions as
main questions. Duplicate questions point to one or more main questions11,
forming a duplicate question pair. We note that the table only shows the
number of labelled duplicate questions in our datasets and the true percentage
of duplicate questions is potentially much higher in those websites.

Table 1 Summary of the three datasets used in our methodology. Duplicate questions are
defined as questions that have a duplicate relation with others. Each duplicate question
forms one or more pairs with other questions of the dataset. The percentages are show in
relation to the total number of questions in each dataset.

Website Topic Questions Non-duplicates Duplicates Pairs

Stack Exchange Game development 51,797 50,694 1,103 (2.1%) 1,144

Stack Overflow
Game development 68,200 67,191 1,009 (1.5%) 1,070
General development 59,998 58,891 1,107 (1.8%) 1,107

3.2 Data preprocessing

The data we collected from the Stack Exchange data dump is in raw XML
format and needs to be preprocessed before being used in our study. First,
we parsed the XML files to extract the title, body, and tags for each of the
questions in the dataset, which comprise all of the textual information provided

11 Although duplicate questions usually point to only one main question, some duplicates
point to several others. For example, question 10661714 links to five main questions: https:
//stackoverflow.com/questions/10661714. However, over 95% of duplicate questions have
only one main question in our datasets.

10 Arthur Kamienski et al.

by the question author at the time of posting. We also exclude from our dataset
questions with no text as they may harm our future analyses.

We selected the accepted answer for each answered question in our dataset
to be used when comparing questions in Section 3.3. If the question had no
accepted answers, we chose the one with the largest number of votes that was
posted first. Other studies have also used the number of votes received by
answers as proxies for their quality [9, 34, 44]. We extracted the answer bodies
from the selected answers and matched them to their corresponding questions.

We processed all the text elements we collected (i.e., question titles, bod-
ies, tags, and answers) by removing any HTML tags and replacing any refer-
ences to code snippets, images, and URLs with unique token identifiers. As
the techniques used in this study are intended for natural language, these el-
ements may degrade their results [4, 58, 62, 74]. Using regular expressions,
we identified URLs contained in <a> tags or following a pattern of contigu-
ous strings of characters preceded by http:// or https:// and replaced them
with tokens. We also used regular expressions to replace any content between
<code> and HTML tags with tokens. We used Python 3’s Beautiful
Soup 4 library [49] to completely remove other HTML tags and elements.

As a final preprocessing step, we applied the text preprocess function
provided by Python 3’s Gensim library [84] to remove punctuation, multiple
whitespaces, numeric characters, stopwords, and short words. The function
also stems the texts using the Porter Stemmer [40] and tokenizes them by
splitting words separated by spaces.

3.3 Comparing questions

To identify if a question is a duplicate of another one, we need ways of com-
paring them and analyzing how similar they are. Researchers have proposed
several methodologies to measure question similarity, ranging from a simple
matching of co-occurring terms [2, 81], to more complex deep-learning-based
techniques [65, 66]. In this study, we analyze how seven techniques perform
on the task of identifying duplicate questions about game development. Two
of those techniques have not yet been used for the task of detecting duplicate
questions in a software engineering domain.

We chose techniques that range in complexity and computational cost, as
a way of identifying those that are more cost-effective for our task. We only
use unsupervised and pre-trained techniques12 as they do not demand labelled
data and can be implemented with relatively few computational resources13.

12 We define pre-trained techniques as any technique that requires a training step prior
to being used for our task of detecting duplicate questions. This training step is usually
unsupervised and does not use any additional information about our data aside from its
vocabulary. While we pre-trained some of the techniques ourselves using the data we de-
scribed in Section 3.1, we also used techniques that were pre-trained by their authors using
a separate set of data.
13 We performed all of our experiments on a laptop with an 8th generation Intel Core i7

processor and 16GB of RAM. We also used the Tesla P100 GPUs provided by Google Colab

Duplicate question detection on Q&A websites for game development 11

While custom techniques created to perform specific tasks can achieve higher
performance on their domains, the cost of implementing them is higher (both
in terms of amount of data and computation), and they may not be a feasible
alternative for some websites. Nevertheless, Q&A websites can use our results
as a starting point to identify which techniques are better suited for their needs,
as the increased costs may not always justify the differences in performance.

Table 2 presents a summary of the techniques we used, indicating the ones
that have been previously used for detecting duplicate questions in software
engineering domains. We used these techniques to produce similarity scores
between the questions in our three datasets. Aside from BM25, which already
produces a similarity score between two documents as its output, all of the
other techniques convert the input documents to vectors of real numbers. We
then compared these vectors using the cosine similarity (or the Jensen-Shannon
divergence for probability distributions) to obtain a similarity measure be-
tween the documents. We used these similarity measures as a proxy for the
likelihood of two questions being duplicates. We analyzed each of these sim-
ilarity measures separately to identify the best one in the task of identifying
duplicate questions.

Table 2 Summary of the techniques for duplicate question detection we used in our study.
The Pre-trained column shows the techniques that require a training step prior to duplicate
question detection. The Supervised column shows if a technique requires a labelled set of
data during training.

Technique Pre-trained Supervised Prev. used in Soft. Eng. Used in

Jaccard No No Yes [58, 81]
TF-IDF No No Yes [76, 77]
BM25 No No Yes [2, 58, 77]
Topic Yes No Yes [58, 76, 77, 81]
Doc2Vec Yes No Yes [76, 77]
BERTOverflow Yes No No
MPNet Yes Yes No

We also analyzed how using different text elements from questions affect
the performance of the techniques in Table 2. Fig. 2 shows an overview of
the methodology we used for comparing the questions using these different
elements. We used a similar approach to other studies [2, 58, 77, 78, 81] to
create five documents using question titles, bodies, and tags individually, the
junction of titles and bodies, and the junction of titles, bodies, and tags. We
also introduce a new comparison between all of the elements (i.e., title, bodies,
and tags) with the addition of their answers. For duplicate questions that do
not have answers, we only use their titles, bodies, and tags for this comparison.
Other studies have shown that answers can be useful for detecting duplicate
questions [1, 29], and we thus evaluate the impact of their usage in our method-

Pro, which are available for a small monthly fee. Using this setup, the most costly techniques
took 11 minutes to run.

12 Arthur Kamienski et al.

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Main question

physics game-loop frame-rate fixed-timestep

When should I use a fixed or variable time step?

Should a game loop be based on fixed or variable time steps?
Is one always superior, or does the right choice vary by game?
Variable time step Physics updates are passed a "time elapsed
since last ...

asked Jul 26 '10 at 11:36
Gam E. De Veloper
2,789 3 15 9

101k views

11
answers

264
votes

Duplicate question

Title

Body

Tags

x =

Fully Fixed
You lose most of the benefits of a fixed timestep when you
throw in a variable step once each frame...

aswered May 16 '11 at 15:02
John Doe
7,502 5 33 54

12
votes

Main question answer

Answer

42 similarities

Title

Body

Tags

6 question parts 7 techniques

Jaccard

TF-IDF

BM25

Topic

Doc2Vec

BERTOver�ow

MPNet

Answer
(if available)

Fig. 2 Overview of the methodology we used for comparing questions using seven tech-
niques.

ology. While answers would not be available for recently posted questions, they
are still present for some of the questions that have been previously posted.
Therefore, the comparison using answers may still prove useful for detecting
duplicates, even when one of the questions do not have an answer.

We applied each technique to each of these documents, obtaining 42 differ-
ent similarity measures for each question pair (6 documents × 7 techniques).
We performed this process for comparing each duplicate question to every
other answered question in the dataset, as main questions need to have at
least one answer to be referenced by a duplicate14. We provide further expla-
nations of the comparison techniques we used in the following sections.

3.3.1 Jaccard similarity

The Jaccard similarity coefficient [22] is a common metric for measuring the
similarity between two mathematical sets and is frequently used in information
retrieval systems as a way of comparing two documents [35]. Before calculating
the Jaccard similarity between two texts, we converted them into sets by

14 https://stackoverflow.com/help/duplicates, accessed September 6th, 2021.

Duplicate question detection on Q&A websites for game development 13

selecting the unique tokens contained in each of them. Then, we calculated

the metric using the equation Jaccard(A,B) = |A∩B|
|A∪B| , where A and B are the

sets of tokens for two documents A and B.

3.3.2 TF-IDF similarity

Term frequency-inverse document frequency (TF-IDF) is a technique for defin-
ing the relevance of a word in a document relative to all of the other docu-
ments in the corpus. Despite its simplicity, TF-IDF is used in many informa-
tion retrieval applications and has been shown to be an effective technique
for comparing documents [47]. In our study, we used the TfidfVectorizer

implementation provided by Python’s scikit-learn library [38] with default pa-
rameters for converting the documents of our corpora into vectors of TF-IDF
values. In this implementation, the TF-IDF value of term t in a document d
is given by the equation

TF -IDF (t, d) = TF (t, d) × log

(
n

DF (t) + 1

)
,

where TF (t, d) is the number of times term t appears in document d, n is the
number of documents in the corpus, and DF (t) is the number of documents
that contain term t. We computed the TF-IDF vectors separately for each of
the six documents from each question in each dataset. We then computed the
cosine similarity between two TF-IDF vectors to obtain a TF-IDF similarity
measure using scikit-learn’s cosine similarity function.

3.3.3 BM25

BM25 is a ranking function that takes into account the frequency of each
token in the corpus and in each document of the corpus to assign a score to
a pair of documents. We used our own custom implementation of the BM25
algorithm derived from the one provided in Gensim 3.8 [84]15. Based on the
study of BM25 parameters for duplicate question detection on Stack Overflow
performed by Ahasanuzzaman et al. [2], we defined the values of the free
parameters k1 and b as 0.05 and 0.03, respectively.

3.3.4 Topic similarity

We measured the similarity between the topics of two documents using the
latent Dirichlet allocation (LDA) algorithm [6]. This unsupervised algorithm
assumes that topics are represented by distributions of words to compute the
probability of a document belonging to a topic. We trained LDA models based
on our datasets using Gensim’s implementation given by the LDAModel class.
We trained one model for each set of documents extracted from questions from

15 https://github.com/RaRe-Technologies/gensim/blob/3.8.3/gensim/summarizatio

n/bm25.py, accessed September 6th, 2021.

14 Arthur Kamienski et al.

each dataset, totalling 18 different models (6 document sets × 3 datasets). We
used these models to calculate vectors of topic probabilities for each question
in our datasets. The main parameters that control the output of the algorithm
are alpha and eta, which we set to symmetric and auto, respectively. We set
the number of topics to 30, which is also the value used in other studies [77, 78].
Finally, we calculated the Jensen-Shannon divergence to measure the similarity
between two vectors of topic probabilities using the jensenshannon function
from Python’s Scipy package [64]. We do not use the cosine similarity for
comparing the topic vectors, as they do not represent a point in a multi-
dimensional space. Instead, we chose to use the Jensen–Shannon divergence
for these comparisons as it is a more appropriate metric for calculating the
similarity between two probability distributions such as the ones we obtained
from the LDA algorithm.

3.3.5 Doc2Vec similarity

Doc2Vec [26] is an unsupervised algorithm based on Word2Vec [31, 32] for
representing documents as fixed-length vectors of numbers. These vectors are
created in a way such that two semantically similar documents are closer
apart in the multi-dimensional space than two semantically different ones. We
used Gensim’s Doc2Vec class to train Doc2Vec models based on our data and
compute vectors for the documents in our datasets. We trained one model for
each set of documents in our three datasets, obtaining 18 models (6 document
sets × 3 datasets). We used the same parameters as indicated by Zhang et
al. [76], which are shown in Table 3. We compared the vectors obtained from
the algorithm using scikit-learn’s cosine similarity function to produce a
similarity measure between the documents.

Table 3 Parameters used for learning document embeddings using Gensim’s Doc2Vec im-
plementation, following suggestions from Zhang et al. [76].

Parameter Value Description

vector size 100 Number of dimensions of the feature vector
window 15 Maximum distance between the current and predicted words
min count 1 Minimum frequency required for words before being ignored
sample 1e-5 Threshold for downsampling high-frequency words
negative 1 Number of “noise words” drawn when negative sampling
epochs 100 Number of passes over the training corpus
seed 42 Seed number for the random number generator

3.3.6 BERTOverflow similarity

BERTOverflow [62] is a model for producing word embeddings that is pre-
trained on 152 million sentences collected from Stack Overflow’s data dump.
This model is based on BERT [11], a deep neural network-based algorithm

Duplicate question detection on Q&A websites for game development 15

for producing vector representations of words which can be expanded and
fine-tuned for different natural language processing tasks. Unlike Word2Vec,
BERT uses the context in which words are used to create more accurate vector
representations. Despite not being trained specifically for the game develop-
ment domain or for detecting duplicate questions16, we used BERTOverflow
in the hope that some of the knowledge it acquired from training on Stack
Overflow can be used for our intended application. We used the pre-trained
model provided by the authors in Python’s Transformers package [70]17 with
default parameters, and adapted it to produce document vectors using the
SentenceTransformers [48]18 package. We performed no other training steps
to tune the model. As the model implements its own tokenization function, we
used the untokenized documents extracted from questions to produce sentence
embeddings. We compared the document vectors produced for each document
using scikit-learn’s cosine similarity function to produce a similarity mea-
sure between the documents.

3.3.7 MPNet similarity

MPNet [59] is another deep neural network-based model for creating word
embeddings for natural language processing tasks. It was pre-trained by the
original authors using over 160GB of data and uses permuted language mod-
elling and token position information to obtain an increased performance
when compared to other BERT-based models. In our study, we used the
paraphrase-mpnet-base-v2 model provided by the SentenceTransformers [48]
package to produce document vectors. This model is based on MPNet and its
authors fine-tuned it for the task of producing document vectors on several
datasets from different sources which include Q&A websites (but not the ones
used in our study). This model currently offers the best average performance
on a set of document comparison tasks19. We used the model with default
parameters and did not perform other training or tuning steps. Similar to
what we did with BERTOverflow, we used untokenized documents for creat-
ing sentence embeddings based on the documents extracted from questions.
Once again, we compared the document vectors using the cosine similarity

function provided by scikit-learn to produce a similarity measure between the
documents.

3.4 Training supervised classifier models

The question comparison techniques we described in Section 3.3 provide sim-
ilarity scores that help us in identifying duplicate questions. However, each

16 BERTOverflow was originally created for code and named entity recognition, but its
word embeddings can be used for many natural language processing tasks.
17 https://huggingface.co, accessed September 6th, 2021.
18 https://www.sbert.net, accessed September 6th, 2021.
19 https://www.sbert.net/docs/pretrained models.html, accessed September 6th, 2021.

16 Arthur Kamienski et al.

TRAIN

How to

Identify

Duplicate

Questions

 w/ labels!

TRAIN

TEST

How to

Identify

Duplicate

Questions

 w/ labels!

1
2
3
4
5
6
7
8
9

10
11
12
13

TEST
?

?

Random
hyperparameter

search

Train set with
80% of candidate

pairs

42 similarity
measures

Supervised
learning dataset

Match each
duplicate with C

candidates

Split train and
test sets

Train supervised
duplicate

detection model

Score test pairs
using trained

classi�er

Test set with
20% of candidate

pairs

Duplicate
question tags

Fig. 3 Overview of the steps we have taken for training supervised models based on the
other similarity measures.

technique takes a different approach to determining how similar two docu-
ments are and provide different views on the task of detecting duplicates.
Therefore, we sought to merge the similarity measures described above into a
single score that can hopefully combine these views and achieve higher perfor-
mance on the task of detecting duplicate game development questions.

Fig. 3 shows an overview of the methodology we used to obtain the new
similarity measure. This new measure is the output of a supervised classifier
model that uses the 42 other measures as features and tries to predict whether
a pair of questions are duplicates, in an approach similar to that used by
Zhang et al. [77]. We calculate the new measure by first applying the techniques
described in Section 3.3 to extract the similarity scores from a pair of questions
and then using the classifier to make a final prediction. We leveraged the small
set of labelled duplicate pairs provided by our datasets to train these classifiers.

Instead of using all possible question pairs to train and evaluate the models,
we limited the number of pairs by selecting a number C of candidate questions
for comparison with each duplicate question in the datasets. The selection
of candidate questions was proposed by Ahasanuzzaman et al. [2] as a way
of reducing the computational cost of identifying duplicate questions. The
authors of that study selected the 10,000 most relevant candidate questions
for each duplicate using BM25 prior to computing the final similarity score
using their custom technique. As far as we know, the authors did not use any

Duplicate question detection on Q&A websites for game development 17

other techniques for improving search speed such as inverse indices. In our
study, we compared the different similarity measures we obtained in Section 3.3
and experimented with several different values for C to identify the set of
parameters that produces the best result.

We note that selecting candidates prior to training and evaluating the
model can introduce bias towards the metric used for choosing relevant candi-
dates. However, this process also reduces the proportion of duplicate to non-
duplicate question pairs, which may aid the supervised model during training
and scoring.

Prior to training the model, we randomly split the set of all candidate
question pairs into train and test sets. We performed the split by defining 20%
of the duplicate questions as test duplicates and assigning all of the candidate
pairs composed by them to the test set, while assigning the remaining pairs to
the train set. We made sure to exclude any reference to test duplicate questions
from the train set (i.e., candidate question pairs in which the duplicate question
plays the role of a candidate), to avoid leaking test information into the train
set.

To provide the model with additional examples of unrelated questions, we
included 20% of fake candidate pairs in the train set. We selected those fake
candidate pairs by applying the same process used for duplicate questions to a
set of randomly selected questions. As the number of duplicate question pairs
is tiny when compared to the number of non-duplicate pairs, we undersam-
pled the majority class of non-duplicate pairs in the train set by randomly
selecting non-duplicate pairs while maintaining the duplicate ones, reaching
a proportion of 1 true duplicate pair to 99 non-duplicate pairs. We experi-
mented using a larger number of duplicate pairs to non-duplicate pairs, but
found that they reduced the performance of the classifier models. We did not
undersample or alter the number of candidate pairs in the test set to simulate
real world conditions.

Finally, we trained the classifier models using Random Forests provided by
scikit-learn’s RandomForestClassifier class. We trained the model using the
similarity measures generated by the techniques in Section 3.3 for the question
pairs in the train set, trying to predict whether the pairs are duplicates or not.
The Random Forest models output a probability of the two questions in a pair
being duplicate, which we use as a measure of the similarity between the two
questions, in a similar fashion to the other techniques we discussed above.

We decided not to experiment with other types of supervised models as
the results reported by other researchers did not show great differences in
performance when changing the models used for this task [65, 66, 76, 77].
Instead, we chose to use the random forest algorithm as it obtained some of
the best results in other studies [76, 77] that used it, while still being relatively
simple.

We tuned the hyperparameters of the random forest to improve its perfor-
mance in each individual train set using scikit-learn’s RandomizedSearchCV.
We ran 30 iterations of a random parameter search with 5-fold cross validation.
Therefore, we trained 30 different models using parameters randomly selected

18 Arthur Kamienski et al.

from a pre-defined set of parameters. We trained each of those models five
times using the training sets, each with a different validation fold comprised
of 20% of the data. We used the same approach as we did to separate the train
and test sets to create custom folds for the search, thus making sure that no
information is leaked across folds. We trained the final Random Forest model
using the whole train set and the best parameters found during search. Finally,
we scored the test set of candidate pairs using the trained models, obtaining
a measure for their likelihood of being duplicates of one another.

4 Results

In this section we discuss the motivation, approach and findings for each of
our research questions. Section 4.1 discusses the performance of the similarity
scores obtained from the techniques described in Section 3.3, while Section 4.2
analyzes the performance of the supervised classifier models described in Sec-
tion 3.4.

4.1 RQ1. What is the performance of unsupervised and pre-trained
techniques for duplicate question detection on game development Q&A data?

Motivation: There are several techniques for identifying duplicate questions.
While some of those techniques require labelled data to learn to identify du-
plicate documents for specific applications, others can be used with no other
information aside from the text contained in those documents. These tech-
niques are usually unsupervised or pre-trained on different sets of data, and
are specially useful when little to no labelled data is available, such as in the
case of Unity Answers and the UE4 AnswerHub, the two largest Q&A websites
for game development. Another advantage to those techniques is that they do
not need large corpora or vast computational resources to function, and can
thus be applied in situations where those two factors are a constraint. In this
research question, we analyze the performance of seven of those unsupervised
and pre-trained techniques on the task of identifying duplicate questions on
two datasets of game development questions collected from Stack Overflow
and the Game Development Stack Exchange. By understanding how well those
techniques can detect duplicate questions, we can determine how suitable they
are for usage in Q&A websites with low resources as alternatives to more com-
plex techniques that may not be easily implemented. Moreover, our findings
may help those websites to decide what the best approach for improving their
duplicate detection systems is given their circumstances.

Approach: We used the similarity scores described in Section 3 to create
different ranks for all of the question pairs produced from comparing duplicate
questions to other answered questions in the dataset. Fig. 4 shows an overview
of our approach for evaluating these similarity scores. For a given duplicate
question, we ordered the question pairs using each of the 42 similarity scores

Duplicate question detection on Q&A websites for game development 19

we obtained from comparing 6 question pairs using 7 techniques. We assigned
an increasing rank number to each of the question pairs, with tied pairs being
assigned the average rank of the tied group, obtaining 42 different ranks (one
for each similarity). We used these ranks as a proxy for how well the similarity
scores can identify true duplicate pairs. Better performing scores should assign
top ranks to true duplicate pairs, while keeping false duplicate pairs at the
bottom of the ranking.

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Duplicate
question

Other
questions

Question
pairs

Similarity
rankings

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Similarity
scores

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

BERTOver�ow

MPNet

Doc2Vec

Topic

BM25

TF-IDF

Jaccard

Fig. 4 Overview of our approach to ranking question pairs according to similarity scores.

We used the recall-rate@k measure to analyze how each similarity score
performs at providing a limited number of suggestions for possible duplicate
questions. This measure was used in a number of other studies [2, 53, 58, 60, 61,
65, 66, 77, 81], and evaluates the ability of a score of accurately recommending
a true duplicate question among a list of the top-k highest scores, simulating
a real-world search system. In our study, we defined the recall-rate@k as the
percentage of duplicate questions that have at least one true duplicate question
pair ranked among the top-k recommendations. Therefore, this measure can
be viewed as a proxy for how likely it is to find a duplicate question among the
top-k recommendations. We used the following equation to calculate the recall-
rate@k measure for each of the similarity score rankings mentioned above:

recall-rate@k =

∑N
i=1 vi
N

,

where N is the number of duplicate questions in the dataset and vi is a binary
variable indicating if a duplicate question has at least one true duplicate pair
with a rank of k or lower. We used values of k equal to 5, 10 and 20 in our
analysis, as these are the most commonly used values in other studies.

Findings: The techniques performed worse when detecting game
development questions than when detecting general development
questions on Stack Overflow. Table 4 shows the performance of the 42
similarity scores we tested for identifying duplicate questions measured with
different metrics. All of the similarity scores had lower performance at detect-
ing duplicate questions from the two game development datasets than ques-

20 Arthur Kamienski et al.

tions about general development from Stack Overflow. While the drop in per-
formance was not as pronounced for the Game Development Stack Exchange,
there was a large difference when detecting duplicate questions about game
development from Stack Overflow. Nevertheless, up to 29% of the duplicate
questions about game development were correctly ranked by the techniques.
We further investigate the reasons behind those low values found for game
development websites in Section 4.2 by performing a manual analysis in the
test sets used for our supervised models.

Similarities calculated with MPNet achieved the highest perfor-
mance. The similarities calculated using MPNet were the most effective when
ranking question pairs from the Game Development Stack Exchange and about
general development on Stack Overflow. On those datasets, the technique could
correctly classify 40% and 50% of duplicate question pairs among the top 5
most similar pairs, respectively. The technique had a lower performance on
game development questions on Stack Overflow, having only classified at most
27% of duplicate questions among the 20 top ranked pairs.

Other noteworthy techniques are the Jaccard, TF-IDF, and BM25 similar-
ities, which could correctly rank up to 40% of duplicate pairs among the top 5
most similar pairs. These techniques achieved the highest performance when
ranking duplicate questions about game development from Stack Overflow,
even surpassing the scores obtained by MPNet similarities20. Despite achiev-
ing up to 15% lower scores than MPNet on the other two datasets, these are
relatively simple techniques when compared to the other ones we tested, and
may be useful if time and computational resources are a limiting factor when
detecting duplicate questions.

We achieved the highest performance when comparing all ques-
tion parts including answers. We found that merging the title, body, and
tags of the questions into a single document before comparing questions yielded
some of the best results for almost all of the metrics and similarities we tested.
Moreover, we found that using only the title of the questions was also a good
strategy for finding duplicates, even beating the performance of comparing
all of the questions parts for some techniques. These results are consistent
with other studies that compared different question parts to detect duplicate
questions on Stack Overflow [2, 77, 81].

We also found that using the answers from other questions can greatly
improve the performance of the techniques. In all datasets, the similarities
calculated using answers achieved the best overall results. We observed an in-
crease of up to two percent points on the dataset from the Game Development
Stack Exchange and general questions on Stack Overflow when using answers
for comparing question pairs. The increase in performance was even higher

20 The BM25 similarities scored at most 3 percent points more than MPNet for the game
development dataset from Stack Overflow when using answers for the comparison. Despite
having a lower performance, we still consider MPNet a more robust approach for detecting
duplicates, as it has surpassed the second best approach in every other experiment we
performed, with margins of up to 10 percent points.

Duplicate question detection on Q&A websites for game development 21

Table 4 Performance of the studied techniques according to different metrics. Columns 1
to 5 indicate the question part that was used for comparing the questions, as such: 1 - title,
2 - body, 3 - tags, 4 - title and body, 5 - title, body, and tags, and 6 - title, body, tags, and
answers. Values in bold show the best scores we obtained for each metric in each dataset.
Values in parentheses show the standard deviations we obtained for the five samples of the
dataset about general development on Stack Overflow.

Dataset Metric Technique 1 2 3 4 5 6

Game
Dev.
Stack
Exchange

recall-
rate@5

Jaccard 15.41 11.51 4.71 14.96 16.23 15.41
TF-IDF 18.04 17.14 6.07 25.39 27.11 27.02
BM25 16.95 12.33 7.07 15.50 16.95 20.85
Topic 0.00 1.09 0.91 1.27 1.00 1.45
Doc2Vec 0.00 1.27 0.00 1.27 1.72 1.00
BERTOv. 5.26 2.99 4.71 4.90 5.62 6.26
MPNet 27.20 25.20 7.07 37.72 37.81 39.62

recall-
rate@10

Jaccard 20.13 14.05 7.80 18.13 19.58 20.76
TF-IDF 21.94 22.94 9.25 31.01 33.64 33.54
BM25 22.21 15.23 9.61 20.40 21.94 26.56
Topic 0.54 1.54 1.00 1.45 2.18 2.27
Doc2Vec 0.00 1.72 0.00 1.36 2.90 1.99
BERTOv. 6.53 3.45 6.07 5.62 6.17 7.62
MPNet 33.45 30.92 9.97 44.79 46.33 45.87

recall-
rate@20

Jaccard 25.11 17.32 11.51 22.39 25.29 24.57
TF-IDF 27.38 27.83 13.78 38.17 41.61 41.98
BM25 27.74 20.04 14.51 26.56 28.74 34.72
Topic 0.73 1.99 1.27 1.99 3.26 3.35
Doc2Vec 0.00 2.18 0.00 2.72 4.35 3.08
BERTOv. 7.62 3.81 8.16 6.71 7.71 9.61
MPNet 39.80 37.26 14.14 52.86 53.31 53.94

Stack
Overflow/
Game
dev.

recall-
rate@5

Jaccard 8.92 6.64 1.68 8.62 8.42 7.83
TF-IDF 11.00 7.63 2.38 10.80 11.20 15.76
BM25 11.40 6.14 2.18 7.73 8.62 16.15
Topic 0.50 0.79 0.20 0.40 0.50 1.19
Doc2Vec 0.00 0.50 0.00 0.79 0.59 0.89
BERTOv. 3.67 1.88 1.68 2.97 3.27 3.17
MPNet 13.58 8.72 2.78 14.87 14.77 14.97

recall-
rate@10

Jaccard 12.49 7.63 2.38 11.10 11.30 10.21
TF-IDF 15.86 10.01 3.27 15.16 14.77 21.51
BM25 14.27 7.53 2.87 10.21 11.30 21.70
Topic 0.59 0.99 0.30 0.59 0.69 1.78
Doc2Vec 0.00 0.69 0.00 1.39 1.59 0.89
BERTOv. 4.56 1.98 2.28 3.96 3.77 3.37
MPNet 17.74 11.10 3.47 21.01 19.72 21.01

recall-
rate@20

Jaccard 16.65 10.21 4.26 14.07 14.17 11.99
TF-IDF 21.21 13.78 4.36 18.93 19.72 28.84
BM25 19.23 9.12 4.86 12.98 14.27 29.34
Topic 0.99 1.59 0.50 1.19 0.89 2.28
Doc2Vec 0.00 0.79 0.00 1.59 2.28 1.49
BERTOv. 5.65 2.28 3.47 4.56 4.36 4.06
MPNet 23.09 15.46 5.45 26.76 26.26 26.66

Stack
Overflow/
General
dev.

recall-
rate@5

Jaccard 24.82 (0.86) 10.30 (0.42) 13.08 (1.11) 17.40 (1.06) 22.20 (1.86) 20.96 (1.39)
TF-IDF 29.00 (0.97) 17.43 (0.82) 13.76 (1.18) 30.62 (0.58) 37.00 (0.79) 40.70 (1.03)
BM25 27.68 (1.38) 11.83 (0.36) 15.39 (1.54) 22.58 (0.78) 28.83 (1.51) 35.66 (1.33)
Topic 0.41 (0.21) 0.40 (0.23) 1.15 (0.30) 0.61 (0.35) 0.68 (0.14) 0.77 (0.22)
Doc2Vec 0.02 (0.04) 0.58 (0.23) 0.02 (0.04) 0.88 (0.27) 1.56 (0.25) 1.90 (0.28)
BERTOv. 7.14 (1.35) 1.38 (0.37) 8.06 (0.35) 3.00 (0.49) 5.04 (0.68) 4.72 (0.58)
MPNet 40.09 (0.57) 23.11 (1.54) 16.75 (0.69) 45.98 (1.04) 48.51 (1.09) 50.14 (1.28)

recall-
rate@10

Jaccard 30.28 (1.28) 13.01 (0.57) 17.24 (0.68) 21.64 (0.86) 27.70 (1.87) 25.17 (1.79)
TF-IDF 34.42 (1.08) 21.59 (0.34) 18.37 (1.01) 36.49 (0.63) 44.03 (0.91) 48.35 (0.47)
BM25 32.76 (1.56) 15.52 (0.39) 20.11 (1.51) 28.08 (0.92) 35.34 (1.43) 43.63 (1.67)
Topic 0.74 (0.29) 0.67 (0.36) 1.52 (0.36) 0.94 (0.48) 1.37 (0.28) 1.45 (0.23)
Doc2Vec 0.02 (0.04) 0.90 (0.21) 0.02 (0.04) 1.26 (0.43) 2.40 (0.46) 2.71 (0.38)
BERTOv. 8.42 (1.26) 1.66 (0.37) 10.05 (0.48) 3.90 (0.47) 6.20 (0.65) 5.85 (0.68)
MPNet 46.34 (0.99) 28.06 (1.77) 22.02 (1.09) 52.27 (0.56) 55.68 (0.54) 57.32 (0.63)

recall-
rate@20

Jaccard 35.25 (2.03) 16.01 (0.96) 22.71 (0.44) 26.50 (1.20) 33.21 (1.72) 30.59 (1.39)
TF-IDF 39.75 (1.21) 26.63 (0.37) 24.16 (0.56) 42.85 (1.00) 51.18 (0.59) 56.12 (1.08)
BM25 38.57 (1.74) 19.89 (0.44) 25.98 (0.85) 34.04 (0.99) 41.86 (1.17) 52.11 (1.28)
Topic 1.08 (0.30) 0.86 (0.39) 2.44 (0.56) 1.68 (0.61) 2.48 (0.48) 2.40 (0.32)
Doc2Vec 0.02 (0.04) 1.34 (0.36) 0.04 (0.05) 2.03 (0.61) 3.47 (0.56) 3.94 (0.33)
BERTOv. 9.67 (1.44) 1.95 (0.36) 12.47 (0.50) 4.95 (0.74) 7.32 (0.48) 7.36 (0.78)
MPNet 52.21 (1.28) 33.60 (1.68) 27.79 (0.50) 59.06 (0.29) 61.97 (0.94) 63.61 (0.34)

22 Arthur Kamienski et al.

for game development questions on Stack Overflow, with a boost of up to 15
percent points for the similarities calculated using TF-IDF and BM25.

The fact that some techniques gained a large boost when we used answers
for comparing question pairs may indicate that some questions are marked
as duplicates as a way of referencing the answers posted in the other ques-
tion, while the questions are not duplicates themselves. For example, question
8651721 on the Game Development Stack Exchange asks how to shoot bullets
from a spaceship using C++ and is marked as a duplicate of question 8632622,
which asks how to spawn enemies using Java. The user that identified the du-
plicates posted a comment noting that the solutions to both questions are
similar, but changes should be made to accommodate the differences between
the projects.

The Topic, Doc2Vec and BERTOverflow similarities achieved a
low performance. On all of the datasets these similarities ranked fewer than
10% of the duplicate question pairs among the 20 most similar pairs. Other
studies have also shown that topic similarities offer poor performance on the
task of identifying duplicate questions on Stack Overflow [77, 78, 81]. However,
our results differ from the ones found by Zhang et al. [77, 78], where Doc2Vec
similarities obtained better performance. These differences may be in part due
to the different sets of data used in our studies. We further discuss some of
those differences in Section 5.

The fact that the similarities calculated with BERTOverflow showed poor
performance can be a consequence of the absence of a fine-tuning step prior
to computing sentence embeddings. BERTOverflow is a model for generating
word embeddings trained on Stack Overflow data and we performed no other
training steps to adapt it to the task of generating and comparing sentence
embeddings, as was done for the MPNet model.

Similarity scores based on Jaccard, TF-IDF, BM25 and MPNet
could correctly rank most duplicate question pairs among the 5%
most similar pairs. Figure 5 shows the distribution of ranks assigned to true
duplicate question pairs for all of the 42 similarity scores we tested on our
three datasets. When using Jaccard, TF-IDF, BM25 and MPNet similarities,
we observed that at least 75% of the duplicate question pairs were ranked
among the 2,500 most similar pairs. Given that we compared each duplicate
question with over 50,000 questions for each dataset, that represents less than
5% of all of the question pairs we analyzed. Other techniques produced worse
rankings, but could still place most duplicate pairs among the 20% (10,000)
most similar pairs.

However, as we can see from Table 4, these rankings do not necessarily
translate to good performance on ranking duplicate pairs among the 20 most
similar ones. Instead, these results show that these techniques can be used by
themselves as heuristics for reducing the number of questions that have to be

21 https://gamedev.stackexchange.com/questions/86517, accessed September 6th,
2021.
22 https://gamedev.stackexchange.com/questions/86326, accessed September 6th,

2021.

Duplicate question detection on Q&A websites for game development 23

Game Dev. SE Game Dev. SO General Dev. SO

Jaccard
T

F
−

ID
F

B
M

25
D

oc2V
ec

Topic
B

E
R

TO
verflow

M
P

N
et

10 1000 100K 10 1000 100K 10 1000 100K

6
5
4
3
2
1

6
5
4
3
2
1

6
5
4
3
2
1

6
5
4
3
2
1

6
5
4
3
2
1

6
5
4
3
2
1

6
5
4
3
2
1

Fig. 5 Distribution of ranks of true duplicate pairs in the three different datasets used in
this study according to different techniques. Labels 1 to 5 indicate the question part that
was used for comparing the questions, as such: 1 - title, 2 - body, 3 - tags, 4 - title and body,
5 - title, body, and tags, and 6 - title, body, tags, and answers.

24 Arthur Kamienski et al.

compared to identify their duplicates. Given that techniques such as the Jac-
card, TF-IDF, and BM25 similarities have fast computation times, they may
prove useful for a pre-selection step such as the one discussed in Section 3.4.
A limited number of question pairs can help improve the performance of du-
plicate question detection systems by reducing the number of false duplicate
pairs that are evaluated and reducing the time it takes to evaluate a set of
questions.

Summary: The studied techniques could rank up to 54% of the duplicate
question pairs among the 20 most similar pairs in datasets about game
development. However, these techniques showed worse performance when
ranking duplicate questions about game development than when ranking
questions about general development on Stack Overflow. We achieved the
best results by using MPNet similarities for comparing question titles, bod-
ies, tags, and answers. Other techniques also had noteworthy performance
and can be used for selecting candidate question pairs for improving the
performance of duplicate question detection systems.

4.2 RQ2. How can we leverage labelled data to improve the performance of
unsupervised techniques?

Motivation: In RQ1 (Section 4.1) we explored unsupervised and pre-trained
techniques for the task of detecting duplicate game development questions.
While these techniques do not require labelled data, our datasets contain a
small set of labelled duplicate question pairs that can be useful for learning
the characteristics of duplicate questions. Furthermore, we have explored a set
of 42 similarity scores that take different approaches to comparing questions,
and aggregating them into a single score can be helpful to achieve a higher
performance on the task of detecting duplicate questions. In this research
question, we explore how we can combine these different scores and use a small
set of labelled duplicate question data to build a better similarity score that
can more reliably detect duplicate questions. We also explore how well models
perform when evaluating questions from other websites different than the ones
used for training them. Therefore, our findings may help Q&A websites with
no or only a small number of labelled duplicate questions by showing how
they can leverage a very limited set of labeled data to improve their duplicate
detection techniques, even if that data comes from other websites.

Approach: We followed the methodology described in Section 3.4 to build
a supervised classification model for detecting duplicate question pairs. We
started by selecting candidate question pairs for each duplicate question in the
datasets by selecting the top ranked pairs according to the TF-IDF similarity
score between question titles, bodies and tags. We analyzed how the number
of selected candidate pairs affects performance by training models with sets of
various numbers of candidates.

Duplicate question detection on Q&A websites for game development 25

As we discussed in RQ1 (Section 4.1), TF-IDF is a simple and fast tech-
nique that provided one of the best rankings for duplicate question pairs.
Even though the MPNet similarity scores offered better performance, com-
puting those similarities takes considerably more time as the vectors used for
representing each document are much larger than the ones used for TF-IDF23.
For example, it took around 10 seconds to compute TF-IDF vectors for each
dataset using one core of an 8th generation Intel Core i7 processor, and an-
other 180 seconds to compute their similarities. Meanwhile, it took around 360
seconds to compute MPNet vectors for each dataset using a Tesla P100 GPU,
and another 270 seconds to compute their similarities on the laptop mentioned
above.

We followed the methodology described in Section 3.4 to create train and
test sets. We trained Random Forest models using the hyperparameters that
provided the best recall-rate@5 for each set of candidates during the hyper-
parameter tuning stage. We then used the trained models to obtain similarity
scores for the candidate pairs in the test sets. Similar to what we did in RQ1,
we analyzed the final performance of the models using the recall-rate@k metric
for values of k of 5, 10, and 20.

Given that we created models to identify duplicate question pairs on spe-
cific datasets, they might have learned particular characteristics of the ques-
tions on which they were trained. We thus analyze the performance of a model
when identifying duplicate question pairs from other datasets than the one
used for training it. For example, we use the model trained on the Game
Development Stack Exchange data to identify duplicate questions on Stack
Overflow, and vice-versa. As some of Q&A websites do not have the labelled
data required to train supervised classifiers, a model trained on another set of
data may prove a better alternative than using other techniques such as the
ones we discussed in RQ1.

We investigated the duplicate question pairs that our classifier could not
correctly rank among the top 20 results. First, we selected the set of misclassi-
fied pairs in the test set and checked if the true duplicate pair was among the
set of candidate questions or if it was removed during the candidate selection
process. Furthermore, we read both questions of the misclassified pairs to de-
fine a possible cause for the low ranking. We also read the top ranked question
associated to each of those question pairs, to see if it was a possibly unlabelled
duplicate pair. We judged a top ranked question as a correct pair for the du-
plicate question if it provided enough information to solve the problem being
discussed. We performed this analysis for the datasets about game develop-
ment from Stack Overflow and the Game Development Stack Exchange, and
for one of the samples of the dataset about general software development on
Stack Overflow.

23 While the vectors produced by TF-IDF have as many dimensions as the size of the
vocabulary in the corpus, these vectors are sparse and can only have as many non-zero
values as the number of unique words in a document. In our datasets, the median number
of unique words in each question is around 30. Meanwhile, MPNet produces dense vectors
with a fixed size of 768 dimensions.

26 Arthur Kamienski et al.

Table 5 Performance of the duplicate question classifier models for different numbers of
candidate pairs according to different metrics. Values in bold show the best results obtained
for a metric in a given dataset. Values in parentheses show the standard deviations we
obtained for the five samples of the dataset about general development on Stack Overflow.

Dataset Candidates
Recall-rate@

5 10 20

Game Dev.
Stack Exchange

100 39.37 46.15 51.58
250 38.01 47.51 54.75
500 36.20 44.80 55.66
750 38.01 49.77 58.82

1000 38.46 46.15 56.11
1500 40.27 50.68 58.82
2000 39.82 47.51 56.11
2500 41.18 49.32 57.01
5000 40.72 50.23 58.82
7500 38.91 49.32 56.56

10000 38.46 47.96 58.82

Stack Overflow/
Game dev.

100 30.20 37.13 46.53
250 29.21 38.12 47.52
500 25.25 35.15 43.07
750 29.70 39.11 48.51

1000 28.22 40.10 48.51
1500 27.23 38.12 50.00
2000 28.22 38.12 48.51
2500 28.22 38.61 48.02
5000 29.70 38.61 47.03
7500 28.22 38.61 49.01

10000 29.70 38.12 47.52

Stack Overflow/
General dev.

100 58.28 (3.60) 64.34 (2.16) 68.42 (1.79)
250 59.64 (3.58) 64.70 (3.33) 70.59 (2.19)
500 59.91 (5.16) 65.70 (4.48) 72.13 (3.28)
750 59.82 (4.48) 66.16 (3.86) 71.40 (3.67)

1000 60.00 (3.75) 65.79 (4.13) 72.13 (2.61)
1500 59.55 (5.12) 65.88 (3.98) 72.49 (3.08)
2000 58.82 (4.34) 65.88 (4.75) 72.31 (2.99)
2500 59.00 (4.75) 65.61 (3.75) 72.22 (3.19)
5000 59.10 (4.64) 66.43 (3.78) 72.13 (3.30)
7500 55.93 (7.98) 64.16 (5.16) 71.68 (3.13)

10000 57.83 (4.47) 65.16 (3.72) 72.13 (2.53)

Findings: The optimal number of candidates depends on the dataset
and metric being used. Table 5 shows the performance of the classifier mod-
els we trained using different numbers of candidate pairs. We observed that
the performance of the classifiers varied according to the number of candidate
question pairs used for training and evaluating them. Overall, using a larger
number of candidates increased the performance of the classifiers in the recall-
rate@10 and recall-rate@20 metrics, but decreased the recall-rate@5 metric.
We found that the classifiers achieved the highest performance in the recall-
rate@5 metric when using a number of candidates between 500 and 1,500.
Meanwhile, a number of candidates between 2,000 and 7,500 achieved higher
recall-rates at 10 and 20.

Therefore, we recommend using a number of candidates in the range of
1,000 to 7,500. We note that the performance of the classifiers trained using
that range showed only small differences in performance, and that using larger
numbers of candidates can increase the time it takes to evaluate each duplicate
question. We used a number of candidates of 1,500 for our other analyses, as
it showed a good performance in all datasets and recall-rates.

Duplicate question detection on Q&A websites for game development 27

We could almost double the performance of the unsupervised
techniques by using supervised classifiers. Table 5 highlights the best
scores achieved by our models in bold. We observed a performance increase
of up to 14 percent points in the recall-rate@5 for the model trained on game
development questions from Stack Overflow (from 16.15 to 30.20), representing
an 88% increase when compared to the best similarity scores we obtained
in RQ1 (Section 4.1). We also observed a performance increase of 20% for
the models trained on general questions from Stack Overflow, which could
correctly classify 60% (against 50% in RQ1) of duplicate questions among
the 5 most similar question pairs. We observed similar increases in the other
recall-rate metrics for these two datasets. The classifiers trained on the Game
Development Stack Exchange showed more modest increases of up to 9%.

We observed an increase in performance even when removing the features
based on MPNet and BERTOverflow from our classifiers. Without those fea-
tures, the classifier trained on game development questions from Stack Over-
flow using 1,500 candidates achieved a recall-rate@5 of 27.23 (69% increase
when compared to the best similarity scores in Section 4.1) and a recall-
rate@20 of 45.54 (a 36% increase). The classifiers trained using the other
datasets also showed significant gains (from 15% to 34%) when compared to
the similarity scores used for training them after we removed the features, but
could not beat the best similarity scores we obtained from our unsupervised
methods. For example, the classifier trained on general development questions
on Stack Overflow could only match the previous scores obtained from MP-
Net, while the one trained on the Game Development Exchange saw a slight
decrease of 1 to 4 percent points. Overall, removing features based on MPNet
and BERTOverflow caused a decrease of 5% to 15% in the performance of the
classifiers.

The models could predict duplicate questions on other datasets
with little to no decrease in performance. Table 6 shows the performance
of models trained with 1,500 candidates when detecting duplicate questions
on datasets other than those used for training them. We found that the mod-
els trained on game development questions could identify duplicate questions
about general software development on Stack Overflow with a decrease of only
a couple percent points when compared to the one trained on that data. Mod-
els trained on Stack Overflow data also showed similar performance to the one
trained on Stack Exchange when detecting duplicate questions on the Game
Development Stack Exchange.

We observed the largest decreases in performance when using other models
to detect duplicate questions about game development on Stack Overflow.
Even then, the decrease in performance was at most three percent points when
using the clasifier trained on the Game Development Stack Exchange, which
is less than a 10% decrease. Therefore, supervised models trained on other
datasets achieved higher performance than the unsupervised and pre-trained
models we explored in RQ1, being another viable option for websites with no
labelled data available.

28 Arthur Kamienski et al.

Table 6 Performance of the duplicate detection models in cross-dataset settings.

Test dataset Train dataset
Recall-rate@

5 10 20

Game Dev. Stack Exchange
Game Dev. Stack Exchange 40.27 50.68 58.82
Stack Overflow/Game dev. 35.75 44.80 53.39
Stack Overflow/General dev. 39.00 (2.03) 48.60 (1.30) 55.84 (0.41)

Stack Overflow/Game dev.
Game Dev. Stack Exchange 26.73 35.15 47.03
Stack Overflow/Game dev. 27.23 38.12 50.00
Stack Overflow/General dev. 25.54 (0.57) 33.27 (0.81) 45.05 (1.68)

Stack Overflow/General dev.
Game Dev. Stack Exchange 58.01 (3.42) 63.98 (2.78) 69.77 (3.78)
Stack Overflow/Game dev. 52.76 (4.79) 61.00 (5.38) 68.14 (4.43)
Stack Overflow/General dev. 58.44 (4.58) 65.39 (3.70) 72.40 (2.87)

The datasets contain several unlabelled duplicate question pairs.
Table 7 shows a summary describing the duplicate questions pairs that were
not ranked among the 20 most similar pairs by the models trained using 1,500
candidate pairs. Between 19% and 25% of the misclassified duplicate pairs did
not have their main questions in the set of candidate questions and therefore
our classifier had no chance of correctly ranking those pairs. This loss is justi-
fied by the increased performance we obtained by reducing the set of questions
the model needed to evaluate. Furthermore, including a larger number of can-
didates in the evaluation does not necessarily increase the performance of the
classifier, as we have shown above.

We also found that many of the misclassified duplicate questions about
game development actually had an unlabelled duplicate pair as the top ranked
question in the list of most similar pairs. This finding is similar to those found
by Zhang et al. [81] and Ahasanuzzaman et al. [2], and stresses the importance
of these automatic systems for duplicate question detection. If we considered
these unlabelled pairs as correct classifications, the performance of our models
could be increased by up to 50%. The percentage of unlabelled duplicates
could be even higher if we considered other questions with high ranks, and not
just the most similar one.

Finally, we noticed that several main questions discuss more general topics
that encompass the specific issue discussed in the duplicate question. For ex-
ample, question number 11675524 on the Game Development Stack Exchange
asks about copyright issues with reproducing the mechanics of a specific board
game called Risk. That question was marked as a duplicate of another one that
discusses how closely a game can resemble another one in general terms25.
However, our classifier model found a question that is more similar to the first
one, as it also discusses copyright issues in creating a reproduction of Risk26.
Therefore, some of the question pairs marked as duplicates offer additional

24 https://gamedev.stackexchange.com/questions/116755, accessed September 6th,
2021.
25 https://gamedev.stackexchange.com/questions/1653, September 6th, 2021.
26 https://gamedev.stackexchange.com/questions/69119, accessed September 6th,

2021.

Duplicate question detection on Q&A websites for game development 29

Table 7 Summary of the duplicate pairs that our supervised models ranked below the 20
most similar pairs. Percentages are shown in relation to the total number of misclassified
duplicates in each dataset.

Description
Game Dev.
Stack Exchange

Game Dev.
Stack Overflow

General Dev.
Stack Overflow

Duplicate pairs
in test set

221 202 221

Misclassified
duplicate pairs

91 (100%) 101 (100%) 53 (100%)

Main question not in
the list of candidates

19 (21%) 19 (19%) 13 (25%)

Top ranked question is
an unlabelled duplicate

44 (48%) 51 (50%) 10 (19%)

Main question discusses
a more general topic

40 (44%) 42 (42%) 28 (53%)

challenges for automatic detection, as they discuss similar yet different topics
and require an understanding of how these topics relate to one another.

Summary: We could almost double the performance of unsupervised tech-
niques using supervised models trained with labelled data. We obtained the
best performance by choosing a number of candidate question pairs in the
range of 500 to 2,500. The supervised models could detect duplicate ques-
tions on datasets other than the ones they were trained on with a decrease
in performance of up to 10%.

5 Comparison with other studies

Performing a fair comparison between methodologies for detecting duplicate
questions on Stack Overflow is hard as most studies [2, 65, 66, 76, 77, 78, 81] use
different datasets and do not provide any code for reproducing their results.
For example, several studies [2, 58, 65, 66, 76, 77, 78, 81] have used data
collected from a recent Stack Exchange data dump at the time of their writing
and sampled it based on post dates and tags to obtain a subset of questions.
As the Stack Exchange data dump is mutable (e.g., questions can be edited
and deleted after they are posted) and sampling techniques depend on several
different parameters, it is very difficult to reproduce and obtain the same
dataset.

These issues are also discussed in other studies that have tried to repro-
duce and compare duplicate detection techniques on Stack Overflow [2, 58, 77].
Silva et al. [58] found a large performance decrease when reproducing the
methodology proposed by Ahasanuzzaman et al. [2] and Zhang et al. [81],
while also showing that the performance varies greatly when using sets of

30 Arthur Kamienski et al.

questions posted in different years. Zhang et al. [77] also tried to reproduce
Ahasanuzzaman et al.’s [2] methodology and found a slight increase in perfor-
mance when evaluating their implementation on their data. All of the studies
note the challenges of correctly reproducing those results, as neither the code
nor the data are available for the reproduced studies.

We also noticed that several of the studies show at least one design choice
that harms the reproducibility of their methodology or its ability to be applied
on real-world scenarios. Some of these choices can also artificially boost the
performance of the duplicate detection techniques, and the results reported by
those studies should suffer large decreases when applied to real Q&A websites.
These pitfalls make the task of performing a fair comparison between studies
even harder, as each methodology can use a different approach for evaluat-
ing their proposed techniques despite using the same recall-rate measures. We
outline below some of the common pitfalls we observed when developing our
methodology for duplicate question detection and analyzing those proposed by
other studies. We hope that future researchers take these pitfalls into consid-
eration when designing their own systems for duplicate detection, which will
help in their adoption by Q&A websites.

1. Undersampling the test set - Five of the studies we analyzed [65, 66,
76, 77, 78] have randomly sampled questions that are not part of any
duplicate pairs to make the dataset balanced between duplicate and non-
duplicate pairs. While this is a valid approach for building a train set,
undersampling should not be performed on the test set. The problem of
identifying duplicate questions is imbalanced by nature and removing this
imbalance during evaluation makes the task easier and not consistent with
real-world situations.

2. Splitting all questions between train and test sets - Splitting datasets
between train and test sets is a common approach for evaluating machine
learning techniques. However, when evaluating techniques for duplicate
question detection, only the set of duplicate questions should be split be-
tween train and test. The remaining questions should be used by both sets,
as duplicate questions should be compared to all other answered questions
present in the website. Assigning a limited number of questions to be com-
pared in the test set makes the problem easier in a similar manner as
undersampling the test set does. We found five studies that split all of the
dataset between train and test sets, limiting the number of questions used
during evaluation [65, 66, 76, 77, 78].

3. Appending a ‘[duplicate]’ tag to question titles - On Stack Overflow
and other Q&A websites of the Stack Exchange network duplicate questions
have the tag ‘[duplicate]’ appended to their titles after they are marked as
such. While this tag becomes part of the title of the question and can
be used for identifying future duplicate relations, it was not present when
the question was first posted. Therefore, appending the tag to duplicate
questions leads to information leakage and is not representative of real-

Duplicate question detection on Q&A websites for game development 31

world scenarios. Four of the studies we analyzed have artificially appended
the tag to the titles of duplicate questions [2, 58, 65, 66].

4. Removing duplicate questions without answers - Duplicate ques-
tions can only point to other questions that already have an answer. How-
ever, the duplicate questions themselves do not need to have answers to be
marked as such, and duplicates without answers should also be considered
in the analysis. We found three studies that removed duplicates without
answers [76, 77, 78].

5. Only comparing duplicates with historical questions - Ideally, du-
plicate questions should be identified at the time of their posting, and
thus should only point to questions that have been created before that.
However, there are several instances of questions that are marked as du-
plicates of more recent ones. Some examples are the questions 339039627,
113976228, and 513749729, which point to questions that have been posted
one to nine months later. Two studies only compared duplicate questions
to those posted earlier [2, 81].

6. Using old data - We found two studies that used data that was over six
years-old at the time of their writing [65, 66]. Using old data may lead
to results that are not useful or representative of current Q&A websites.
For example, the number of duplicate questions on Stack Overflow grows
quickly with the passage of time [2, 58] and the rules for marking questions
as duplicates and the way users interact with them may change. Silva et
al. [58] have also shown that the performance of duplicate detection tech-
niques degrades when considering questions posted in more recent years.
While publicly available data is scarce for some Q&A websites, the Stack
Exchange data dump is updated monthly and researchers should try to
use the most recent snapshot available. We note that old data can still be
useful as a benchmark for models, but the results obtained when using it
should not be expected to hold for current applications.

7. Training on test duplicate questions - As we compare duplicate ques-
tions with every other answered question in our dataset, it is easy to form
training pairs which contain duplicate questions that are also in the test
set. These test duplicate questions should therefore be removed from the
dataset prior to forming question pairs, to avoid leaking information by
using them during training. It is hard to identify if this type of leakage has
occurred in other studies, but we have succumbed to this pitfall ourselves
during the initial stages of our study before correcting it. Some common
signs that the duplicate detection model has been trained on test data are
the inability to generalize to other datasets, and high and near-constant
values of recall-rates across multiple values of k.

Because of these pitfalls, it is very hard to compare results across studies,
as they might not reflect the true performance of a duplicate detection system

27 https://stackoverflow.com/questions/3390396, accessed September 6th, 2021.
28 https://stackoverflow.com/questions/1139762, accessed September 6th, 2021.
29 https://stackoverflow.com/questions/5137497, accessed September 6th, 2021.

32 Arthur Kamienski et al.

in a real-world scenario. Even if we tried to reproduce other methodologies,
the uncertainty of the correctness of our implementations would make the
comparison meaningless and unfair. Furthermore, we would need to remedy
the pitfalls we mention in order to perform a fair evaluation, which would sig-
nificantly alter the original approaches. That way, we would not be comparing
our technique to a proven baseline, but to a new and untested approach. That
is why we tested and compared several techniques that have already been used
in other studies [2, 58, 76, 77] (e.g., TF-IDF and BM25) and used them as
baselines instead.

Nevertheless, we decided to perform a comparison against the approach
described by Silva et al. [58], as it is the only study whose results can be
reproduced. To perform the comparison, we evaluated our approach on data
extracted from the MSR ’15 mining challenge dataset [75]30, which is similar
to the one used by Silva et al.[58] and Ahasanuzzaman et al. [2]. The data
is comprised of questions marked with the tags Java, C++, Python, Ruby,
HTML, and Objective-C collected from the September 2014 Stack Overflow
data dump. We judged this dataset to be a suitable choice for evaluating
duplicate detection methodologies as it provides different sets of questions
from specific topics of the software engineering domain. These sets vary in
size, but all of them have a large yet manageable number of a few hundred
thousand questions. Table 8 shows a summary of each of the sets of questions
contained in the dataset.

Table 8 Summary of the dataset we used for comparing our methodology with other studies
that analyzed duplicate questions on Stack Overflow.

Tag Questions Non-duplicates Duplicates Pairs

Java 708,473 694,330 14,143 (2.00%) 15,070
C++ 314,869 306,330 8,539 (2.71%) 9,291
Python 339,652 332,117 7,535 (2.22%) 8,032
Ruby 114,414 113,333 1,081 (0.94%) 1,146
HTML 337,341 334,405 2,936 (0.87%) 3,048
Objective-C 200,862 197,755 3,107 (1.55%) 3,287

We took the following steps to create the dataset starting from the original
mining challenge data. First, we selected all of the questions that contain one
of the tags mentioned above and assigned them to separate sets. A question
can belong to more than one set if it contains more than one of those tags. As
the list of question tags is represented as a string in the XML files containing
the data, we split the string into a list of tags and only selected the tags that
were perfect matches in lowercase. This is an important step to avoid false
positives such as JavaScript or IPython. Finally, for each question set, we
extracted duplicate question pairs by selecting only the pairs that have both
the duplicate and original questions in the set. We cannot guarantee that the

30 The dataset is available at http://2015.msrconf.org/challenge.php, accessed June
1st, 2022.

Duplicate question detection on Q&A websites for game development 33

resulting dataset is the exactly the same as the one used by Ahasanuzzaman et
al. [2], as they did not provide a clear methodology for selecting the questions
nor reported the number of questions they obtained for each tag. We also did
not alter the content of the questions by appending a [Duplicate] label to
the title of duplicate questions, as was done in their study.

Other studies [58, 65, 66, 77] have tried to approximate this dataset as
a way of comparing methodologies with the one proposed by Ahasanuzza-
man et al. [2]. The datasets used in those studies are different from the one
we present here, as each uses a different methodology for sampling questions
from more recent data dumps. Three of those studies [65, 66, 77] have also
randomly sampled questions that are not part of any duplicate pairs to make
the dataset balanced between duplicate and non-duplicate pairs. For example,
for questions with the Ruby tag in our dataset, those studies would randomly
select 2,292 questions that are not part of the 1,146 duplicate question pairs to
produce a dataset of around 4,500 questions. While undersampling is a valid
approach for training classification models, it is not suitable for testing and
evaluating their performance in a real-world scenario, and therefore we are not
able to compare our results to theirs.

We followed the same methodology as described in Section 3 to compare
questions, apply the unsupervised and pre-trained techniques and train super-
vised classifiers for each of the question sets in both datasets. Here we show the
results obtained when selecting 1,500 candidates prior to training and evalu-
ating the model. All of the models we used, along with the train and test sets
for each question set are also available in our replication package to allow for
future researchers to use, reproduce, and evaluate our results.

Table 9 shows the results we obtained in each of these sets using our su-
pervised models. Additionally, we show the results we obtained by calculating
the MPNet similarity technique between all question parts and answers, as
it was the best technique we found in RQ1 (Section 4.1). We only show the
best results obtained by the studies which used some variation of the Stack
Overflow 2014 data dump. Therefore, we only included the results reported by
Silva et al. [58] for their reproductions of Dupe [2] and DupPredictor [81], as
those are the only two other methodologies that used a dataset that was not
undersampled. As we can see, our comparison shows that our MPNet model
always outperformed DupeRep, but not always DupPredictorRep. However,
our supervised model (RQ2) outperformed DupeRep and DupPredictorRep
for all studied tags. We stress that even though we did our best to recreate the
dataset as much as possible, the results in Table 9 were reported by Silva et
al. [58] for their unique datasets and this is not a completely fair comparison.

6 Implications of our findings

In this section we discuss some of the implications of our findings. We focus
our discussion on the implications for the developers of Q&A websites and

34 Arthur Kamienski et al.

Table 9 Comparison of the different approaches proposed by other studies for detecting
duplicate questions on data extracted from Stack Overflow up to 2014 without sampling.
Values in bold show the best results obtained for each tag.

Tag Technique Source
Recall-rate@

5 10 20

Java

DupeRep [58] 19.44 23.90 27.95
DupPredictorRep-T + tag [58] 28.04 36.70 44.02
MPNet this 26.26 33.01 40.01
Supervised model this 32.06 39.23 46.09

C++

DupeRep [58] 16.26 20.63 25.67
DupPredictorRep-T + tag [58] 18.19 25.91 33.73
MPNet this 24.59 32.61 39.70
Supervised model this 31.09 39.05 46.08

Python

DupeRep [58] 16.38 20.00 24.72
DupPredictorRep-T + tag [58] 0.00 22.61 34.38
MPNet this 25.41 32.85 39.88
Supervised model this 31.00 38.02 45.06

Ruby

DupeRep [58] 29.84 35.45 38.26
DupPredictorRep-T + tag [58] 17.31 30.99 39.47
MPNet this 43.06 52.78 60.65
Supervised model this 53.24 59.72 66.67

HTML

DupeRep [58] 18.15 21.67 25.30
DupPredictorRep-T + tag [58] 28.21 35.89 43.56
MPNet this 29.64 34.41 40.37
Supervised model this 30.66 37.65 45.31

Objective-C

DupeRep [58] 23.62 30.64 38.10
DupPredictorRep-T + tag [58] 29.52 33.85 39.37
MPNet this 29.95 38.00 46.70
Supervised model this 39.13 46.86 54.27

for researchers, as those are the two main groups that can benefit from our
findings.

6.1 For the developers of Q&A websites for game development

As we discussed in Section 1, Q&A websites suffer with the presence of dupli-
cate questions and a lot of work goes into manually identifying them. Several
researchers have tried to help those websites by creating techniques for auto-
matic duplicate detection. Most of those techniques are supervised and require
a labelled set of training data that is not available for most Q&A websites for
game development. Therefore, in our work, we have explored alternatives for
these supervised techniques and have thus analyzed how unsupervised and
pre-trained techniques perform in the task of duplicate question detection in
those websites.

As we have shown in Section 4.1, some of the techniques we analyzed
are viable options for the websites that lack the data needed for training
supervised models. For example, we could correctly identify up to 39% of
duplicate question pairs using a list of the five most similar pairs according
to the MPNet similarity. If the Q&A websites implemented that technique,
that would lead to a reduction of up to 39% in the posting of questions that
have already been answered. We have also shown that other simpler techniques
are good choices for unsupervised duplicate detection systems if performance

Duplicate question detection on Q&A websites for game development 35

and processing time need to be prioritized. Furthermore, we evaluated several
approaches to building duplicate detection systems, such as using different
question parts and evaluation metrics. Therefore, Q&A websites can use our
results to decide which technique better suits their needs.

Furthermore, our results from RQ2 (Section 4.2) show that even small
sets of labelled data can improve the results provided by the techniques we
analyzed in RQ1 (Section 4.1). Our supervised models achieved an increased
performance in all datasets we used, and almost doubled the performance of de-
tecting duplicate game development questions on Stack Overflow. We trained
these models using only eight hundred pairs of labelled duplicate questions,
which is a really small number when compared to the hundreds of thousands
of pairs on other websites such as Stack Overflow31. Therefore, even small
websites can take advantage of their data to improve their duplicate detection
systems.

Meanwhile, websites with few or no labelled data at all can invest some
effort into manually labelling a set of eight hundred duplicate pairs to train and
improve the performance those supervised models. This approach would work
even if only a small portion of true duplicates are manually detected, as we
have shown that our models still perform well when using an imperfect ground
truth (Section 4.2). Another viable option is to train supervised models using
the data from other websites (such as Stack Overflow) to create their own
duplicate detection systems. As we have shown in RQ2, cross-website models
could achieve higher performance than the unsupervised techniques and had
only a small decrease in performance when classifying data from a dataset
other than the one used for training it.

We note that there is an increased cost associated with training and im-
plementing the supervised models we described. However, this cost should be
low when compared to the other unsupervised techniques we described in RQ1
(Section 4.1), as the number of training samples is very low. For example, it
took less than ten minutes to train the supervised models in a laptop with an
8th generation Intel Core i7 processor. Nevertheless, Q&A websites should use
our results to decide if the increase performance justifies the additional cost
based on their circumstances.

All of these findings describe viable approaches for developing systems for
duplicate question detection. Although the techniques we described may not
achieve performance as high as some other tailor-made techniques, they may be
the only alternatives for Q&A websites with low resources and no labelled data,
such as those focused on discussing game development. Those websites can also
use off-the-shelf tools such as ElasticSearch32 that can be quickly deployed and
scaled to help in implementing the techniques. Ultimately, our results can help

31 The current number of duplicate question pairs on Stack Overflow is available by running
the following query on the Stack Exchange data explorer website https://data.stackexch

ange.com/stackoverflow/query/1440749/number-of-duplicate-questions-on-stack-ov

erflow.
32 https://www.elastic.co/elasticsearch/, accessed September 6th, 2021.

36 Arthur Kamienski et al.

those websites in building better systems for duplicate detection, which can
improve their ability of helping users acquire the information they need.

We note, however, that even our best approaches wrongly identified a high
number of false-positive duplicate questions, as we showed in Section 4.2. While
a more powerful classifier could possibly achieve better results, there is still a
degree of subjectivity when it comes to defining what is a duplicate question,
and the correct label may change according to the person who assigned it.
Therefore, it is extremely hard to assert whether two questions are duplicates,
and there may not be a bullet-proof solution to solve the problem of finding
duplicate questions. Instead, our approaches try to rank questions based on
how likely they are to be duplicates. That way, websites can use these duplicate
detection systems to aid them in finding and dealing with those questions.

6.2 For researchers

Throughout our paper, we have discussed several methodological choices that
led to the best results for the models and techniques we have studied. For
example, we have shown that the performance of the models is affected by
the number of candidate question pairs chosen for evaluation and by the parts
of the questions that are used for the comparison. We have also analyzed
several techniques for comparing questions, and how they perform in the task
of ranking duplicate questions and selecting candidate questions. Additionally,
we have introduced new methodologies for detecting duplicate questions in the
software engineering domain, such as using MPNet and BERTOverflow33, and
using answers from main questions. Future researchers can build upon all of
these findings, and use them to decide what are the best approaches to use in
their own methodologies.

Moreover, we have tried our best to reproduce a real-world scenario for
duplicate detection in our methodology. For example, we compared duplicate
questions against answered questions using only the information provided at
the time of their posting. We have not altered the contents of the questions
aside from preprocessing their texts, and we used all of the questions available
in our datasets for evaluating our methodology, without reducing the number
of non-duplicate questions in the test set. These choices are different from
the ones taken in other studies and can lead to reduced performances when
evaluating the methodologies. However, we believe these approaches can bet-
ter gauge the performance of the proposed techniques when applied on Q&A
websites, and should be adopted by other researchers when conducting simi-
lar studies into duplicate question detection. Future researchers can therefore
use and improve our proposed methodology to build systems that can more
closely reflect real-world situations. We have also outlined some of the common

33 Despite being trained using Stack Overflow data, BERTOverflow was created for code
and named entity recognition and not was not previously used for duplicate question detec-
tion.

Duplicate question detection on Q&A websites for game development 37

pitfalls that occur when evaluating duplicate detection systems in Section 5,
which can help researchers avoid them in the future.

We have made all of the code and data used in our study available in our
replication package. We included thorough explanations and comments so that
other researchers can use, reproduce and evaluate our results and methodology.
We also made available all of the models we used (both unsupervised and
supervised) so that other researchers can use them without having the burden
of retraining from scratch. Everything is bundled in a Docker container to allow
running the whole methodology with minimum effort, even on other datasets.
Finally, we have introduced fixed datasets for duplicate question detection in
the software engineering domain (Section 5) to allow for a fair comparison
among methodologies. With these measures, we hope to reduce the burden
required for reproducing our results and allow for future studies to use and
build upon our methodologies and develop better duplicate detection systems.

7 Threats to validity

In this section we discuss the threats to the validity of our study.

7.1 Internal validity

Throughout this study we performed several preprocessing steps to manipulate
our data and adapt it to our needs. While we have not changed any of the
content of the posts, our results might have been affected by one of these data
processing steps.

We sampled our data from Stack Overflow to obtain a set of game devel-
opment questions and a small set of general development questions. Despite
repeating this sample multiple times using different random seeds, we cannot
guarantee that this data is still representative of the whole set of questions
from Stack Overflow without further analysis of the remaining data.

We selected only one answer from each question to use when comparing
the questions in Section 3.3. We used the number of votes, the time of posting,
and the flag indicating if the answer was accepted to elect the answer for the
comparison. However, it is hard to decide which is the best answer for a given
question, and our heuristic for choosing those answers may not lead to the
best results. For example, Omondiagbe et al. [36] found that the number of
votes and is not a good indicator for answer acceptability and that accepted
answers are usually not the first ones to be posted for questions about Java
and JavaScript on Stack Overflow. Future studies should explore using different
heuristics for choosing answers for duplicate question detection.

Our results are dependent on our parameter and implementation choices
for some of our models and algorithms, such as TF-IDF, BM25, LDA, and
Doc2Vec, and other sets of parameters or implementations might offer different
results. We also used parameters that were previously tested on Stack Over-
flow, which may not be the best ones to use for the game development domain.

38 Arthur Kamienski et al.

Moreover, we trained our supervised models using a random forest algorithm
with parameters defined using a random search approach, and other algo-
rithms with different parameter choices might lead to a better performance.
Future studies should explore which sets of parameters, implementations, and
algorithms offer the best results for the game development domain.

We identified in Section 4.2 that the datasets we used contain several un-
labelled duplicate pairs. As these labels are crucial for training and evaluating
the approaches we explored, our results may vary depending on how many
wrong labels are present in the dataset. As the duplicate question labelling
mechanism is manual on websites such as Stack Overflow (i.e., by users and
moderators), such wrong and/or incomplete labels are likely to exist on all
technical Q&A websites that label duplicate questions. Future studies should
analyze how the presence and proportion of these wrong labels affect the per-
formance of our approaches.

7.2 External validity

In this study we focused our analysis on the data obtained from two Q&A
websites, namely the Game Development Stack Exchange and Stack Overflow.
We chose to study these websites as they are the two Q&A largest websites
for game development that offer a labelled set of duplicate questions. While
some transferability is expected between Q&A websites of similar domains
and despite showing that our models can maintain their performance when
detecting duplicate questions on different datasets (Section 4.2), we cannot
guarantee that the models will work on other Q&A websites, whether they
are focused on game development or not. Moreover, our results show that the
performance of the techniques we tested can vary according to the dataset and
using them on other Q&A websites can provide different results than the ones
we obtained. Further studies should test the techniques and methodologies we
presented on different Q&A websites.

7.3 Construct validity

In our study, we ranked question pairs to identify if they are duplicates or
not using a set of different similarity scores. We used the recall-rate@k metric
to evaluate how we could use these techniques in Q&A websites, simulating
a real-world scenario in which we provide users with a list of suggestions.
This metric should be more suitable for evaluating the performance in this
task than other metrics commonly used for classification as it only considers
the samples with the highest scores as opposed to all of them. For example,
we could obtain near perfect ROC-AUC (area under the receiver operating
characteristic curve) measures of above 0.95 for some similarity scores, as
most of the duplicate question pairs were ranked among the top 5% most
similar pairs (Section 4.1). We note, however, that the number k used for

Duplicate question detection on Q&A websites for game development 39

the recall-rates evaluation should be relatively small in order to provide a
reasonably-sized list of suggestions.

We did not evaluate whether the techniques can identify that a question
does not have a duplicate. Ideally, a real system for detecting duplicate ques-
tions should avoid giving wrong recommendations if it is the first time that a
question has been posted. Future studies should test whether the techniques
are able to correctly detect if a question does not have any duplicates.

Our evaluation is not time aware and the performance of some similarity
measures and the supervised classifiers can degrade over time. For example,
the vocabulary used in the studied websites can change as new topics and
technologies emerge, introducing unseen words and phrases. The unseen text
is not a problem for the similarity measures based on MPNet, BERTOverflow,
and Jaccard, but may reduce the performance of the measures based on the
other techniques that use the vocabulary for training. As a consequence, the
supervised classifiers can also suffer a decrease in performance, despite not
being directly trained using the vocabulary from the datasets. Future studies
should evaluate the results of the techniques and classifiers over time.

8 Conclusion

In this paper, we explored different approaches to identifying duplicate ques-
tions on game development Q&A websites. Given that there is a lack of labelled
data for duplicate questions about game development, we evaluated seven dif-
ferent unsupervised and pre-trained techniques for this task, including two new
techniques which have not been previously used in the software engineering
domain. We further improved our results by training supervised models with
the small number of labelled duplicate questions about game development.
Our main findings include:

(1) Unsupervised and pre-trained techniques could identify up to 54% of
the duplicate question pairs about game development among the 20 most
similar question pairs. Comparing question titles, bodies, tags, and answers
with MPNet offered the best performance.

(2) Supervised models trained on a small set of labelled duplicate questions
could almost double the performance obtained by the unsupervised and pre-
trained techniques.

(3) Supervised models could predict duplicate questions on datasets other
than the ones they were trained on with little to no decrease in performance.

Our results provide valuable insights into the development of systems for
duplicate question detection. Based on our results, we suggest that websites
consider evaluating supervised models with MPNet as a feature to see if this
combination improves the performance of their duplicate detection systems if
they have the resources required to implement this approach, as this combina-
tion yielded good results for most of our experiments. Furthermore, we have
shown that using unsupervised techniques or labelled data from other websites
are viable approaches for building a duplicate detection system, which opens

40 Arthur Kamienski et al.

new paths for websites with low resources. Ultimately, our findings can be
used by developers of those Q&A websites and future researchers to develop
systems that can detect duplicate questions more reliably.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets generated and analysed during the current study are available
as part of our replication package on Zenodo on https://zenodo.org/recor

d/5500268#.Y0iVjtLMJhF.

References

1. Abric, D., Clark, O.E., Caminiti, M., Gallaba, K., McIntosh, S.: Can du-
plicate questions on Stack Overflow benefit the software development com-
munity? In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), pp. 230–234. IEEE (2019)

2. Ahasanuzzaman, M., Asaduzzaman, M., Roy, C.K., Schneider, K.A.: Min-
ing duplicate questions of Stack Overflow. In: 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR), pp. 402–
412. IEEE (2016)

3. Ahmad, A., Feng, C., Ge, S., Yousif, A.: A survey on mining Stack Over-
flow: Question and answering (Q&A) community. Data Technologies and
Applications (2018)

4. Barua, A., Thomas, S.W., Hassan, A.E.: What are developers talking
about? An analysis of topics and trends in Stack Overflow. Empirical
Software Engineering 19(3), 619–654 (2014)

5. Bazelli, B., Hindle, A., Stroulia, E.: On the personality traits of Stack-
Overflow users. In: 2013 IEEE international conference on software main-
tenance, pp. 460–463. IEEE (2013)

6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of
machine Learning research 3(Jan), 993–1022 (2003)

7. Chen, L., Baird, A., Straub, D.: Why do participants continue to con-
tribute? Evaluation of usefulness voting and commenting motivational af-
fordances within an online knowledge community. Decision Support Sys-
tems 118, 21–32 (2019)

8. Chowdhury, A., Frieder, O., Grossman, D., McCabe, M.C.: Collection
statistics for fast duplicate document detection. ACM Transactions on
Information Systems (TOIS) 20(2), 171–191 (2002)

Duplicate question detection on Q&A websites for game development 41

9. Dalip, D.H., Gonçalves, M.A., Cristo, M., Calado, P.: Exploiting user feed-
back to learn to rank answers in Q&A forums: a case study with Stack
Overflow. In: Proceedings of the 36th international ACM SIGIR confer-
ence on Research and development in information retrieval, pp. 543–552
(2013)

10. Deng, S., Tong, J., Lin, Y., Li, H., Liu, Y.: Motivating scholars’ responses
in academic social networking sites: An empirical study on ResearchGate
Q&A behavior. Information Processing & Management 56(6), 102082
(2019)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018)

12. Ellmann, M.: Same-same but different: On understanding duplicates in
Stack Overflow. Informatik Spektrum 42(4), 266–286 (2019)

13. Fang, C., Zhang, J.: Users’ continued participation behavior in social Q&A
communities: A motivation perspective. Computers in Human Behavior
92, 87–109 (2019)

14. Fu, H., Oh, S.: Quality assessment of answers with user-identified crite-
ria and data-driven features in social Q&A. Information Processing &
Management 56(1), 14–28 (2019)

15. Guan, T., Wang, L., Jin, J., Song, X.: Knowledge contribution behavior
in online Q&A communities: An empirical investigation. Computers in
Human Behavior 81, 137–147 (2018)

16. Hindle, A., Alipour, A., Stroulia, E.: A contextual approach towards more
accurate duplicate bug report detection and ranking. Empirical Software
Engineering 21(2), 368–410 (2016)

17. Hindle, A., Onuczko, C.: Preventing duplicate bug reports by continuously
querying bug reports. Empirical Software Engineering 24(2), 902–936
(2019)

18. Homma, Y., Sy, S., Yeh, C.: Detecting duplicate questions with deep learn-
ing. In: Proceedings of the International Conference on Neural Information
Processing Systems (NIPS) (2016)

19. Hong, Z., Deng, Z., Evans, R., Wu, H.: Patient questions and physician
responses in a Chinese health Q&A website: Content analysis. Journal of
Medical Internet Research 22(4), e13071 (2020)

20. Hoogeveen, D., Bennett, A., Li, Y., Verspoor, K.M., Baldwin, T.: De-
tecting misflagged duplicate questions in community question-answering
archives. In: Twelfth international AAAI conference on web and social
media (2018)

21. Imtiaz, Z., Umer, M., Ahmad, M., Ullah, S., Choi, G.S., Mehmood, A.:
Duplicate questions pair detection using siamese MaLSTM. IEEE Access
8, 21932–21942 (2020)

22. Jaccard, P.: The distribution of the flora in the alpine zone. 1. New phy-
tologist 11(2), 37–50 (1912)

23. Jin, J., Li, Y., Zhong, X., Zhai, L.: Why users contribute knowledge to on-
line communities: An empirical study of an online social Q&A community.

42 Arthur Kamienski et al.

Information & management 52(7), 840–849 (2015)
24. Kamath, A., Gupta, S., Carvalho, V.: Reversing gradients in adversar-

ial domain adaptation for question deduplication and textual entailment
tasks. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 5545–5550 (2019)

25. Kamienski, A., Bezemer, C.P.: An empirical study of Q&A websites for
game developers. Empirical Software Engineering (2021)

26. Le, Q., Mikolov, T.: Distributed representations of sentences and docu-
ments. In: International conference on machine learning, pp. 1188–1196
(2014)

27. Li, Z., Yin, G., Yu, Y., Wang, T., Wang, H.: Detecting duplicate pull-
requests in GitHub. In: Proceedings of the 9th Asia-Pacific Symposium
on Internetware, pp. 1–6 (2017)

28. Li, Z., Yu, Y., Zhou, M., Wang, T., Yin, G., Lan, L., Wang, H.: Re-
dundancy, context, and preference: An empirical study of duplicate pull
requests in OSS projects. IEEE Transactions on Software Engineering
(2020)

29. Liang, D., Zhang, F., Zhang, W., Zhang, Q., Fu, J., Peng, M., Gui, T.,
Huang, X.: Adaptive multi-attention network incorporating answer infor-
mation for duplicate question detection. In: Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pp. 95–104 (2019)

30. Lopresti, D.P.: Models and algorithms for duplicate document detection.
In: Proceedings of the Fifth International Conference on Document Anal-
ysis and Recognition. ICDAR’99 (Cat. No. PR00318), pp. 297–300. IEEE
(1999)

31. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

32. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed
representations of words and phrases and their compositionality. In: Ad-
vances in neural information processing systems, pp. 3111–3119 (2013)

33. Mizobuchi, Y., Takayama, K.: Two improvements to detect duplicates
in Stack Overflow. In: 2017 IEEE 24th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), pp. 563–564. IEEE
(2017)

34. Nasehi, S.M., Sillito, J., Maurer, F., Burns, C.: What makes a good code
example?: A study of programming Q&A in StackOverflow. In: 2012 28th
IEEE International Conference on Software Maintenance (ICSM), pp. 25–
34. IEEE (2012)

35. Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using
of Jaccard coefficient for keywords similarity. In: Proceedings of the in-
ternational multiconference of engineers and computer scientists, 6, pp.
380–384 (2013)

36. Omondiagbe, O.P., Licorish, S.A., MacDonell, S.G.: Features that predict
the acceptability of Java and JavaScript answers on Stack Overflow. In:
Proceedings of the Evaluation and Assessment on Software Engineering,

Duplicate question detection on Q&A websites for game development 43

pp. 101–110 (2019)
37. Overflow, S.: About Stack Overflow. https://stackoverflow.com/comp

any (2021). Accessed: July 25, 2021
38. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vander-
plas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay,
E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12, 2825–2830 (2011)

39. Poerner, N., Schütze, H.: Multi-view domain adapted sentence embeddings
for low-resource unsupervised duplicate question detection. In: Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 1630–1641 (2019)

40. Porter, M.F., et al.: An algorithm for suffix stripping. Program 14(3),
130–137 (1980)

41. Prabowo, D.A., Herwanto, G.B.: Duplicate question detection in question
answer website using convolutional neural network. In: 2019 5th Inter-
national Conference on Science and Technology (ICST), vol. 1, pp. 1–6.
IEEE (2019)

42. Procaci, T.B., Nunes, B.P., Nurmikko-Fuller, T., Siqueira, S.W.: Finding
topical experts in question & answer communities. In: 2016 IEEE 16th
International Conference on Advanced Learning Technologies (ICALT),
pp. 407–411. IEEE (2016)

43. Procaci, T.B., Siqueira, S.W., Nunes, B.P., Nurmikko-Fuller, T.: Modelling
experts behaviour in Q&A communities to predict worthy discussions. In:
2017 IEEE 17th International Conference on Advanced Learning Tech-
nologies (ICALT), pp. 291–295. IEEE (2017)

44. Rahman, M.M., Roy, C.K.: An insight into the unresolved questions at
Stack Overflow. In: 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, pp. 426–429. IEEE (2015)

45. Rakha, M.S., Bezemer, C.P., Hassan, A.E.: Revisiting the performance
evaluation of automated approaches for the retrieval of duplicate issue
reports. IEEE Transactions on Software Engineering 44(12), 1245–1268
(2017)

46. Rakha, M.S., Bezemer, C.P., Hassan, A.E.: Revisiting the performance
of automated approaches for the retrieval of duplicate reports in issue
tracking systems that perform just-in-time duplicate retrieval. Empirical
Software Engineering 23(5), 2597–2621 (2018)

47. Ramos, J., et al.: Using tf-idf to determine word relevance in document
queries. In: Proceedings of the first instructional conference on machine
learning, vol. 242, pp. 29–48. Citeseer (2003)

48. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using
siamese BERT-networks. In: Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Compu-
tational Linguistics (2019). URL https://arxiv.org/abs/1908.10084

44 Arthur Kamienski et al.

49. Richardson, L.: Beautiful soup. https://www.crummy.com/software/Be

autifulSoup (2020). Accessed: September 5, 2021
50. Rochette, A., Yaghoobzadeh, Y., Hazen, T.J.: Unsupervised domain adap-

tation of contextual embeddings for low-resource duplicate question detec-
tion. arXiv preprint arXiv:1911.02645 (2019)

51. Rodrigues, J., Saedi, C., Maraev, V., Silva, J., Branco, A.: Ways of asking
and replying in duplicate question detection. In: Proceedings of the 6th
joint conference on lexical and computational semantics (SEM), pp. 262–
270 (2017)

52. Rücklé, A., Moosavi, N.S., Gurevych, I.: Neural duplicate question de-
tection without labeled training data. arXiv preprint arXiv:1911.05594
(2019)

53. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect
reports using natural language processing. In: 29th International Confer-
ence on Software Engineering (ICSE’07), pp. 499–510. IEEE (2007)

54. Saedi, C., Rodrigues, J., Silva, J., Branco, A., Maraev, V.: Learning profiles
in duplicate question detection. In: 2017 IEEE international conference
on information reuse and integration (IRI), pp. 544–550. IEEE (2017)

55. Santos, T., Burghardt, K., Lerman, K., Helic, D.: Can badges foster a more
welcoming culture on Q&A boards? In: Proceedings of the International
AAAI Conference on Web and Social Media, vol. 14, pp. 969–973 (2020)

56. Shah, D.J., Lei, T., Moschitti, A., Romeo, S., Nakov, P.: Adversar-
ial domain adaptation for duplicate question detection. arXiv preprint
arXiv:1809.02255 (2018)

57. Shen, X., Jia, A.L., Shen, S., Dou, Y.: Helping the ineloquent farmers:
Finding experts for questions with limited text in agricultural Q&A com-
munities. IEEE Access 8, 62238–62247 (2020)

58. Silva, R.F., Paixão, K., de Almeida Maia, M.: Duplicate question detec-
tion in Stack Overflow: A reproducibility study. In: 2018 IEEE 25th in-
ternational conference on software analysis, evolution and reengineering
(SANER), pp. 572–581. IEEE (2018)

59. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: MPNet: Masked and
permuted pre-training for language understanding. arXiv preprint
arXiv:2004.09297 (2020)

60. Sun, C., Lo, D., Khoo, S.C., Jiang, J.: Towards more accurate retrieval
of duplicate bug reports. In: 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2011), pp. 253–262. IEEE
(2011)

61. Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S.C.: A discriminative model
approach for accurate duplicate bug report retrieval. In: Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1, pp. 45–54 (2010)

62. Tabassum, J., Maddela, M., Xu, W., Ritter, A.: Code and named entity
recognition in StackOverflow. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics (ACL) (2020). URL
https://www.aclweb.org/anthology/2020.acl-main.443/

Duplicate question detection on Q&A websites for game development 45

63. Viggiato, M., Lin, D., Hindle, A., Bezemer, C.P.: What causes wrong senti-
ment classifications of game reviews. IEEE Transactions on Games (2021)

64. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N.,
Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ.,
Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cim-
rman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M.,
Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods 17, 261–272 (2020). DOI 10.1038/s41592-019-0686-2

65. Wang, L., Zhang, L., Jiang, J.: Detecting duplicate questions in Stack
Overflow via deep learning approaches. In: 2019 26th Asia-Pacific Software
Engineering Conference (APSEC), pp. 506–513. IEEE (2019)

66. Wang, L., Zhang, L., Jiang, J.: Duplicate question detection with deep
learning in Stack Overflow. IEEE Access 8, 25964–25975 (2020)

67. Wang, Q., Xu, B., Xia, X., Wang, T., Li, S.: Duplicate pull request de-
tection: When time matters. In: Proceedings of the 11th Asia-Pacific
Symposium on Internetware, pp. 1–10 (2019)

68. Wang, Y.: The price of being polite: politeness, social status, and their
joint impacts on community Q&A efficiency. Journal of Computational
Social Science pp. 1–22 (2020)

69. Witkowski, W.: Videogames are a bigger industry than movies and north
american sports combined, thanks to the pandemic. https://www.mark

etwatch.com/story/videogames-are-a-bigger-industry-than-sp

orts-and-movies-combined-thanks-to-the-pandemic-11608654990

(2020). Accessed: July 4, 2021
70. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cis-

tac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von
Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger, S.,
Drame, M., Lhoest, Q., Rush, A.M.: Transformers: State-of-the-art natu-
ral language processing. In: Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing: System Demonstrations,
pp. 38–45. Association for Computational Linguistics, Online (2020). URL
https://www.aclweb.org/anthology/2020.emnlp-demos.6

71. Wu, Y., Wang, S., Bezemer, C.P., Inoue, K.: How do developers utilize
source code from Stack Overflow? Empirical Software Engineering 24(2),
637–673 (2019)

72. Xu, B., Hoang, T., Sharma, A., Yang, C., Xia, X., Lo, D.: Post2vec: Learn-
ing distributed representations of Stack Overflow posts. IEEE Transac-
tions on Software Engineering (2021)

73. Xu, Z., Yuan, H.: Forum duplicate question detection by domain adaptive
semantic matching. IEEE Access 8, 56029–56038 (2020)

74. Yang, X.L., Lo, D., Xia, X., Wan, Z.Y., Sun, J.L.: What security questions
do developers ask? A large-scale study of Stack Overflow posts. Journal
of Computer Science and Technology 31(5), 910–924 (2016)

46 Arthur Kamienski et al.

75. Ying, A.T.T.: Mining challenge 2015: Comparing and combining different
information sources on the Stack Overflow data set. In: The 12th Working
Conference on Mining Software Repositories (2015)

76. Zhang, W.E., Sheng, Q.Z., Lau, J.H., Abebe, E.: Detecting duplicate posts
in programming QA communities via latent semantics and association
rules. In: Proceedings of the 26th International Conference on World
Wide Web, pp. 1221–1229 (2017)

77. Zhang, W.E., Sheng, Q.Z., Lau, J.H., Abebe, E., Ruan, W.: Duplicate
detection in programming question answering communities. ACM Trans-
actions on Internet Technology (TOIT) 18(3), 1–21 (2018)

78. Zhang, W.E., Sheng, Q.Z., Shu, Y., Nguyen, V.K.: Feature analysis for du-
plicate detection in programming QA communities. In: International Con-
ference on Advanced Data Mining and Applications, pp. 623–638. Springer
(2017)

79. Zhang, W.E., Sheng, Q.Z., Tang, Z., Ruan, W.: Related or duplicate: Dis-
tinguishing similar CQA questions via convolutional neural networks. In:
The 41st International ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval, pp. 1153–1156 (2018)

80. Zhang, X., Liu, S., Chen, X., et al.: Social capital, motivations, and knowl-
edge sharing intention in health Q&A communities. Management Decision
(2017)

81. Zhang, Y., Lo, D., Xia, X., Sun, J.L.: Multi-factor duplicate question de-
tection in Stack Overflow. Journal of Computer Science and Technology
30(5), 981–997 (2015)

82. Zhang, Y., Lu, T., Phang, C.W., Zhang, C.: Scientific knowledge com-
munication in online Q&A communities: Linguistic devices as a tool to
increase the popularity and perceived professionalism of knowledge con-
tribution. Journal of the Association for Information Systems 20(8), 3
(2019)

83. Zhou, Q., Liu, X., Wang, Q.: Interpretable duplicate question detection
models based on attention mechanism. Information Sciences 543, 259–272
(2021)

84. Řeh̊uřek, R.: Gensim: Topic modelling for humans. https://radimrehur
ek.com/gensim (2021). Accessed: September 5, 2021

