
Noname manuscript No.

(will be inserted by the editor)

Revisiting the Performance of Automated
Approaches for the Retrieval of Duplicate Reports in
Issue Tracking Systems that Perform Just-in-Time
Duplicate Retrieval

Mohamed Sami Rakha · Cor-Paul

Bezemer · Ahmed E. Hassan

the date of receipt and acceptance should be inserted later

Abstract Issue tracking systems (ITSs) allow software end-users and devel-
opers to file issue reports and change requests. Reports are frequently dupli-
cately filed for the same software issue. The retrieval of these duplicate issue
reports is a tedious manual task. Prior research proposed several automated
approaches for the retrieval of duplicate issue reports. Recent versions of ITSs
added a feature that does basic retrieval of duplicate issue reports at the filing
time of an issue report in an e↵ort to avoid the filing of duplicates as early as
possible.

This paper investigates the impact of this just-in-time duplicate retrieval
on the duplicate reports that end up in the ITS of an open source project. In
particular, we study the di↵erences between duplicate reports for open source
projects before and after the activation of this new feature. We show how the
experimental results of prior research would vary given the new data after
the activation of the just-in-time duplicate retrieval feature. We study dupli-
cate issue reports from the Mozilla-Firefox, Mozilla-Core and Eclipse-Platform
projects. In addition, we compare the performance of the state of the art of the
automated retrieval of duplicate reports using two popular approaches (i.e.,
BM25F and REP).

We find that duplicate issue reports after the activation of the just-in-time
duplicate retrieval feature are less textually similar, have a greater identifi-
cation delay and require more discussion to be retrieved as duplicate reports
than duplicates before the activation of the feature. Prior work showed that
REP outperforms BM25F in terms of Recall rate and Mean average precision.
We observe that the performance gap between BM25F and REP becomes even
larger after the activation of the just-in-time duplicate retrieval feature. We

Mohamed Sami Rakha, Cor-Paul Bezemer, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL), School of Computing
Queen’s University
Kingston, Ontario, Canada
E-mail: {rakha, bezemer, ahmed}@cs.queensu.ca

2 Rakha et al.

recommend that future studies focus on duplicates that were reported after
the activation of the just-in-time duplicate retrieval feature as these duplicates
are more representative of future incoming issue reports and therefore, give a
better representation of the future performance of proposed approaches.

1 Introduction

Issue tracking systems (ITSs) [21] are commonly used to manage the mainte-
nance and support processes of a software project. An ITS provides a commu-
nication platform for developers and users to report and discuss encountered
software issues. An issue report can represent a software bug, a new feature
or an improvement request.

An issue report can be reported multiple times, leading to duplicate is-
sue reports. For instance, from the data that we present later in this paper,
we calculate that 11-19% of all reported issues are duplicate reports in the
Eclipse Foundation and Mozilla Foundation ITSs. Manually retrieving du-
plicate issue reports is a tedious task for developers [33]. Hence, prior re-
search proposed several automated approaches to retrieve duplicate issue re-
ports [6, 7, 23, 24, 29, 36, 40, 44]. These approaches make use of information
retrieval techniques, that make use of the textual information that is avail-
able in issue reports, to suggest a list of possible candidate duplicates for each
newly-reported issue [38].

To evaluate the performance of these approaches, existing duplicate issue
reports from popular ITSs are usually used. The existing duplicate reports are
treated equally during the performance evaluation. However, recent versions
of popular ITSs (e.g., Bugzilla 4.0 [1] and Jira 6.0 [2]), add a new feature that
displays a list of candidate duplicates while a user is filing an issue (the just-

in-time duplicate retrieval feature). The activation of the just-in-time (JIT)
duplicate retrieval feature impacts the assumption that all the duplicate re-
ports selected for the evaluation of automated approaches are equal.

Our paper investigates the impact of the just-in-time duplicate retrieval
feature on the data that is used for the experimental evaluation of automated
approaches for the retrieval of duplicate issue reports for open source projects.
We study duplicate issue reports from three large open source projects (Mozilla-
Firefox, Mozilla-Core and Eclipse-Platform). We compare duplicate issue re-
ports that were reported before (before-JIT duplicates) and after (after-JIT
duplicates) the activation of the just-in-time duplicate retrieval feature along
two dimensions: 1) their textual similarity and 2) the needed manual e↵ort to
retrieve duplicates in terms of identification delay and number of discussion
comments. In addition, we evaluate the performance of two popular approaches
(BM25F [34] and REP [40]) for the automated retrieval of duplicate reports
on before and after-JIT duplicates. In particular, we explore the following
research questions:

RQ1: How do the characteristics of duplicates di↵er before and after

the activation of the just-in-time duplicate retrieval feature?

2

The Performance Impact of Just-in-time Duplicate Retrieval 3

Fig. 1: The typical life cycle of an issue report.

There is a lower proportion of duplicate reports after the activation of the

just-in-time duplicate retrieval feature. In addition, after-JIT duplicates

are significantly less textually similar and need more e↵ort (i.e., they have

a greater identification delay and need more discussion comments) to be

manually identified than before-JIT duplicates.

RQ2: How does the just-in-time duplicate retrieval feature impact

the performance evaluation of state of the art automated ap-

proaches for the retrieval of duplicate issue reports?

The studied approaches (BM25F and REP) achieve a significantly lower

performance on after-JIT duplicates than on before-JIT duplicates. Prior

work already showed that REP outperforms BM25F in terms of Recall

rate and Mean average precision. We show that the performance gap be-

tween BM25F and REP is even larger for after-JIT duplicates. Our results

show that researchers who study the automated retrieval of duplicate reports

should evaluate their approaches using after-JIT duplicates since such du-

plicates give a better representation of the expected performance of their

approaches.

Paper organization. The rest of the paper is organized as follows. Sec-
tion 2 presents background information and related work. Section 3 provides
an overview of our experimental setup. Section 4 presents the results of our
study. Section 5 discusses the implications of our study. Finally, we discuss the
threats to the validity of our study in Section 6 and we present our conclusion
in Section 7.

2 Background

In this section, we discuss popular ITSs, present the typical life cycle of an
issue report, provide an overview of approaches for the automated retrieval
of duplicate reports, overview the JIT duplicate retrieval feature and finally
discuss the related work to our study.

3

4 Rakha et al.

2.1 Issue Tracking Systems (ITSs)

In the ITS of a software project, developers, testers and users can report issues
that describe software bugs, new features or improvements. There exist many
ITSs [16], of which Bugzilla and JIRA are the most famous (free) ones. Modern
source code management platforms, such as GitHub, also o↵er issue tracking
functionality. In this paper, we focus on open source issue tracking systems,
in particular Bugzilla, as Bugzilla is used by a wide variety of large projects1,
such as the Linux kernel and Mozilla projects.

2.2 The Typical Life Cycle of an Issue Report

The typical life cycle of an issue report is illustrated in Figure 1. When an
issue report is filed, it receives the “NEW” status. Each reported issue must
be triaged in order to get processed. After triaging, the issue report’s status
is changed to “ASSIGNED” [25]. Each triaged issue report is investigated to
determine whether it describes a new and valid software issue. Invalid issue
reports are rejected and resolved as “INVALID” or “WONTFIX”, while dupli-
cate issue reports are resolved as a “DUPLICATE” of an existing issue. Finally,
resolved issue reports are verified by the developers. During the verification,
an issue report may be reopened by changing its status to “REOPENED”. At
the end, successfully verified issue reports receive the “VERIFIED” status.

2.3 Duplicate Issue Reports

Duplicate issue reports are reports that describe previously reported software
issues. Duplicate issue reports are grouped together by resolving the new report
as “DUPLICATE” and linking it to an existing report. In this section, we
describe several concepts that are related to duplicate issue reports.

2.3.1 The Master Report

Similar to prior research [7, 8, 24, 28, 36, 40, 44], we group the related duplicate
reports. The earliest issue report within a group of duplicate reports is labelled
as the “master” report [13]. The goal of “duplicate issue report retrieval” is
to identify the master report of a newly-reported duplicate.

2.3.2 Automated Approaches for Duplicate Retrieval

Due to the tediousness of manually retrieving duplicate issue reports, several
automated approaches have been proposed to assist developers in identifying
newly-reported duplicates [7, 23, 29, 40, 41, 45, 46]. These approaches lever-
age information retrieval (IR) [38] techniques to suggest candidate duplicate

1https://www.bugzilla.org/installation-list/

4

https://www.bugzilla.org/installation-list/

The Performance Impact of Just-in-time Duplicate Retrieval 5

reports for newly-reported issues. In fact, almost all automated approaches
for the retrieval of duplicate reports depend on a derived version of the same
base technique, Term Frequency-Inverse Document Frequency (TF-IDF) [18].
The TF-IDF technique extracts the textual content of all previously reported
issues into word frequency vectors to measure the importance of a term in a
text document. TF-IDF represents the ability of each term to uniquely retrieve
a document in the corpus of all documents. The basic formula of TF-IDF is:

TF-IDF = tf(t, d) ⇤ idf(t,D) (1)

Where tf(t, d) is the frequency of the term t in a document d, while
idf(t,D) is the total number of documents in the corpus divided by the num-
ber of documents that have the term t. The TF-IDF vector of a document
is the vector containing the TF-IDF statistic of all terms in that document.
Every document in the corpus has a TF-IDF vector, allowing documents to be
compared using the distance between their vectors. A similarity score between
the extracted vectors is calculated using similarity measures, such as the cosine
similarity [18], Dice similarity [18], BLEU similarity [30] or Jaccard similar-
ity [20]. For each newly-reported duplicate, an automated approach suggests a
list of duplicate candidates that are sorted based on the similarity score. The
reporter traverses the list and retrieves the accurate duplicate candidate (if
any) for the newly-reported issue.

In this paper, we employ two popular similarity measures for short text
(BM25F [34] and REP [40]) in our experiments. In the following paragraphs,
we will give a brief overview of BM25F and REP.

2.3.3 BM25F

BM25F [34] is an advanced document similarity measure that is based on the
TF-IDF vectors of documents [10, 34] (which are in our case, issue reports).
The BM25F measure computes the similarity between a query (i.e., the newly-
reported issue) and a document (i.e., one of the previously-reported issues)
based on the common words that are shared between the two reports. To
compute the similarity between the two reports, BM25F uses the TF-IDF
vector of each of several fields of the issue reports (e.g., title, header and
description). Di↵erent degrees of importance in the retrieval process can be
given by assigning weights to the vector. For example, words appearing in the
summary field of an issue report may be of a greater importance than words
appearing in the description field of an issue report.

To find the best matching documents for a query, BM25F ranks the doc-
uments based on their TF-IDF statistics for words in the query. The BM25F
approach is similar to the full-text search2 function that is used in Bugzilla,
which uses TF-IDF to retrieve duplicate issue reports based on the summary
and description fields. BM25F employs several parameters that are automati-
cally optimized using a set of already-known duplicate issue reports, to which
we refer throughout this paper as the tuning data for BM25F.

2http://dev.mysql.com/doc/internals/en/full-text-search.html

5

http://dev.mysql.com/doc/internals/en/full-text-search.html

6 Rakha et al.

2.3.4 REP

The REP similarity measure [40] calculates the similarities between the query
and a document based on seven features (two for textual fields and five for
categorical fields). A feature is a measurable value of similarity between a spe-
cific field of two issue reports, such as the similarity between the summary
fields of the reports. REP extends the BM25F measure by also including cat-
egorical fields (e.g., the priority) when comparing issue reports. In addition,
REP also considers the frequency of shared words in the new issue report and
previously-reported issues.

The two textual field features (i.e., summary and description) are calcu-
lated based on an extended TF-IDF formula of BM25F. The five categorical
field features (i.e., component, priority, product, type, and version) equal one
if the field value in reports that are compared is exactly the same, and zero
or 1

1+(|v1�v2|) (for priority and version) if they are not. For example, if the

priority fields of two issue reports are 1 and 3, their feature is 1
1+(|1�3|) = 1

3 .
The REP approach includes a ranking function that combines the textual and
categorical features as follows:

REP (d, q) =
7X

i=1

wi ⇥ featuresi (2)

Where d and q are the issue reports that are being compared. The variable
wi is the weight for each feature. These weights are automatically optimized
using a stochastic gradient descent algorithm [43], which uses a set of duplicate
reports to find these weights. We refer throughout this paper to that set of
duplicate reports as the tuning data for REP. The featuresi variable holds
the feature value for each of the textual and categorical fields. For each newly-
reported issue, the REP function is used to retrieve a list of possible master
issue reports (candidates). The correct duplicate candidate (if any) is then
selected from this list by the reporter.

While BM25F and REP themselves are not approaches for retrieving dupli-
cate issue reports, several approaches [6, 7, 23, 29, 36, 40, 45, 46] rely heavily
on either BM25F or REP. Therefore, we will refer to them in this paper as the
BM25F or REP approaches.

2.4 JIT Duplicate Retrieval

Recent versions of ITSs o↵er a feature that displays a list of candidate dupli-
cates at the time of filing a new issue. The goal of this feature is to prevent
users from filing previously reported issues. For example, with the release of
version 4.0, Bugzilla started using a full-text search3 at filing time to assist
in the retrieval of possible duplicate reports. Figure 2 shows an example of

3http://dev.mysql.com/doc/internals/en/full-text-search.html

6

http://dev.mysql.com/doc/internals/en/full-text-search.html

The Performance Impact of Just-in-time Duplicate Retrieval 7

TR
IAL M

O
D

E − a valid license w
ill rem

ove this m
essage. See the keyw

ords property of this PD
F for m

ore inform
ation.

Fig. 2: An example of the JIT duplicate retrieval feature in Bugzilla.

Table 1: A list of popular ITSs and their support for JIT duplicate retrieval.

ITS JIT duplicate retrieval feature

Bugzilla Available from version 4.0 [1]
Jira Available as plugin from version 6.0 [2]
Mantis [3] -
RedMine [4] -
Trac [5] -

the JIT duplicate retrieval feature in Bugzilla. The Bugzilla feature uses the
user-inputted text into the summary field of the issue report to find dupli-
cate candidates4. Such a feature was frequently requested by Bugzilla users
(see #223535 in the Bugzilla project). The JIT duplicate retrieval feature in
Bugzilla depends only on the contents of the summary field. In this study, we
refer to the duplicate reports that are filed after the activation of the JIT du-
plicate retrieval feature as after-JIT duplicates. The duplicate reports that are
filed before the activation of the JIT duplicate retrieval feature are referred to
as before-JIT duplicates. Table 1 shows a list of popular ITSs, together with
their support for JIT duplicate retrieval. At the time of writing, only Bugzilla
and Jira support JIT duplicate retrieval.

2.5 Related Work

There are several prior studies on duplicate issue reports and the automated
retrieval of such reports. In this section, we survey work that is related to our
study.

4https://github.com/bugzilla/bugzilla/blob/master/Bugzilla/Bug.pm#L599
5http://bugzilla.mozilla.org/show_bug.cgi?id=22353

7

https://github.com/bugzilla/bugzilla/blob/master/Bugzilla/Bug.pm#L599
http://bugzilla.mozilla.org/show_bug.cgi?id=22353

8 Rakha et al.

2.5.1 Empirical Studies of Duplicate Issue Reports

Duplicate issue reports represent a large portion of issue reports. Anvik et
al. [8] reported that 20-30% of the issue reports in Eclipse and Firefox re-
spectively are duplicates. Cavalcanti et al. [17] found that duplicate reports
represent 32%, 43%, and 8% of all the reports in Epiphany, Evolution and
Tomcat, respectively. Bettenburg et al. [13] found that merging the informa-
tion across duplicate reports produces additional useful information over using
the information from a single report. In particular, they identify that before
reports are identified as duplicates, di↵erent reporters with di↵erent ideas and
suggestions may describe the same problem in di↵erent ways. Often, each of
those ways contains partly unique information, which can contribute to getting
a better description of the issue when merged.

2.5.2 Automated Retrieval of Duplicate Issue Reports

Many automated approaches have been proposed to retrieve duplicate issue
reports. Runeson et al. [36] proposed a natural language processing approach
to automatically rank duplicate candidates based on textual similarity. Issue
reports are considered as text documents. The textual contents of the issue
reports are preprocessed (i.e., using tokenization, stemming and stop word
removal [32]) then a vector of term (word) frequencies (TF) is calculated for
each issue report. Wang et al. [44] extended the work of Runeson et al. by
not only considering TF, but also the inverse document frequency (IDF). In
addition, Wang et al. considered the execution traces that are contained in
the issue reports as one of the features to retrieve duplicate issue reports.
Jalbert et al. [24] proposed a tool that computes the similarity between issue
reports using textual features. Jalbert et al.’s approach used textual similarity
combined with the non-textual features that are included in an issue report
such as the product, component, version, and platform on which the reported
issue occurs. Jalbert et al.’s approach leverages linear regression to predict the
status of duplicate issue reports. Sureka et al. [42] use a character n-gram (see
Section 3.3) approach to measure the text similarity between the titles and
descriptions of issue reports. Sureka et al.’s approach is evaluated on 2,270
randomly selected reports from the Eclipse project. Sureka et al.’s approach
does not use language-dependent preprocessing, such as stemming or stop word
removal.

Sun et al. [41] built a discriminative model to determine if two issue reports
are duplicates. The output of the model is a probability score which is used
to determine the likelihood that an issue is a duplicate. Later, Sun et al. [40]
extended the BM25F similarity measure [34] to support long queries (such as
the full content of a duplicate issue report). In addition, Sun et al. proposed a
ranking function, REP, that combines both the extended BM25F and categor-
ical information for the retrieval of duplicate issue reports. Nguyen et al. [29]
proposed an approach called DBTM to measure the similarity between issue
reports sharing the same LDA topics [37]. Alipour et al. [7] and Aggarwal et

8

The Performance Impact of Just-in-time Duplicate Retrieval 9

al. [6] proposed approaches that incorporate software contextual features. The
creation of the contextual features includes manual labeling of software text
books chapters. A word list is created from each chapter using the labeled
Latent Dirichlet Allocation (labeled-LDA).

Banerjee et al. [9] use a random forest classifier along with 24 document
similarity measures to retrieve duplicate reports. Borg et al. [15] studied if du-
plicate retrieval can be done by an o↵-the-shelf search engine, Apache Lucene.
They found that Apache Lucene is a good candidate for retrieving duplicate
issue reports. In addition, they found that assigning more weight to the title of
an issue report can significantly improve duplicate retrieval. Borg and Rune-
son [14] showed how recommender systems can be used for retrieving duplicate
issue reports.

Hindle [22] proposed a JIT duplicate retrieval feature for ITSs that is based
on continuous querying (i.e., the feature asks many queries against a system
while the user is typing, instead of a single query after entering the report title).
He showed that the performance of continuous querying is not as high as that
of a single query, but that continuous querying still can be useful for preventing
duplicate issue reports from being submitted. Hindle’s work is di↵erent from
ours as we studied the real-world impact of the JIT duplicate retrieval feature
over a long period of time, whereas Hindle evaluated his feature in experiments.

2.5.3 Revisiting the Performance Evaluation of Automated Approaches for

the Retrieval of Duplicate Issue Reports

In our prior work [33], we conducted an empirical study on the needed e↵ort
for the retrieval of duplicate issue reports. We identified that 50% of the du-
plicate issue reports are straightforward to retrieve manually. Therefore, it is
important that an automated approach for retrieving duplicate issue reports
is capable of retrieving e↵ort-consuming duplicates. We recommended that
automated approaches for retrieving duplicate issue reports should consider
the needed e↵ort for the retrieval of duplicates in their evaluation.

In addition, we identified several flaws in the way in which approaches
for retrieving duplicate issue reports are evaluated [32]. First, the evaluation
is usually done on only a subset of issue reports. Therefore, duplicate issue
reports with old master reports, which are more di�cult to retrieve, are not
included in the evaluation. Hence, the performance of the evaluated approach is
often overestimated. Second, prior work usually reports a single performance
value when evaluating an approach. Our work [32] showed that a range of
performance values needs to be given in order to describe the performance of
an approach accurately. We proposed a more realistic evaluation for automated
approaches for retrieving duplicate issue reports.

2.5.4 Data Selection for Performance Evaluation

Prior work uses di↵erent issue reports from the ITSs for their performance
evaluation. Table 2 shows an overview of prior research based on the data that

9

10 Rakha et al.

Study Before-JIT Data After-JIT Data

Runeson et al. [36]

Jalbert et al. [24]

Wang et al. [44]

Sun et al. [41]

Sureka et al. [42]

Sun et al. [40]

Nguyen et al. [29]

Cavalcanti et al. [17]

Rakha et al. [33]

Aggarwal et al. [6]

Banerjee et al. [9]⇤

Rakha et al. [32]
⇤ Banerjee et al. [9] mixed Before-JIT and After-JIT in the same evaluation

Table 2: A summary of prior research based on their usage of before-JIT and
after-JIT duplicate reports in their evaluation (ordered by publication date).

was used. We observe that almost all studies were applied on issues that were
reported before the activation of the JIT duplicate retrieval feature. However,
in this paper we show that future research needs to focus on after-JIT du-
plicates as these duplicates are more representative of the reports with which
developers deal nowadays.

In contrast to prior work, we focus on highlighting the di↵erences between
before and after-JIT duplicates. In addition, we study how prior work is af-
fected by these di↵erences.

3 Experimental Setup

In this section, we present the projects that we studied and our process for
collecting data for our experiments.

3.1 Studied Projects:

In this paper, we selected the studied projects based on the following criteria:

1. Project uses the JIT duplicate retrieval feature: the project uses
an ITS that has the JIT duplicate retrieval feature activated for at least a
year.

2. Project has a considerable ratio of duplicates: the project has a
considerably large portion of duplicate issue reports (i.e., 20-30% of all the
issue reports).

10

The Performance Impact of Just-in-time Duplicate Retrieval 11

Table 3: The number of analyzed duplicate issue reports in each studied
project.

Studied Project Before-JIT issue reports After-JIT issue reports
Total Duplicates (%) Total Duplicates (%)

Mozilla-Firefox 93,941 28,647 (30%) 56,615 10,312 (18%)
Mozilla-Core 176,742 40,256 (23%) 119,998 11,931 (10%)
Eclipse-Platform 89,876 15,962 (18%) 11,536 1,399 (12%)

For the experiments in this paper, we selected issue reports from the three
largest software projects from the ITSs of the Mozilla and Eclipse foundation
(Mozilla-Firefox, Mozilla-Core and Eclipse-Platform). Both the Mozilla6 and
Eclipse7 foundation started using Bugzilla 4.0, including the JIT duplicate
retrieval feature, in 2011. We assume that Mozilla uses Bugzilla’s latest stable
version since Bugzilla is a Mozilla-sponsored project. The studied projects are
known to have a considerable portion of duplicate reports [13, 33]. In addition,
Mozilla and Eclipse projects’ issue reports have been frequently used by prior
research when studying automated approaches for the retrieval of duplicate
reports [7, 8, 12, 33, 40].

We crawled the issue reports’ XML files for the studied projects up to
31-Dec-2015. Then, we parsed the XML files for the further analysis that is
presented in this paper. Table 3 shows the number of duplicate reports for
each studied software project. We ignored issues that were reported in 2011 to
leave a time bu↵er for the ITS’s users to get familiar with the usage of the new
JIT duplicate retrieval feature. The issue reports and our scripts are available
in our online appendix [31].

3.2 Pre-processing of Issue Reports

In this paper, we executed the same text pre-processing implementation that
was used by Sun et al. [40] and Nguyen et al. [29]:

– Parsing tokens: parsing the text sentences into words based on a selected
delimiter, such as space or comma.

– Stemming: reducing the words to their root. For example, the words “de-
velopers” and “development” are reverted to the stem base “develop”.

– Removing stop words: removing common words in the used language (i.e.,
English) that do not add value to the retrieval of duplicate candidates,
such as “the”, “are”, and “is”.

We applied the same pre-processing steps for all studied issue reports. For a
more precise description of these steps, we refer to our replication package [31].

6https://www.bugzilla.org/news/
7https://bugs.eclipse.org/bugs/show_bug.cgi?id=359299

11

https://www.bugzilla.org/news/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=359299

12 Rakha et al.

3.3 Studying the Characteristics of Duplicate Reports Before and After the
Activation of the JIT Duplicate Retrieval Feature

We examine the characteristics of duplicates using the following metrics:

1. Ratio of duplicates: This ratio is the proportion of issue reports that
are duplicates within a month [8, 13]. We divide the number of duplicate
issues that are reported within one particular month by the total number
of reported issues in that month. We study the ratio of duplicates before
and after the activation of the JIT duplicate retrieval feature to examine
the impact of the feature on the number of duplicates. We expect that
the ratio of duplicates decreases after the activation of the JIT duplicate
retrieval feature, because the goal of this feature is to reduce this ratio.

2. Identification delay: As suggested by our prior work [33], the identifica-
tion delay is the time in days from triaging to resolving an issue report as
a duplicate. We study this time as it is an indication of how long it takes
developers to identify a duplicate. We expect that duplicate reports after
the activation of the JIT retrieval feature need more time to be retrieved,
because more time may be spent on less similar duplicates [33].

3. Number of Comments: As suggested by our prior work [33], the number
of comments is the total number of comments on an issue report until the
time of its resolution as a duplicate report. Auto-generated comments are
filtered out from the number of comments (i.e, auto-generated comments
for attachments or ***This issue has been marked as a duplicate of #***).
We study the number of comments because it is a relatively reasonable
proxy of the spent e↵ort on deciding whether an issue report is a duplicate
one. We expect that duplicate reports after the activation of the JIT re-
trieval feature would require more discussion, because after-JIT duplicates
may be less textually similar to the master report, making it harder to
identify them as a duplicate.

4. Textual similarity: Textual similarity plays a significant role in the au-
tomated retrieval of duplicate reports, since state of the art automated
approaches for retrieval of duplicates, such as BM25F or REP, rely heav-
ily on textual similarity. Generally, the most similar duplicates to their
masters are easier to retrieve for current state of the art automated ap-
proaches. In addition, dissimilar duplicates need more e↵ort to be manually
identified [33]. As suggested by our prior work [33], we reuse the trigram
textual similarity [26, 42] to highlight the di↵erences in the duplicate re-
ports’ similarity to their master reports. The trigram algorithm works by
dividing a piece of text into a vector of strings with three letters each (i.e.,
also called trigrams). For example, the string “new error” has the trigrams
“new”, “ew ”, “w e”, “ er”, “err”, “rro”, and “ror” where an underscore
“ ” marks a space. At the end, the two compared texts will have two sets
of trigrams with no repetitions. The similarity score between the two sets
is equal to the number of trigrams in common divided by the total number
of trigrams. The similarity score ranges between 0 and 1 (i.e., identical
texts have a score of 1). First, we removed all the special characters, dou-

12

The Performance Impact of Just-in-time Duplicate Retrieval 13

ble spaces and converted all the text to lowercase. Then, we applied the
trigram algorithm to calculate the similarity between the description fields
of the duplicate issue reports and their masters. We expect that highly
similar duplicates would be noted by the JIT duplicate retrieval feature
and hence would not be filed and would not exist in the data.

3.4 Performance Evaluation Measures

In this study, we computed two frequently used performance measures to eval-
uate the studied automated approaches for the retrieval of duplicate issue
reports [23, 29, 40, 41]: 1) Recall rate, and 2) Mean Average Precision (MAP).
The Recall rate is defined as:

RecalltopN=
retrievedtopN

retrievedtopN +missedtopN

where retrievedtopN is the number of duplicate reports that successfully
had their master reports retrieved in the topN ranked list of candidates, and
missedtopN is the number of duplicate reports that did not have their mas-
ter reports retrieved in the topN candidates list. The larger the number of
correctly retrieved master report candidates, the higher the Recall rate. The
Recall rate value ranges from 0 to 1. In this paper, we study the top-5 and
top-10 Recall rates.

The MAP measure indicates in which rank the correctly retrieved duplicate
candidate is found in the returned list of candidates. The MAP is measured
as follows:

MAP=
1

Q

PQ
n=1

1

rank(n)

where Q is the total number of accurately-found duplicate candidates, and
rank is the position of the master report in the list. The MAP value ranges
from 0 to 1. A MAP value of 1 means that the accurate candidates appear on
the first rank of the returned list all the time. To reduce the computational
complexity of the experiments in this study, we limited the MAP calculation
to a list size of 1,000 candidates.

In this paper, we used the BM25F and REP implementations that were
provided by Sun et al8.

4 Experimental results

In this section, we present the results of our experiments. For each research
question, we discuss the motivation, approach and results.

8http://www.comp.nus.edu.sg/~specmine/suncn/ase11/index.html

13

http://www.comp.nus.edu.sg/~specmine/suncn/ase11/index.html

14 Rakha et al.

RQ1: How do the characteristics of duplicates di↵er before and after

the activation of the just-in-time duplicate retrieval feature?

Motivation. The manual retrieval of duplicate issue reports is a tedious
task [8, 11, 12, 33]. Therefore, many prior studies have proposed automated
approaches to assist in the retrieval of duplicate reports [6, 7, 23, 24, 29, 36,
40, 44]. In addition, recent versions of ITSs provide a JIT duplicate retrieval
feature (see Section 2.4), which shows a list of candidate duplicates for each
report at filing time. In the evaluation of the proposed approaches, prior work
never considered the possible impact of the JIT duplicate retrieval feature on
the duplicate reports that end up in the ITS. In this paper, we study this im-
pact. First, we compare the characteristics of before and after-JIT duplicates
in this RQ. Examining the di↵erences between before and after-JIT duplicates
can lead to insights about whether future studies should take into account
the impact of the JIT duplicate retrieval feature when collecting data for the
performance evaluation of the automated approaches.

Approach. In order to study the impact of the JIT duplicate retrieval feature,
we compared the characteristics of the before-JIT and after-JIT duplicates. We
divided the issue reports into two groups. The first group includes all the issue
reports prior to 2011 (i.e., the before-JIT duplicates), while the second group
includes all the issue reports after 2011 (i.e., the after-JIT duplicates). As
mentioned in Section 3.1, we do not use the issue reports that were filed in
2011 to leave a time bu↵er for the ITS’s users to get familiar with the JIT
duplicate retrieval feature. For all the studied projects, we have four years
of issue reports that were reported after the activation of the JIT duplicate
retrieval feature. We explored the di↵erences in characteristics between the
duplicate reports before and after the activation of the JIT duplicate retrieval
feature through the characteristic metrics (Ratio of duplicates, Identification
delay, Number of comments and Textual similarity) that were presented in
Section 3.3.

For each metric, we compared the two groups using the Mann-Whitney U
statistical test [19]. We use the following hypotheses:

H0= The two groups of duplicate reports have similar metric values.

H1= The two groups of duplicate reports have di↵erent metric values.

We reject H0 and accept H1, when p < 0.01. In addition, we calculated the
e↵ect size, as the e↵ect size quantifies the di↵erence between the two group
distributions. We used Cli↵ ’s Delta as it does not require the distributions
normality assumption to quantify the e↵ect size [27]. The following thresholds
are used for Cli↵ ’s Delta (d) [35]:

8
>>><

>>>:

negligible for |d|  0.147

small for 0.147 < |d|  0.33

medium for 0.33 < |d|  0.474

large for 0.474 < |d|  1

(3)

14

The Performance Impact of Just-in-time Duplicate Retrieval 15

Mozilla−Firefox

0.
1

1

 #
 D

up
lic

at
e

R
ep

or
ts

/ #
 Is

su
e

R
ep

or
ts

Before
Feature After

Feature

Effect Size = 0.877 (large)

Mozilla−Core

0.
1

1

 #
 D

up
lic

at
e

R
ep

or
ts

/ #
 Is

su
e

R
ep

or
ts

Before
Feature After

Feature

Effect Size = 0.783 (large)

Eclipse−Platform

0.
1

1

 #
 D

up
lic

at
e

R
ep

or
ts

/ #
 Is

su
e

R
ep

or
ts

Before
Feature After

Feature

Effect Size = 0.684 (large)

(a) Ratio of duplicates

Mozilla−Firefox

1
10

10
0

10
00

 Id
en

tif
ic

at
io

n
D

el
ay

Before
Feature

After
Feature

Effect Size = 0.397 (medium)

Mozilla−Core

1
10

10
0

 Id
en

tif
ic

at
io

n
D

el
ay

Before
Feature

After
Feature

Effect Size = 0.319 (small)

Eclipse−Platform

1
10

10
0

10
00

 Id
en

tif
ic

at
io

n
D

el
ay

Before
Feature

After
Feature

Effect Size = 0.057 (negligible)

(b) Identification Delay

Mozilla−Firefox

1
10

10
0

10
00

 N
um

be
r o

f C
om

m
en

ts

Before
Feature

After
Feature

Effect Size = 0.381 (medium)

Mozilla−Core

1
10

10
0

10
00

 N
um

be
r o

f C
om

m
en

ts

Before
Feature

After
Feature

Effect Size = 0.162 (small)

Eclipse−Platform

1
10

10
0

10
00

 N
um

be
r o

f C
om

m
en

ts

Before
Feature

After
Feature

Effect Size = 0.089 (negligible)

(c) Number of Comments

Mozilla−Firefox

0.
05

0.
1

0.
2

0.
5

1

Te
xt

ua
l S

im
ila

rit
y

Before
Feature

After
Feature

Effect Size = 0.369 (medium)

Mozilla−Core

0.
05

0.
1

0.
2

0.
5

1

Te
xt

ua
l S

im
ila

rit
y

Before
Feature

After
Feature

Effect Size = 0.153 (small)

Eclipse−Platform

0.
05

0.
1

0.
2

0.
5

1

Te
xt

ua
l S

im
ila

rit
y

Before
Feature

After
Feature

Effect Size = 0.050 (negligible)

(d) Textual Similarity

Fig. 3: A comparison of the characteristics of duplicate reports before and after
the activation of the JIT duplicate retrieval feature for the studied projects.
Note that all the axes are in a logarithmic scale.

15

16 Rakha et al.

Results. Significantly less duplicate reports end up in an ITS after

the activation of the JIT duplicate retrieval feature. Figure 3a shows
the distributions of the ratio of before-JIT and after-JIT duplicates. For all
the studied projects, the ratio of the after-JIT duplicates is significantly lower
than the ratio of the before-JIT duplicates. We observe that the e↵ect size for
all projects is large. This result indicates that there is a correlation between the
activated JIT duplicate retrieval feature and the ratio of duplicates. However,
the ratio of the after-JIT duplicates to the overall issues can still reach large
values (e.g., 43% for Mozilla-Firefox and 22% for Eclipse-Platform). Therefore,
activating a more advanced automated approach as the JIT duplicate retrieval
feature is still a worthwhile goal for next generation ITSs.
After-JIT duplicates have a significantly larger identification delay

than before-JIT duplicates and need more comments to be man-

ually identified. Figures 3b and 3c show the distributions of the identifi-
cation delay and number of comments for the studied projects. We observe
a significant increase in the needed e↵ort for identifying duplicate reports
with small (Mozilla-Core) and medium (Mozilla-Firefox) e↵ect sizes. How-
ever, the Eclipse-Platform has a significant di↵erence with a negligible e↵ect
size. From our manual investigation, one possible explanation for our finding
is that Eclipse-Bugzilla allows the filing of issue reports through a secondary
form that uses the default form rather than the JIT duplicate retrieval fea-
ture9.
After-JIT duplicates share a significantly smaller textual similarity

with their master reports. Figure 3d shows the distributions of the textual
similarity of the duplicate reports of the studied projects. We observe that
after-JIT duplicates share a smaller textual similarity with their masters than
before-JIT duplicates (with medium and small e↵ect size).⌥

⌃

⌅

⇧

The JIT duplicate retrieval feature removes the trivial textually-similar
duplicates but other duplicates which are hard to retrieve remain. Given
that automated approaches rely heavily on textual similarity, we believe
that future ITSs need to employ additional techniques to retrieve dupli-
cates. In the following RQ, we delve deeper into our observations about
current automated approaches for the retrieval of duplicates.

RQ2: How does the just-in-time duplicate retrieval feature impact

the performance evaluation of state of the art automated approaches

for the retrieval of duplicate issue reports?

Motivation. As shown in RQ1, the characteristics of after-JIT reports di↵er
significantly from the characteristics of before-JIT duplicates. In this RQ, we

9Issue#393235: https://bugs.eclipse.org/bugs/show_bug.cgi?id=393235. We manu-
ally verified that this issue still persists.

16

https://bugs.eclipse.org/bugs/show_bug.cgi?id=393235

The Performance Impact of Just-in-time Duplicate Retrieval 17

Fig. 4: The selection of data chunks before and after the activation of the JIT
duplicate retrieval feature.

study whether these di↵erent characteristics impact the performance of exist-
ing automated approaches for the retrieval of duplicate issue reports. If the
performance is a↵ected, knowing so is important for the evaluation of future
approaches, and would indicate that previously reported results might not
hold for feature deployments.
Approach. In this RQ, we compare the performance of the BM25F and REP
approaches when evaluated on before-JIT and after-JIT duplicates. First, we
randomly picked 100 chunks of before-JIT duplicates and 100 chunks of after-
JIT duplicates from the studied ITSs (similar to our prior work [32]). Each
chunk of data is of one year-length (see Figure 4) and consists of all issue
reports that are reported in one year. For each studied project, we can select
from a large number of chunks of data with a one-year length (e.g., January
2010 to December 2010 and February 2010 to January 2011 are considered
di↵erent chunks). For each studied chunk, we used the first 200 duplicates of
that chunk to tune the approach [6, 23, 26, 29, 40], then we calculated the
performance of the BM25F and REP approaches on the remaining duplicates
in that chunk. We used the same tuning algorithm that was used by prior
research [29, 40]. In our prior work [32], we showed that the choice of tuning
data does not matter much, as long as the tuning process is executed. After
tuning the approaches, we compared the performance before and after the
activation of the JIT duplicate retrieval feature from two perspectives:

1. Performance per approach: for both BM25F and REP, we compared
the distributions of the performance measure values. Each distribution of a
performance measure has 100 values before and after the activation of the
JIT duplicate retrieval feature. This perspective gives researchers an idea
of what they should expect when they use after-JIT duplicates to evaluate
their proposed approaches.

2. Relative Improvement Gap: the performance comparison of a newly-
proposed automated approach with an older one is an important part of
research in this domain [6, 23, 26, 29, 40, 41, 45, 46]. Prior research has

17

18 Rakha et al.

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Firefox

To
p5

 R
ec

al
l R

at
e

Before
 Feature

After
 Feature

Effect Size = 0.640 (large)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Core

To
p5

 R
ec

al
l R

at
e

Before
 Feature

After
 Feature

Effect Size = 0.368 (medium)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Eclipse−Platform

To
p5

 R
ec

al
l R

at
e

Before
 Feature

After
 Feature

Effect Size = 0.824 (large)

(a) Top-5 Recall rate

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Firefox

To
p1

0
R

ec
al

l R
at

e

Before
 Feature

After
 Feature

Effect Size = 0.691 (large)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Core

To
p1

0
R

ec
al

l R
at

e

Before
 Feature

After
 Feature

Effect Size = 0.442 (medium)
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7

Eclipse−Platform

To
p1

0
R

ec
al

l R
at

e

Before
 Feature

After
 Feature

Effect Size = 0.822 (large)

(b) Top-10 Recall rate

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Firefox

M
AP

Before
 Feature

After
 Feature

Effect Size = 0.534 (large)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Core

M
AP

Before
 Feature

After
 Feature

Effect Size = 0.264 (small)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Eclipse−Platform

M
AP

Before
 Feature

After
 Feature

Effect Size = 0.796 (large)

(c) MAP

Fig. 5: A comparison of the performance of BM25F before and after the acti-
vation of the JIT duplicate retrieval feature for the studied projects.

already shown that REP outperforms BM25F [29, 40, 45]. However, this
result followed from an evaluation using before-JIT duplicates. We study
whether such prior result still holds for after-JIT duplicates. Similar to prior
research [6, 23, 26, 29, 40, 41, 45, 46], we used the relative improvement
of the performance to show the di↵erence between the BM25F and REP
approaches for each data chunk. The relative improvement is defined as
follows:

Relative Improvement = (
measureREP �measureBM25F

measureBM25F
) (4)

18

The Performance Impact of Just-in-time Duplicate Retrieval 19

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Firefox

To
p5

 R
ec

al
l R

at
e

Before
 Feature

After
 Feature

Effect Size = 0.762 (large)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Core

To
p5

 R
ec

al
l R

at
e

Before
 Feature

After
 Feature

Effect Size = 0.457 (medium)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Eclipse−Platform

To
p5

 R
ec

al
l R

at
e

Before
 Feature

After
 Feature

Effect Size = 0.974 (large)

(a) Top-5 Recall rate

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Firefox

To
p1

0
R

ec
al

l R
at

e

Before
 Feature

After
 Feature

Effect Size = 0.762 (large)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Core

To
p1

0
R

ec
al

l R
at

e

Before
 Feature

After
 Feature

Effect Size = 0.571 (large)
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7

Eclipse−Platform

To
p1

0
R

ec
al

l R
at

e

Before
 Feature After

 Feature

Effect Size = 0.982 (large)

(b) Top-10 Recall rate

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Firefox

M
AP

Before
 Feature

After
 Feature

Effect Size = 0.693 (large)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mozilla−Core

M
AP

Before
 Feature

After
 Feature

Effect Size = 0.950 (large)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Eclipse−Platform

M
AP

Before
 Feature

After
 Feature

Effect Size = 0.953 (large)

(c) MAP

Fig. 6: A comparison of the performance of REP before and after the activation
of the JIT duplicate retrieval feature for the studied projects.

where measureREP is the performance of the REP approach for a certain
data chunk, while measureBM25F is the performance of the BM25F approach
for the same data chunk. The relative improvement is calculated for all the
measures that are covered in our study (i.e., Recalltop5, Recalltop10 and MAP).
A relative improvement of zero means that both approaches have identical
performance. A relative improvement that is larger than zero means that the
REP approach is outperforming the BM25F approach and vice versa for a
relative improvement that is smaller than zero.

As in RQ1, we compared the distributions of performance measures using the
Mann-Whitney U test and Cli↵’s Delta e↵ect size.

19

20 Rakha et al.

0.
0

0.
5

1.
0

1.
5

Mozilla−Firefox

R
el

at
ive

 Im
pr

ov
em

en
t i

n
To

p5
 R

ec
al

l

Before
 Feature

After
 Feature

Effect Size = 0.294 (small)

0.
0

0.
5

1.
0

1.
5

Mozilla−Core

R
el

at
ive

 Im
pr

ov
em

en
t i

n
To

p5
 R

ec
al

l

Before
 Feature

After
 Feature

Effect Size = 0.181 (small)

0.
0

0.
5

1.
0

1.
5

Eclipse−Platform

R
el

at
ive

 Im
pr

ov
em

en
t i

n
To

p5
 R

ec
al

l

Before
 Feature

After
 Feature

Effect Size = 0.591 (large)

(a) Relative improvement in the top-5 Recall rate

0.
0

0.
5

1.
0

1.
5

Mozilla−Firefox

R
el

at
ive

 Im
pr

ov
em

en
t i

n
To

p1
0

R
ec

al
l

Before
 Feature

After
 Feature

Effect Size = 0.393 (medium)

0.
0

0.
5

1.
0

1.
5

Mozilla−Core

R
el

at
ive

 Im
pr

ov
em

en
t i

n
To

p1
0

R
ec

al
l

Before
 Feature

After
 Feature

Effect Size = 0.176 (small)
0.

0
0.

5
1.

0
1.

5

Eclipse−Platform

R
el

at
ive

 Im
pr

ov
em

en
t i

n
To

p1
0

R
ec

al
l

Before
 Feature

After
 Feature

Effect Size = 0.554 (large)

(b) Relative improvement in the top-10 Recall rate

0.
0

0.
5

1.
0

1.
5

Mozilla−Firefox

R
el

at
ive

 Im
pr

ov
em

en
t

in
 M

AP Before
 Feature

After
 Feature

Effect Size = 0.283 (small)

0.
0

0.
5

1.
0

1.
5

Mozilla−Core

R
el

at
ive

 Im
pr

ov
em

en
t

in
 M

AP Before
 Feature

After
 Feature

Effect Size = 0.443 (medium)

0.
0

0.
5

1.
0

1.
5

Eclipse−Platform

R
el

at
ive

 Im
pr

ov
em

en
t

in
 M

AP Before
 Feature

After
 Feature

Effect Size = 0.484 (large)

(c) Relative improvement in the MAP

Fig. 7: Comparison of the relative improvement in performance from the
BM25F approach to the REP approach before and after the activation of the
JIT duplicate retrieval feature (the y-axis represents the relative percentage
of the improvement for each performance measure).

Results. The performance of both BM25F and REP is lower for after-

JIT duplicates. Figures 5 and 6 show the distributions of performance mea-
sures (i.e., Recalltop5, Recalltop10 and MAP) before and after the activation
of the JIT duplicate retrieval feature for the BM25F and REP approaches,
respectively. For all studied projects, the performance after the activation of
the JIT duplicate retrieval feature is significantly lower than before. In most
cases, the di↵erence has a large e↵ect size. These results indicate that future
studies of the automated retrieval of duplicate reports should use after-JIT

20

The Performance Impact of Just-in-time Duplicate Retrieval 21

duplicates in their evaluations as these duplicates are the most representative
duplicates in practice nowadays. Therefore, after-JIT duplicates will give the
most accurate and realistic view of the performance of an automated approach
in practice.
The relative improvement of the performance of REP over BM25F is

significantly larger after the activation of the JIT duplicate retrieval

feature. Figure 7 shows the distributions of the relative improvement over the
BM25F approach by the REP approach before and after the activation of the
JIT duplicate retrieval feature. The only exception is for the MAP for Mozilla-
Firefox and Mozilla-Core. The reason for that exception is that the di↵erence
in MAP for before and after-JIT duplicates for BM25F is smaller than for
REP. Generally, the results show that the relative improvement significantly
increases after the activation of the JIT duplicate retrieval feature. The reason
for the bigger drop in performance of the BM25F approach in contrast to the
REP approach is explained by the di↵erences between the ranking function
of each approach. In contrast to the ranking function of BM25F, which relies
solely on textual similarity, the ranking function of REP depends on categorical
fields as well. Hence, the performance of the REP approach is less susceptible
to the lower textual similarity after the activation of the JIT duplicate retrieval
feature.⌥

⌃

⌅

⇧

Our results show that duplicate retrieval based on basic textual similar-
ity no longer works, as the JIT duplicate retrieval feature takes care of
such duplicates. Instead, more sophisticated approaches are necessary.
REP is a first step towards such an approach, as it does not exclusively
rely on textual similarity.

5 Implications

In this section, we discuss the implications of our work for researchers and ITS
developers that are interested in the automated retrieval of duplicate reports.

The JIT duplicate retrieval feature appears to lower the number

of duplicates that end up in the ITS. Our results show that the portion
of duplicates in the ITS is significantly lower after the activation of the JIT
duplicate retrieval feature. Future studies should investigate how this portion
can be made even lower.

To improve the JIT duplicate retrieval feature, researchers need

to consider the trade-o↵ between execution complexity and per-

formance. The JIT duplicate retrieval feature involves the filer of an issue
report in finding its potential duplicate. The advantages are that: 1) the actual
filer knows best what the report describes and 2) the immediate feedback of
the feature ensures the freshness of the report in the filer’s mind. However,
the activation of an automated approach at filing time is restricted by execu-
tion complexity. For example, the currently activated feature in Bugzilla relies
only on a single textual field (i.e., the summary field) which makes it much

21

22 Rakha et al.

simpler and therefore faster than the approaches that were proposed by prior
research [6, 7, 23, 24, 29, 36, 40, 44], including BM25F and REP. The execution
complexity is important, as the list of duplicate candidates should be returned
to the reporter directly after typing a new word in the summary field. There-
fore, future studies are necessary to investigate how the performance of the JIT
duplicate retrieval feature can be improved while keeping the computational
complexity low. A possible solution is to implement a more sophisticated re-
trieval approach which runs periodically (e.g., nightly) on recently-filed issue
reports and notifies the filer by email about possible duplicates. Such an ap-
proach would lower the computational burden of needing to run for every filed
report, while it could still deliver relatively fast feedback (i.e., within minutes).

Future studies should evaluate automated approaches for dupli-

cate retrieval using after-JIT duplicates. In RQ1, we showed how after-
JIT duplicates di↵er from before-JIT duplicates. In addition, we illustrated
the impact of the new characteristics of such duplicates on the performance of
automated approaches in RQ2. These findings give an insight on what can be
expected when evaluating on after-JIT duplicates. Generally, after-JIT dupli-
cates are more representative of the issue reports that exist nowadays for the
studied projects. Therefore, future studies should perform their evaluations on
after-JIT duplicates.

6 Threats to Validity

In this section, we discuss the threats to the validity of our study.

6.1 External Validity

These threats concern the ability of our study to generalize our findings to
other software projects. In this study, we investigated duplicate issue reports
of three large open-source software projects. However, similar findings may not
hold for software projects from other domains such as commercial projects. In
order to mitigate this threat, more software projects, preferably commercial
software projects need to be analyzed in future studies. For example, Micro
Focus’ commercial solution ALM for issue tracking requires a manual action to
check for duplicate issue reports when reporting a new issue10. Future studies
should investigate the impact of requiring a manual action to trigger the JIT
feature.

In addition, future studies are necessary to investigate the impact of the
JIT duplicate retrieval feature on other types of issue reports, such as issue
reports for compilers [39].

We only studied the impact of the activation of the JIT duplicate retrieval
feature in one ITS system (i.e., Bugzilla) which is a threat to the generality

10https://alm-help.saas.hpe.com/en/12.55/online_help/Content/UG/ui_similar_
defects.htm

22

https://alm-help.saas.hpe.com/en/12.55/online_help/Content/UG/ui_similar_defects.htm
https://alm-help.saas.hpe.com/en/12.55/online_help/Content/UG/ui_similar_defects.htm

The Performance Impact of Just-in-time Duplicate Retrieval 23

of our study. However, the large majority of the studies on the automated
retrieval of duplicate reports focus on Bugzilla [6, 7, 23, 29, 36, 40, 45, 46].
Therefore, our findings should apply to the majority of prior work.

The majority of approaches for retrieving duplicate issue reports are based
on a version of the same base technique (TF-IDF). In this paper, we focused on
REP and BM25F as these are by far the most used TF-IDF-based approaches
for retrieving duplicate issue reports. REP [40] and BM25F [34] have always
been treated as two separate approaches in prior research [29, 40, 46]. The
REP approach depends on a ranking function that combines the BM25Fext
approach (which is an extended version of BM25F by Sun et al. [40]) along with
categorical fields of issue reports. Nowadays, even the most recent approaches
make only small increments to the REP or BM25F approach [6, 23, 29]. There-
fore, studying the REP and BM25F approach covers the majority of the spec-
trum of the approaches for retrieving duplicate issue reports.

We did not study how the JIT duplicate retrieval feature a↵ects the evalua-
tions of other approaches for duplicate issue retrieval, such as topic modeling-
based approaches. We expect that the evaluations of these approaches are
impacted by the JIT feature as well. The challenge of retrieving the after-JIT
duplicates is that they are not as textually similar as before-JIT duplicates.
Therefore, the extracted topics would also be di↵erent. Similar reasonings can
be given for other approaches for the retrieval of duplicate issue reports. Future
studies are necessary to confirm our expectation.

6.2 Internal Validity

In this study, we assumed that the only impactful change in ITSs in 2011 was
the activation of the JIT duplicate retrieval feature. In addition, we assumed
that the JIT duplicate retrieval feature was not deactivated after its activa-
tion in 2011. Future studies need to investigate the possible impact of other
new features in that year (or following years) on the automated retrieval of
duplicate issue reports.

We can select from a large number of chunks of data with a one-year
length (e.g., January, 2010 to December, 2010 and February, 2011 to January,
2012) for the experiments that are applied on each studied ITS. However,
running the approaches for retrieving duplicate issue reports is costly in terms
of time. Therefore, we limited the number of chunks that we evaluated to 100
randomly-selected chunks of before-JIT and after-JIT duplicates. Evaluating
200 chunks of one-year length in total should give a strict enough confidence
interval.

7 Conclusion

In this paper, we explored the impact of the activation of the JIT duplicate
retrieval feature on the automated retrieval of duplicate reports. First, we stud-
ied the characteristics of the duplicate issue reports of three software projects

23

24 Rakha et al.

(Mozilla-Firefox, Mozilla-Core and Eclipse-Platform) before and after the ac-
tivation of the JIT duplicate retrieval. In particular, we explored four metrics
of characteristics covering the ratio of duplicates, identification delay, number
of comments, and textual similarity. Second, we applied two automated ap-
proaches for the retrieval of duplicate reports (BM25F and REP) before and
after the activation of the JIT duplicate retrieval feature. The highlights of
our study are:

1. The portion of duplicate issue reports in an ITS is significantly lower after
the activation of the JIT duplicate retrieval feature.

2. The after-JIT duplicates have significantly less textual similarity and need
more e↵ort to be manually retrieved than before-JIT duplicates.

3. The changed characteristics of after-JIT duplicates can have a significant
impact on the performance of automated approaches for the retrieval of
duplicate issue reports. In particular, we showed that both BM25F and
REP perform significantly lower on after-JIT duplicates.

Our findings highlight that future studies of the automated retrieved of du-
plicate issue reports have to focus on after-JIT duplicates, as these duplicates
are more representative of new issue reports. In addition, our findings indi-
cate that automated retrieval of duplicates based on basic textual similarity is
no longer e↵ective, as many textually similar duplicates are already retrieved
by the JIT duplicate retrieval feature. Instead, more sophisticated approaches
that do not solely rely on textual similarity are necessary. In addition, future
studies should investigate how to further improve the JIT duplicate retrieval
feature.

8 Acknowledgments

This study would not have been possible without the High Performance Com-
puting (HPC) systems that are shared by Compute Canada11 and the Centre
for Advanced Computing12 as well as the tools provided by Sun et al. [40].

References

1. Bugzilla Release notes for Bugzilla 4.0. https://www.bugzilla.org/
releases/4.0/release-notes.html. Last visited on 11/12/2017

2. Jira Duplicate Detection. https://marketplace.atlassian.com/
plugins/com.deniz.jira.similarissues/server/overview. Last vis-
ited on 11/12/2017

11https://www.computecanada.ca/
12http://cac.queensu.ca/

24

https://www.bugzilla.org/releases/4.0/release-notes.html
https://www.bugzilla.org/releases/4.0/release-notes.html
https://marketplace.atlassian.com/plugins/com.deniz.jira.similarissues/server/overview
https://marketplace.atlassian.com/plugins/com.deniz.jira.similarissues/server/overview
https://www.computecanada.ca/
http://cac.queensu.ca/

The Performance Impact of Just-in-time Duplicate Retrieval 25

3. Mantis Bug Tracker. https://www.mantisbt.org/. Last visited on
11/12/2017

4. RedMine Flexible Project Management. https://www.redmine.org/.
Last visited on 11/12/2017

5. The Trac Project. https://trac.edgewall.org/. Last visited on
11/12/2017

6. Aggarwal, K., Rutgers, T., Timbers, F., Hindle, A., Greiner, R., Strou-
lia, E.: Detecting duplicate bug reports with software engineering domain
knowledge. In: Proceedings of the 22th IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 211–220.
IEEE (2015)

7. Alipour, A., Hindle, A., Stroulia, E.: A contextual approach towards more
accurate duplicate bug report detection. In: Proceedings of the 10th
Working Conference on Mining Software Repositories (MSR), pp. 183–
192 (2013)

8. Anvik, J., Hiew, L., Murphy, G.C.: Coping with an open bug repository. In:
Proceedings of the OOPSLA Workshop on Eclipse Technology eXchange
(Eclipse), pp. 35–39. ACM (2005)

9. Banerjee, S., Syed, Z., Helmick, J., Culp, M., Ryan, K., Cukic, B.: Auto-
mated triaging of very large bug repositories. Information and Software
Technology 89(Supplement C), 1–13 (2017)

10. Berry, M.W., Castellanos, M.: Survey of text mining. Computing Reviews
45(9), 548 (2004)

11. Bettenburg, N., Just, S., Schröter, A., Weiß, C., Premraj, R., Zimmer-
mann, T.: Quality of bug reports in eclipse. In: Proceedings of the OOP-
SLA Workshop on Eclipse Technology eXchange (Eclipse), pp. 21–25.
ACM (2007)

12. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmer-
mann, T.: What makes a good bug report? In: Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering (SIGSOFT/FSE), pp. 308–318. ACM (2008)

13. Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S.: Duplicate bug
reports considered harmful...really? In: Proceedings of the 24th Interna-
tional Conference on Software Maintenance (ICSM), pp. 337–345. IEEE
(2008)

14. Borg, M., Runeson, P.: Changes, Evolution, and Bugs, pp. 477–509.
Springer Berlin Heidelberg (2014)

15. Borg, M., Runeson, P., Johansson, J., Mäntylä, M.V.: A replicated study
on duplicate detection: Using apache lucene to search among android de-
fects. In: Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp. 8:1–8:4.
ACM, New York, NY, USA (2014)

16. Cavalcanti, Y.C., da Mota Silveira Neto, P.A., Machado, I.d.C., Vale, T.F.,
de Almeida, E.S., Meira, S.R.d.L.: Challenges and opportunities for soft-
ware change request repositories: a systematic mapping study. Journal of
Software: Evolution and Process 26(7), 620–653 (2014)

25

https://www.mantisbt.org/
https://www.redmine.org/
https://trac.edgewall.org/

26 Rakha et al.

17. Cavalcanti, Y.C., Neto, P.A.d.M.S., Lucrédio, D., Vale, T., de Almeida,
E.S., de Lemos Meira, S.R.: The bug report duplication problem: an ex-
ploratory study. Software Quality Journal 21(1), 39–66 (2013)

18. Chowdhury, G.: Introduction to modern information retrieval. Facet pub-
lishing (2010)

19. Gehan, E.A.: A generalized Wilcoxon test for comparing arbitrarily singly-
censored samples. Biometrika 52(1-2), 203–223 (1965)

20. Hamers, L., Hemeryck, Y., Herweyers, G., Janssen, M., Keters, H.,
Rousseau, R., Vanhoutte, A.: Similarity measures in scientometric re-
search: The Jaccard index versus Salton’s cosine formula. Information
Processing and Management 25(3), 315–318 (1989)

21. Hassan, A.E.: The road ahead for mining software repositories. In: Pro-
ceedings of the Frontiers of Software Maintenance (FoSM), pp. 48–57.
IEEE (2008)

22. Hindle, A.: Stopping duplicate bug reports before they start with Contin-
uous Querying for bug reports. PeerJ Preprints 4, e2373v1 (2016)

23. Hindle, A., Alipour, A., Stroulia, E.: A contextual approach towards more
accurate duplicate bug report detection and ranking. Empirical Software
Engineering 21(2), 368–410 (2016)

24. Jalbert, N., Weimer, W.: Automated duplicate detection for bug tracking
systems. In: Proceedings of the 38th International Conference on Depend-
able Systems and Networks With FTCS and DCC (DSN), pp. 52–61. IEEE
(2008)

25. Koponen, T.: Life cycle of defects in open source software projects. In:
Open Source Systems, pp. 195–200. Springer (2006)

26. Lazar, A., Ritchey, S., Sharif, B.: Improving the accuracy of duplicate bug
report detection using textual similarity measures. In: Proceedings of the
11th Working Conference on Mining Software Repositories (MSR), pp.
308–311. ACM (2014)

27. Long, J.D., Feng, D., Cli↵, N.: Ordinal analysis of behavioral data. Hand-
book of psychology (2003)

28. Nagwani, N.K., Singh, P.: Weight similarity measurement model based,
object oriented approach for bug databases mining to detect similar and
duplicate bugs. In: Proceedings of the 1st International Conference on
Advances in Computing, Communication and Control (ICAC3), pp. 202–
207. ACM (2009)

29. Nguyen, A.T., Nguyen, T.T., Nguyen, T.N., Lo, D., Sun, C.: Duplicate
bug report detection with a combination of information retrieval and topic
modeling. In: Proceedings of the 27th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp. 70–79. ACM (2012)

30. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for au-
tomatic evaluation of machine translation. In: Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, pp. 311–
318. Association for Computational Linguistics (2002)

31. Rakha, M.S., Bezemer, C.P., Hassan, A.E.: Revisiting the Performance
of Automated Approaches for the Retrieval of Duplicate Reports in Is-

26

The Performance Impact of Just-in-time Duplicate Retrieval 27

sue Tracking Systems that Perform Just-in-Time Duplicate Retrieval: On-
line Appendix. https://github.com/SAILResearch/replication-jit_
duplicates. Last visited on 11/12/2017

32. Rakha, M.S., Bezemer, C.P., Hassan, A.E.: Revisiting the performance
evaluation of automated approaches for the retrieval of duplicate issue
reports. IEEE Transactions on Software Engineering (TSE) PP(99), 1–27
(2017)

33. Rakha, M.S., Shang, W., Hassan, A.E.: Studying the needed e↵ort for iden-
tifying duplicate issues. Empirical Software Engineering (EMSE) 21(5),
1960–1989 (2016)

34. Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to mul-
tiple weighted fields. In: Proceedings of the 13th International Conference
on Information and Knowledge Management (CIKM), pp. 42–49. ACM
(2004)

35. Romano, J., Kromrey, J.D., Coraggio, J., Skowronek, J., Devine, L.: Ex-
ploring methods for evaluating group di↵erences on the nsse and other
surveys: Are the t-test and Cohens’d indices the most appropriate choices.
In: Annual Meeting of the Southern Association for Institutional Research
(2006)

36. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect
reports using natural language processing. In: Proceedings of the 29th
International Conference on Software Engineering (ICSE), pp. 499–510.
IEEE Computer Society (2007)

37. Somasundaram, K., Murphy, G.C.: Automatic categorization of bug re-
ports using Latent Dirichlet Allocation. In: Proceedings of the 5th India
Software Engineering Conference (ISEC), pp. 125–130. ACM (2012)

38. Strzalkowski, T., Lin, F., Wang, J., Perez-Carballo, J.: Evaluating natu-
ral language processing techniques in information retrieval. In: Natural
language information retrieval, pp. 113–145. Springer (1999)

39. Sun, C., Le, V., Zhang, Q., Su, Z.: Toward understanding compiler bugs
in GCC and LLVM. In: Proceedings of the 25th International Symposium
on Software Testing and Analysis (ISSTA), pp. 294–305. ACM, New York,
NY, USA (2016)

40. Sun, C., Lo, D., Khoo, S.C., Jiang, J.: Towards more accurate retrieval
of duplicate bug reports. In: Proceedings of the 26th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), pp.
253–262. IEEE (2011)

41. Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S.C.: A discriminative model
approach for accurate duplicate bug report retrieval. In: Proceedings of
the 32th ACM/IEEE International Conference on Software Engineering
(ICSE), pp. 45–54. ACM (2010)

42. Sureka, A., Jalote, P.: Detecting duplicate bug report using character n-
gram-based features. In: Proceedings of the 17th Asia Pacific Software
Engineering Conference (APSEC), pp. 366–374. IEEE Computer Society
(2010)

27

https://github.com/SAILResearch/replication-jit_duplicates
https://github.com/SAILResearch/replication-jit_duplicates

28 Rakha et al.

43. Taylor, M., Zaragoza, H., Craswell, N., Robertson, S., Burges, C.: Op-
timisation methods for ranking functions with multiple parameters. In:
CIKM 2006: Proceedings of the 15th ACM International Conference on
Information and Knowledge Management, pp. 585–593. ACM (2006)

44. Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An approach to detecting
duplicate bug reports using natural language and execution information.
In: Proceedings of the 30th International Conference on Software Engi-
neering (ICSE), pp. 461–470. ACM (2008)

45. Zhou, J., Zhang, H.: Learning to rank duplicate bug reports. In: Pro-
ceedings of the 21st ACM International Conference on Information and
Knowledge Management (CIKM), pp. 852–861. ACM (2012)

46. Zou, J., Xu, L., Yang, M., Zhang, X., Zeng, J., Hirokawa, S.: Automated
duplicate bug report detection using multi-factor analysis. IEICE Trans-
actions on Information and Systems E99.D(7), 1762–1775 (2016)

28

View publication statsView publication stats

https://www.researchgate.net/publication/321913195

	1 Introduction
	2 Background
	3 Experimental Setup
	4 Experimental results
	5 Implications
	6 Threats to Validity
	7 Conclusion
	8 Acknowledgments

