
Noname manuscript No.
(will be inserted by the editor)

Examining the Stability of Logging Statements

Suhas Kabinna1 · Cor-Paul Bezemer1 ·
Weiyi Shang2 · Mark D. Syer1 · Ahmed
E. Hassan1

Received: date / Accepted: date

Abstract Logging statements (embedded in the source code) produce logs
that assist in understanding system behavior, monitoring choke-points and
debugging. Prior work showcases the importance of logging statements in op-
erating, understanding and improving software systems. The wide dependence
on logs has lead to a new market of log processing and management tools. How-
ever, logs are often unstable, i.e., the logging statements that generate logs are
often changed without the consideration of other stakeholders, causing sudden
failures of log processing tools and increasing the maintenance costs of such
tools. We examine the stability of logging statements in four open source ap-
plications namely: Liferay, ActiveMQ, Camel and CloudStack. We find that
20-45% of their logging statements change throughout their lifetime. The me-
dian number of days between the introduction of a logging statement and the
first change to that statement is between 1 and 17 in our studied applications.
These numbers show that in order to reduce maintenance e↵ort, developers of
log processing tools must be careful when selecting the logging statements on
which their tools depend.

In order to e↵ectively mitigate the issues that are caused by unstable log-
ging statements, we make an important first step towards determining whether
a logging statement is likely to remain unchanged in the future. First, we use a
random forest classifier to determine whether a just-introduced logging state-
ment will change in the future, based solely on metrics that are calculated
when it is introduced. Second, we examine whether a long-lived logging state-
ment is likely to change based on its change history. We leverage Cox pro-
portionality hazard models (Cox models) to determine the change likelihood

Software Analysis and Intelligence Lab (SAIL) 1

Queen’s University, Kingston, Ontario
E-mail: {kabinna, bezemer, mdsyer, ahmed}@cs.queensu.ca

Department of Computer Science and Software Engineering Concordia 2

University, Montreal, QC, Canada
E-mail: shang@encs.concordia.ca

1

of long-lived logging statements in the source code. Through our case study
on four open source applications, we show that our random forest classifier
achieves a 83%-91% precision, a 65%-85% recall and a 0.95-0.96 AUC. We
find that file ownership, developer experience, log density and SLOC are im-
portant metrics in our studied projects for determining the stability of logging
statements in both our random forest classifiers and Cox models. Develop-
ers can use our approach to determine the likelihood of a logging statement
changing in their own projects, to construct more robust log processing tools,
by ensuring that these tools depend on logs that are generated by more stable
logging statements.

1 Introduction

Developers use logging statements to yield useful information about the state
of an application during its execution. Such information is collected into files
(logs) and contains details which would otherwise be di�cult to collect, such
as the values of variables. Logs support various development activities such as
fixing bugs [49, 27, 11], analyzing load tests [28], monitoring performance [52]
and transferring knowledge [37]. Logging statements make use of logging li-
braries (e.g., Log4j [47]) or more archaic methods such as print statements.
Every logging statement contains a textual part indicating the event, a vari-
able part providing contextual information about the event and a log level
indicating the verbosity of the logging statement. An example of a logging
statement is shown in Figure 1.

Fig. 1: An example of a logging statement

Fig. 2: Modification of a logging statement

The rich knowledge and the wide dependence on logs has lead to the
development of many log processing tools such as Splunk [4], Xpolog [48],

2

Logstash [50] and research tools, such as Salsa [44] and Chukwa [3], that are
designed to analyze logs. However, when logging statements are changed, the
associated log processing tools may also need to be updated. For example,
Figure 2 demonstrates a case in which a developer removes the elapsed time
for an event. Removing information from a logging statement can a↵ect log
processing tools that rely on the removed information in order to monitor the
health of the application.

Knowing whether a logging statement is likely to change in the future
helps reduce the e↵ort that is required to maintain log processing tools. If a
developer of a log processing tool knows that a logging statement is likely to
change, the developer can opt not to depend on the logs that are generated by
this logging statement. Instead, the developer can let the log processing tool
depend on output generated by logging statements that are likely to remain
unchanged. Depending on logging statements that remain unchanged will re-
duce the maintenance e↵ort that is required for keeping the log processing tool
consistent with the ever-changing logs [39, 37]. Even if the tool must depend
on a particular log line, having a good idea about the stability of that log line
would ensure that developers factor in the realistic maintenance cost associ-
ated with such a tool. For example, a developer who must rely on an unstable
logging statement could:

– Make the rest of the development team aware that there may be issues
with the part of the log processing tool that processes the unstable logging
statement in the future,

– Implement additional error handling functionality for the code that pro-
cesses the unstable logging statement,

– Interact with the development team that is responsible for the logging
statement, in order to try and make that important logging statement more
stable, or introduce a new logging statement that provides the required
information in a more stable way.

We study the likelihood of a logging statement changing in the future by
studying the following set of metrics:

M1 The content of the logging statement (i.e., number of variables, log level,
length of log text),

M2 The context of the logging statement (i.e., where the statement resides in
the source code and the characteristics of the code changes at the time of
the introduction of the logging statement),

M3 The characteristics of the developer who introduced the logging statement
into the source code.

In this paper, we present an approach that uses this set of metrics to deter-
mine the likelihood of a logging statement changing in a project. First, we
present a preliminary study which was done to get a better understanding of
the changes made to logging statements in the four studied open source appli-
cations (ActiveMQ, Camel, Cloudstack and Liferay). Our preliminary study
finds that 20%-45% of the logging statements are changed at least once during

3

their lifetime in the studied applications. Therefore, developers of log process-
ing tools have to carefully select the logging statements on which to depend (or
at minimum, factor in the unstable nature of logs in the maintenance e↵orts
of their log processing tools).

Second, we present our approach for determining the likelihood of a logging
statement changing. By leveraging a random forest classifier, we can provide
early advice to log processing tool developers about the stability of logging
statements as soon as they are introduced into the source code. For long-
lived logging statements which have already been in the application for sev-
eral releases, we use the same metrics (M1 to M3). However, the metrics are
collected at every release of the application to construct Cox proportional-
ity hazard (Cox) models. These Cox models help developers of log processing
tools identify the stable long-lived logging statements for future releases of the
application. Our most important results are:

1. We model the likelihood of a just-introduced logging statement
changing in the future using a random forest classifier with a
precision of 83%-91%, a recall of 65%-85% and an AUC of 0.95-
0.96.

2. Developer experience is an important metric for determining the
change likelihood of a logging statement for both just-introduced
and long-lived logging statements in our studied projects.

3. Logging statements that are introduced by developers who have
little ownership of the file that contains the logging statement,
have a higher likelihood of being changed in our studied projects.
We find that 27%-67% of all changes are done on logging statements that
are introduced by developers who own (i.e., contributed) less than 20% of
the file.

4. Logging statements that are recently introduced into large files
(i.e., files with SLOC that is twice to three times the median
SLOC of a project) with a low log density are more likely to
be changed than logging statements in well-logged files in our
studied projects.

Our previous work [20] focused on examining whether a just-introduced logging
statement will change in the future. In this paper, we extend our prior work to
cover long-lived logging statements that have already been in the application
for several releases. The presented work in this paper can be used 1) preven-
tively, as log processing tool developers can be more selective in picking logging
statements on which their log processing tools depend and 2) proactively, if log
processing tool developers have to depend on a particular logging statement,
they are aware of the associated risks of doing so for future releases (i.e., the
expected maintenance costs of such tools).

In order to reap the benefits of the approach described in this paper, devel-
opers of open source software can apply the approach as described. Developers
of tools that process logs of proprietary software often do not have access to
the source code history of that software. Hence, they cannot directly apply our

4

Fig. 3: Overview of a log processing tool

1 INFO [2015/10/13 20:03]: execute Service 1: Delivered 1000 messages in 10ms
2 INFO [2015/10/13 20:04]: execute Service 1: Delivered 1020 messages in 10ms
3 INFO [2015/10/13 20:05]: execute Service 1: Delivered 970 messages in 10ms
4 INFO [2015/10/13 20:06]: execute Service 1: Delivered 960 messages in 10ms
5 INFO [2015/10/13 20:07]: execute Service 1: Delivered 200 messages in 10ms

Listing 1: Example log file (the red line indicates a problem with the service)

approach as described in this paper. A possible solution is that proprietary
software vendors use our approach as described and publish the risk factors,
i.e., the change likelihood, of each log line with every release of their software.
These risk factors can then be used to build robust log processing tools.

The remainder of this paper is organized as follows. Section 2 gives back-
ground information on log processing tools and discusses related work. Sec-
tion 3 discusses several real-world examples of changes to logging statements
that break log processing tools to motivate our work. Section 4 presents our
experimental setup. Section 5 presents the preliminary analysis that motivates
our study. Section 6 describes the random forest classifier and the analysis re-
sults. Section 7 describes the construction of the Cox models and the obtained
results. Section 8 describes the important metrics from both models. Section 9
discusses the threats to validity. Section 10 concludes the paper and finally,
Appendix A presents background information about survival analysis and Cox
models.

2 Background

In this section, we give a brief overview of how a log processing tool works, and
how it is a↵ected by changes to a logging statement. In addition, we discuss
related work.

5

200

400

600

800

1000

20:03 20:04 20:05 20:06 20:07
Time

D
el

ive
re

d
m

es
sa

ge
s

Fig. 4: The graph that can be generated by a log processing tool from the log
file in Listing 1

2.1 Log Processing Tools

Figure 3 gives an overview of how a log processing tool works. Log files are
generated by logging statements during the execution of a software system.
Often, these log files become large and tedious to interpret manually. There-
fore, developers employ log processing tools that transform the log into more
readable output, such as an aggregated report or graph.

For example, assume that a software system generates the log file that is
shown in Listing 1. Lines 1–5 contain information about the number of mes-
sages that are delivered by a service that is provided by the software system.
Sudden changes in the number of delivered messages (such as in the fifth line)
indicate that there is a problem with the service. Hence, the developer of the
software system uses the information in the log file to monitor the service. The
developer builds a log processing tool that searches for the log lines that con-
tain the words ‘execute’, and extracts the name of the service and the number
of delivered messages from these lines. Then, the extracted information is used
to generate the graph in Figure 4 that shows the number of delivered messages
of the service over time.

2.1.1 How Di↵erent Types of Changes A↵ect Log Processing Tools

Even though a log processing tool may be designed carefully, changes to a
logging statement may break the tool. Li et al. [26] identified three groups of
reasons for changing a logging statement. For each group, we discuss whether
such a change can a↵ect a log processing tool, if that log processing tool is not
updated accordingly.

– Log improvement. These changes are made to improve the output that
is generated by the logging statement. For example, the debugging capa-
bility of the logging statement can be improved by adding variables to

6

the generated output. Log improvement changes are very likely to break
log processing tools, as these changes involve changes to the format of the
generated log file.

– Dependency-driven change. These changes are made to reflect changes
to the code in the log file. For example, a variable or method name is
updated. Dependency-driven changes are likely to break a log processing
tool when the return type of a method or the unit of a variable changes.
An example of such a breaking change was made in the Apache Hadoop
project1, where the unit of a variable was changed from kilobytes to bytes.

– Logging issues. These changes are made to fix an issue with a logging
statement. For example, the logging level needs to be downgraded from
info to debug. Such changes are very likely to break a log processing tool,
as the changes may restrict the amount of information that is generated in
the log file.

To summarize, there are many changes to logging statements possible that
can break a log processing tool. The symptoms, frequency and severity of the
failures of a log processing tool depend on the purpose of the log processing
tool. Log processing tools can be used in all stages of software development.
For example, a log processing tool can be used to collect information about
program exceptions during development, or a log processing tool can be used
to collect information about the execution of a program during production.
In both cases, the log processing tool may break by throwing an exception
when parsing the log file, or by not generating a correct report. The severity
of the failure of the log processing tool is di�cult to define without domain
knowledge. For example, a failure of the log processing tool in the development
phase can be catastrophic, if the broken log processing tool causes a developer
to overlook a program exception which later ends up in the production code.

In this paper, we present an approach that developers can use to decide
whether a logging statement is likely to change in the future. In the remainder
of this section, we first discuss related work.

2.2 Related Work

2.2.1 Log Maintenance Tools

Prior research has explored various approaches in order to assist developers
in maintaining logs. Research by Fu et al. [10] explores where developers put
logging statements in their code and provides guidelines for more e↵ective
logging. A recent work by Zhu et al. [55] helps developers log e↵ectively by
informing developers where to log and presents a tool named Log Advisor,
to assist in logging. Yuan et al. [52] show that logs need to be improved by
providing additional information and present a tool named Log Enhancer can

1 http://svn.apache.org/viewvc/hadoop/core/trunk/src/test/org/apache/hadoop/
util/TestProcfsBasedProcessTree.java?r1=722760&r2=722759&pathrev=722760

7

automatically provide additional control and data flow parameters into the logs
thereby improving the logs and avoiding the need for later changes. Follow-
up work done by Yuan et al. [51] shows that logs can be e↵ectively used to
diagnose system failures and provides a tool named Errlog, to pro-actively
add logging statements to diagnose failures before occurring. A recent work
by Ding et al. [7] presents a tool named Log2 that condenses the number
of irrelevant logs that are generated while preserving the useful logs. Though
prior work focuses on introducing e↵ective logging statements in software, prior
work does not provide any insight into the stability of logging statements. Our
paper presents an approach for determining which logging statements have a
higher likelihood of being changed such that developers of log processing tools
can avoid depending on such logging statements in their tools.

2.2.2 Empirical Studies on Logging Statements and Logs

Prior work performs empirical studies to understand the characteristics of log-
ging statements. Li et al. [26] study the types of changes that are made to
logging statements, and they propose an approach that suggests changes to
logging statements when changes to the code are committed. In addition, Li et
al. [25] propose an approach for suggesting which log level should be used for
a logging statement. Yuan et al. [53] study the logging characteristics of four
open source systems and find that logging statements are changed 1.8 times
more than regular code. Pecchia et al. [32] study the importance of event log-
ging in industry and find that event logging statements change due the specific
needs of the code and that such changes are rarely communicated to the dif-
ferent teams within the company. Shang et al. [41, 38] performed an empirical
study on the evolution of both logging statements and the logs that are out-
putted at run-time. They find that logging statements are changed as software
systems mature. However, these changes are done by developers without con-
sidering the needs of operators which negatively impacts the log processing
tools. Shang et al. highlight the fact that there is a gap between operators and
developers of software systems when leveraging of logging statements [36]. Fur-
thermore, Shang et al. [40] find that understanding logs is challenging. They
examine user mailing lists from three large open-source projects and find that
users of the systems that are produced by these projects have various issues
in understanding logs outputted by the system.

The work described above shows that logs continuously evolve and that
changes to logging statements are made by developers without consideration
for other stakeholders, which a↵ects practitioners and end users. These findings
highlight the need for a better understanding of the metrics to determine the
likelihood of a logging statement changing. The approach that is presented in
this paper facilitates this understanding, as it allows developers to understand
which metrics can be used to determine the likelihood of a logging statement
changing in their own projects.

8

3 Two Real-World Examples

In this section, we discuss two real-world examples in which a change to a
logging statement breaks a log processing tool.

The first example is issue report HADOOP-41902 for the Apache Hadoop3

project. Hadoop is an open-source software framework for storing data and
running applications on clusters of commodity hardware. Hadoop allows the
user to store and process very large amounts of data through the execution of
tasks (or jobs). The JobHistory log file can be processed using a log processing
tool (i.e., a parser) that is included in the Hadoop project.

Issue report HADOOP-4190 explains that the format of the log file was updated,
and that the log processing tool was updated accordingly to process only lines
that end with a dot (‘.’). However, lines in older versions of the log file do not
necessarily end with a dot. Therefore, the log processing tool will not function
as expected when processing older versions of the log file. The HADOOP-4190

issue is an example of how a seemingly simple-looking change to a logging
statement, i.e., adding a dot to the end of the line, can break a log processing
tool. To resolve the reported issue, a 65 Kb patch4 had to be made to check
whether changes made to the log file format a↵ect the Hadoop log processing
tool.

The second example is issue report WICKET-39195 for the Apache Wicket6

project. Apache Wicket is a Java framework for building web applications. The
Wicket project has a request logger which logs requests that are made to the
application. However, issue report WICKET-3919 describes that the log files that
are generated by this logger cannot be automatically processed, because of in-
consistencies in the format. For example, the [ResourceStreamRequestTarget[[]]

log line contains an unbalanced number of brackets. Issue report WICKET-3919

shows that (1) developers use automated tools for processing logs and (2) de-
velopers care about the format of logging statements, which implies that they
care about changes to this format.

In this paper, we present an approach that can help to prevent issues in log
processing tools, by helping developers understand which logging statements
are likely to change in the future.

4 Experimental Setup

In this paper we study the changes that are made to logging statements in
open source applications. The goal of our study is to determine the likelihood
of a logging statement changing in the future. Hence, in this section, we present

2 https://issues.apache.org/jira/browse/HADOOP-4190
3 http://hadoop.apache.org/
4 https://issues.apache.org/jira/browse/HADOOP-4191
5 https://issues.apache.org/jira/browse/WICKET-3919
6 https://wicket.apache.org/

9

1 grep -icR "\(log .*\) \.\(| info\|trace \|debug \| error\|warn\)(" .
2 | grep "\.java"

Listing 2: Counting logging statements

our process for selecting the studied applications and the modeling techniques
used for the analysis of the four studied applications.

4.1 Studied Applications

We selected four applications (ActiveMQ, Camel, Cloudstack and Liferay).
ActiveMQ7 is an open source messaging protocol for delivering messages be-
tween two nodes in a network. Camel8 is an open source source routing engine
for constructing route between two nodes in a network. CloudStack9 is an
open source application for deploying and managing large networks of vir-
tual machines. Liferay10 is an open source platform for building websites and
web portals. Table 1 presents an overview of the studied applications. These
applications share the following three characteristics:

– Usage of logging statements. The applications extensively use logging
statements in their source code (i.e., the source code contains more than
1,000 logging statements).

– Application activity. The applications have a mature development his-
tory (i.e., more than 10,000 commits).

– Used technology. To simplify the implementation of our study, we opted
to only select applications that are written in Java and are available through
a Git repository.

We counted the number of logging statements in all the *.java files of the
application using the grep command in Listing 2. Listing 2 counts the invoca-
tions of a logging library (e.g., log or logger) followed by the specification of
a log level in Java files. We sum the number of invocations in all files of an
application to get the total number of logging statements shown in Table 1.

4.2 Modeling Techniques

We use two methods for studying the likelihood of a logging statement chang-
ing in the future namely 1) Random forest classifiers and 2) Cox proportion-
ality hazard (Cox) models.

7 http://activemq.apache.org/(last checked April 2016)
8 http://camel.apache.org/ (last checked April 2016)
9 https://cloudstack.apache.org/ (last checked April 2016)

10 http://www.liferay.com/ (last checked April 2016)

10

Table 1: An overview of the studied applications (all metrics are calculated
based on the main branch of the repository on September 2015)

ActiveMQ Camel CloudStack Liferay

of logging statements 5.1K 6.1K 9.6K 1.8K
of commits 11K 21K 29K 143K
of years in repository 8 8 4 4
of contributors 41 151 204 351
of releases 15 25 31 21

of added lines of code 261K 505K 1.09M 3.9M
of deleted lines of code 114K 174K 750K 2.8M
of added logging statements 4.5K 5.1K 24K 10.4K
of deleted logging statements 2.3K 2.4K 17K 8.1K
% of logging-related changes 1.8% 1.1% 2.3% 0.3%

Random Forest Classifier

A random forest classifier is a collection of decision trees in which the produced
classifications of all trees are combined to form a global classification. We
use a random forest classifier due to its strong performance in comparison to
other classifiers such as SVM, boosted trees, bayes or logistic regressions [12].
Random forest classifiers take a single snapshot of the data as input. Hence,
they are ideal for providing early advice on determining the likelihood of a
logging statement changing based solely on the metrics that are available when
the logging statement is just-introduced.

Cox Proportionality Hazard Model

As an application evolves, the code around the logging statements also evolves
which can destabilize logging statements overtime. As random forest classifiers
are not capable of using data across di↵erent time snapshots for such long-lived
logging statements, we leverage survival analysis techniques. We construct
Cox models to better understand the change likelihood of long-lived logging
statement that has been in the code for some time.

The Cox model is a popular survival analysis model (see Appendix A) that
captures the likelihood of an event, e.g., the changing of a logging statement,
in relation to the elapsed time. As Cox models are built from snapshots of the
data that are collected throughout the lifetime of an application, we can use
Cox models to examine the stability of logging statements that have been in
the code for some time. As a result, Cox models allow us to calculate the risks
of depending on a certain logging statement.

A limitation of Cox models is that when a logging statement is introduced
into the application, (i.e., time ‘0’) it will not have any prior observation
periods and the calculated risk at time ‘0’ can be erroneous. In such cases it is
necessary to use a modeling technique which does not require prior knowledge
to determine if a just-introduced logging statement will change in the future.

11

Fig. 5: Overview of the data extraction and empirical study approach

Hence, in the first part of our work we first explore random forest classifiers
to determine the change likelihood of just-introduced logging statements and
in the second part, we use Cox models to determine the change likelihood of
long-lived logging statements.

4.3 Data Extraction Approach

Our data extraction approach for the random forest classifiers and Cox models
consists of four steps, which are explained further in this section:

1. We extract the change history of each source code file by cloning the Git
repository of each studied application. We then identify logging statements
in the repository.

2. We track the changes that are made to each logging statement across com-
mits.

12

3. We collect the metrics for each logging statement when it is introduced in
order to build random forest classifiers.

4. We collect the metrics for each logging statement at each o�cial release of
the application in order to build Cox models.

We use the R [19] statistical analysis tool to perform our analysis. Figure 5
shows a general overview of our approach and we detail below each of the
aforementioned steps.

4.3.1 Extracting the Change History of Java Files

To examine the changes that are made to logging statements, we must first
obtain a complete history of each Java file in the latest version of the main
branch. We collect all the Java files in the four studied applications and we
use the Git repositories of the applications to obtain all the changes that are
made to the files. We use Git’s follow option to track a file even when it is
renamed or relocated. We include only the changes to logging statements that
are made in the main branch of the applications as changes made to logging
statements in other branches are unlikely to a↵ect log processing tools.

4.3.2 Identifying Logging Statements

From the extracted change history of each Java file, we identify all the logging
statements. First, we manually examine the documentation of each studied
application to identify the logging libraries that are used to generate logs. We
find that the studied applications use Log4j [41], Slf4j 11 and logback12. Using
this information, we manually identify the common method invocations that
invoke the logging library. For example, in ActiveMQ and Camel, a logging
library is invoked by a method named LOG as shown below.⇤

⇥
�
�LOG.debug(“Exception detail”, exception);

As an application can use multiple logging libraries throughout its life-
time [21], we use regular expressions to search for all the common log invo-
cation patterns (i.e., LOG, log, logger, LOGGER, Log). We identify every
successful match of this regular expression that is followed by a log level (info,
trace, debug, error, warn) as a logging statement.

We find that applications can migrate from one logging library to another
during development [21]. However, such changes do not a↵ect the log process-
ing tools as only the log invocation patterns are changed. Hence, we exclude
the logging statement changes that only have the invoker (e.g., the variable
LOG) changed.

11 http://www.slf4j.org/ (last checked April 2016)
12 http://logback.qos.ch/ (last checked April 2016)

13

1 - LOG.debug("Call: " +method.getName ()+ " " + callTime);
2 + LOG.debug("Call: " +method.getName ()+ " took "+ callTime + "ms");

// (Statement a1)
3 + LOG.debug("Call: " +method.setName ()+ " took "+ callTime + "ms");

// (Statement a2)

Listing 3: Selecting the best matching logging statement

4.3.3 Tracking Changes to Logging Statements

After identifying all the logging statements, we track the changes that are made
to these statements after their introduction. We extract the change information
from the Git commits, which show a di↵ of added and removed code. To
distinguish between changes in which a new logging statement is introduced
and a change to an existing logging statement, we must track the changes
made to a logging statement starting from the first commit. Because there
may be multiple changes to logging statements in a commit, we must map
changes to existing logging statements.

We first collect all the logging statements in the initial commit as the initial
set of logging statements. Then, we analyze the next commit to find changes
to logging statements until we reach the latest commit in the repository. To
distinguish between just-introduced, deleted and changed logging statements
and to map the change to an existing logging statement, we use the Levenshtein
ratio [30].

We leverage the Levenshtein ratio for both random forest classifiers and
Cox models because in both random forest classifiers and Cox models we track
a logging statement to observe if the logging statement changes or not. We
use the Levenshtein ratio instead of string comparison, because the Leven-
shtein ratio quantifies the di↵erence between the strings on a continuous scale
between 0 and 1 (the more similar the strings are, the closer the ratio ap-
proaches 1). This continuous scale is necessary to decide between multiple
logging statements which can have a similar match to a change.

Selecting the best matching logging statement is demonstrated by the ex-
ample in Listing 3. In this example, there are two changes made to logging
statements: one change and one addition. To identify the change to logging
statements, we calculate the Levenshtein ratio between each deleted and all
the introduced logging statements and select the pair that has the highest
Levenshtein ratio. This calculation is done iteratively to find all the changes
within a commit. In our example, we find that the Levenshtein ratio between
the deleted statement and statement a1 is 0.86 and between the deleted state-
ment and statement a2 is 0.76. Hence, we consider a1 as a change. If there
are no more deleted logging statements, a2 is considered a just-introduced
instead of a changed logging statement. We extend the initial set of logging
statements with every just-introduced logging statement.

14

0
5

10
15

20
25

ActiveMQ Camel Cloudstack Liferay

of

 c
om

m
its

Fig. 6: Number of commits before a just-introduced logging statement is
changed in the studied applications (Cloudstack has outliers that are not
shown due to their large numbers)

For the random forest classifiers, we do not have change information for
logging statements that are introduced at the end of the lifetime of a repository.
Hence, we exclude these logging statements from our analysis. We find that
in the studied applications, the maximum number of commits between the
addition of a logging statement and its first change is 390, as shown in Figure 6
(we exclude 110 outliers from Cloudstack to make the graph more readable).
We exclude all logs that are introduced into the application 390 commits before
the last commit when building a random forest classifier. We do not exclude
any logging statements for our Cox models.

4.3.4 Collecting Content, Context and Developer Metrics

We collect metrics that measure the context, the content and the developers of
the logging statements to train the random forest classifier and Cox models.
For the random forest classifier we collect these metrics at the time of the
introduction of each logging statement, whereas for the Cox models we collect
these metrics at every release.

Context metrics measure the file context and the code changes at the time
of adding a logging statement. Content metrics collect information about the
logging statement. Developer metrics collect information about the developer
who introduced the logging statement. Table 4-6 define each collected metric
and the rationale behind our choice of each metric. We use the Git repository to
extract the context, content and developer metrics for the studied applications.

15

Table 2: Example data for survival analysis

Log - ID Start release Stop release Log change Number of
logged variables

L1 1 2 0 2
L1 2 3 1 4
L2 2 3 0 1
L2 3 4 0 1
L2 4 5 0 1

Table 3: Recurrent changes to logging statements

Changed once Changed twice Changed three times or more

ActiveMQ 25% 4% 0.7%
Camel 31% 2% 1%
Cloudstack 45% 12% 3%
Liferay 20% 4% 2%

4.3.5 Collecting Survival Analysis Data

To construct survival models we have to collect data for all observation periods,
i.e., all application releases as shown in Figure 5. We collect the metrics at the
start of the observation period (i.e., introduction of logging statement) and
every subsequent release of the application, till the end of the study period.
Our study period covered four years of development from January 2010 till
September 2015 and the statistics of the studied releases are shown in Table 1.

As an example of survival analysis data, Table 2 shows the metrics that
are collected for logging statement L1 for release 1 and the logging statement
is changed in release 2. However, L2 which is introduced into the application
at release 2 is never changed. Hence, this logging statement is tracked till the
end of the study period.

Similarly, we extract the metrics that are described in Table 4-6 at every
o�cial release of an application for all logging statements. We exclude minor
releases and release candidates and other ‘hotfixes’. However, we find that
all the applications have nightly and beta releases within 5-10 days of one-
another which cannot be counted as actual releases of the applications. Hence,
we ensure a time di↵erence of 30 days between any two consecutive releases
to avoid the nightly and beta releases in between.

If there is a change made to a logging statement, we tag it as a log change
event and stop collecting data for that particular logging statement. We do
not consider recurrent changes to logging statements in our analysis because
we observe from Table 3 that recurrent changes are infrequent to logging state-
ments.

16

Table 4: The investigated context metrics in our random forest classifier and
Cox model
Metric Values Definition (d) – Rationale (r)

Total
revision
count

Numerical d: Total number of commits made to the file before the
logging statement is added. This value is 0 for logging
statements introduced in the initial commit of the
application but not for logging statements introduced
over time.
r: Logging statements present in a file which is often
changed, have a higher likelihood of being changed [53].
Hence, the more prior commits to a file, the higher the
change likelihood of a logging statement.

Code churn
in a commit

Numerical d: The amount of code churn in the commit in which a
logging statement is added.
r: The change likelihood of a logging statement that is
introduced during large code changes, such as feature
addition, can be di↵erent from that of a logging
statement that is introduced during bug fixes, which
have less code changes.

Declared
variables

Numerical d: The number of variables which are declared before
the logging statement in that function.
r: When a large number of variables are declared, there
is a higher chance that any of the variables will be
added to or removed from the logging statement
throughout its lifetime.

SLOC Numerical d: The source lines of code in the file.
r: Large files have more functionality and are more
prone to changes [54] and to changes to logging
statements [53, 41].

Log context Categorical d: The block (i.e., if, if-else, try-catch, exception, throw,
new function) in which a logging statement is
introduced.
r: The stability of logging statements used in logical
branching and assertion checks, i.e., if-else blocks, may
be di↵erent from the stability of logging statements in
try-catch, exception blocks.

Table 5: The investigated developer metrics in our random forest classifier and
Cox model
Metric Values Definition (d) – Rationale (r)
File
ownership

Numerical d: Percentage of the file that is written by the developer
who introduced the logging statement. In random forest
classifiers File ownership is calculated when the log is
introduced and in Cox models it is calculated at every
release of the application.
r: The owner of the file is more likely to add stable
logging statements than a developer who has not
previously edited the file.

Developer
experience

Numerical d: The number of commits that the developer has made
prior to this commit. In both random forest classifiers
and Cox models, developer experience is calculated when
the log is introduced and the value is not re-calculated.
r: More experienced developers may introduce more
stable logging statements than a less experienced
developer.

17

Log
modification
experience

Numerical d: The number of logging statements modified
by the developer who introduces the new
logging statement, prior to the addition of this
logging statement.
r: Developers who frequently changed logging
statements in the past are more likely to change
logging statements in future changes.

Table 6: The investigated content metrics in our random forest classifier and
Cox model

Metric Values Definition (d) – Rationale (r)
Log addition Boolean d: Check if the logging statement was

introduced to the file after creation or if it was
introduced when the file was created.
r: Logging statements that are introduced at
file creation might be essential statements that
are less likely to change.

Log variable
count

Numerical d: Number of logged variables in a logging
statement.
r: Over 62% of logging statement changes add
new variables [53]. Hence, fewer variables in the
initial logging statement might result in the
addition of new variables later.

Log density Numerical d: Ratio of the number of logging statements to
the source code lines in the file.
r: Files that are well logged (i.e., with a higher
log density) may not need additional logging
statements and are less likely to be changed.

Log level Categorical d: The level (verbosity) of the introduced
logging statement, i.e., info, error, warn, debug
and trace.
r: Research has shown that developers spend a
significant amount of time in adjusting the
verbosity of logging statements [53]. Hence, the
verbosity level of a logging statement may
a↵ect its stability.

Log text
count

Numerical d: The number of text phrases that are logged.
We count all text present between a pair of
quotes as one phrase.
r: Over 45% of logging statements have
modifications to their textual content [53].
Logging statements with fewer phrases might
be subject to changes later to provide a better
explanation.

Log churn in
commit

Numerical d: The number of logging statements changed
in the commit.
r: Logging statements can be introduced as part
of a specific change or part of a larger change.

Log churn
ratio

Numerical d: The ratio of total number of logging
statement changes to total code changes in a
commit.
r: Logging statements which were introduced as
a part of large code changes might be di↵erent
from logging statements that are introduced in
a strategical fashion (i.e., changes which
introduce many logging statements relative to
the introduced code).

18

ActiveMQ Camel Cloudstack Liferay

Ti
m

e
(in

 d
ay

s)

1
10

10
0

10
00

Fig. 7: Number of days before a just-introduced logging statement is changed
in the studied applications. The gray lines represent the first, second (median),
third and fourth quantiles within each application

5 Preliminary Analysis

In our experimental setup we explain the process for collecting and tracking
logging statement changes in the studied applications. In this section, we per-
form a preliminary analysis, in which we examine how often logging statements
change, to motivate our work. Figure 5 provides an overview of our approach
for collecting and tracking logging statement changes for the preliminary anal-
ysis. ⇤

⇥

�

�
20%-45% of the logging statements in the studied applications
are changed. The median number of days between the addition
of a logging statement and its first change is between 1 and
17.

We observe that 20%-45% of the logging statements are changed in the stud-
ied applications, during their lifetime. The observed values show that logging
statements change extensively throughout the lifetime of an application, which
can a↵ect the maintenance e↵orts and costs of log processing tools that depend
on such logging statements.

From Figure 7, we observe that 75% of the changes to logging statements
are done within 223 days after the log is introduced. In fact, the largest me-
dian number of days between the addition of a logging statement and its first
change is 17 days in our studied applications. This number shows that, all

19

Fig. 8: Overview of random forest classifier construction (C), analysis (A) and
the flow of data in the random forest construction

too often, the changes to logging statements happen in a short time after the
logging statement being introduced. This result suggests that developers of
log processing tools should be cautious when selecting just-introduced logging
statements in their log processing tools.

6 Determining Whether a Just-Introduced Logging Statement will
Change

In our preliminary analysis, we find that 20-45% of the logging statements
are changed in our studied applications. These logging statement changes af-
fect the log processing tools that depend on the logs that are generated by
these statements, forcing developers to spend more time on maintaining their
tools. By analyzing the metrics which can have a strong relationship with the
likelihood of a logging statement changing, log processing tools can be more
cautious and select more stable logging statements that are likely to remain
unchanged.

6.1 Approach

We train a random forest classifier for determining whether a just-introduced
logging statement will change in the future, then we evaluate the performance
of our random forest classifier. In our classifier, the context, content and devel-
oper metrics (see Table 4-6) are the explanatory variables and the dependent
class variable is a boolean variable that represents whether the logging state-
ment ever changed or not (i.e., False for not changed and True for changed).

20

Lo
g

le
ve

l

S
LO

C

Lo
g

de
ns

ity

D
ec

la
re

d
va

ria
bl

es

Lo
g

co
nt

ex
t

Lo
g

ad
di

tio
n

Lo
g

ch
ur

n
in

 c
om

m
it

Lo
g

ch
ur

n
ra

tio

To
ta

l r
ev

is
io

n
co

un
t

C
od

e
ch

ur
n

in
 c

om
m

it

Lo
g

va
ria

bl
e

co
un

t

Lo
g

te
xt

 le
ng

th

D
ev

el
op

er
 e

xp
er

ie
nc

e

Fi
le

 o
w

ne
rs

hi
p

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
pe

ar
m

an
 r

2

Fig. 9: Hierarchical clustering of variables according to Spearmans ⇢2 in Ac-
tiveMQ (the blue dotted line indicates our cuto↵ value (|⇢2| = 0.7))

Figure 8 provides an overview of the construction steps (C1 and C2) for
constructing a random forest classifier and the analysis step (A1) for analyzing
the results. We use the statistical tool R to model and analyze our data using
the RandomForest package.

Step C1 - Removing Correlated and Redundant Metrics

Correlation analysis is necessary to remove highly correlated metrics from
our dataset [5]. Correlated metrics can lead to incorrect determination of the
importance of a particular metric in the random forest classifier, as small
changes to one correlated metric can a↵ect the values of the other correlated
metrics.

We use the Spearman square rank correlation [23] to find correlated met-
rics in our data. Spearman rank correlation assesses how well two metrics can
be described by a monotonic function. We use the Spearman square rank cor-
relation instead of the Pearson correlation [35] because the Spearman square
correlation is resilient to data that is not normally distributed. We use the
function varclus in R to perform the correlation analysis.

Figure 9 shows the hierarchically clustered Spearman ⇢2 values for the
ActiveMQ application. A solid horizontal line indicates the correlation value of
the two metrics that are connected by the vertical branches that descend from
it. We keep only one metric from the sub-hierarchies which have correlation
|⇢2| > 0.7. The blue dotted line indicates our cuto↵ value (|⇢2| = 0.7). We

21

use a cuto↵ value of (|⇢2| = 0.7) as it represents highly correlated metrics as
shown by prior research [1].

We find that total revision count is highly correlated with code churn in
commit, log churn ratio and log churn in commit. We exclude total revision
count, log churn ratio and log churn in commit and retain code churn in commit
as it is a simpler metric to compute. Similarly, we also find that developer
experience is highly correlated with log modification experience. We retain
developer experience as it is a simpler metric to compute.

Correlation analysis does not indicate redundant metrics, i.e, metrics that
can be explained by a combination of other explanatory metrics. The redun-
dant metrics can interfere with one another and the relation between the ex-
planatory and dependent metrics would become distorted. We perform re-
dundancy analysis to remove such metrics. We use the redun function that
is provided in the rms package to perform the redundancy analysis. We find
after removing the correlated metrics, that there exist no redundant metrics.

Step C2 - Construction of the Random Forest Classifier

After removing the correlated metrics, we construct the random forest classi-
fier. Random forest is an ensemble classifier, which operates by constructing
several decision trees using the training set and uses these trees to classify the
testing set.

Step A1 - Random Forest Validation

After we construct the random forest classifier, we evaluate the performance
of our classifier using precision, recall, F-measure and AUC. These measures
are functions of the confusion matrix and are explained below.

Precision (P) measures the correctness of our classifier in determining
whether a just-introduced logging statement will change in the future. Preci-
sion is defined as the number of just-introduced logging statements which were
correctly classified as changed (CC) over all just-introduced logging statements
that have changed (TC) as detailed in Equation 1.

P =
CC

TC
(1)

Recall (R) measures the ability of our classifier to successfully classify the
changed logging statements. A classifier is said to have perfect recall if the
classifier can correctly classify all the just-introduced logging statements which
change. Recall is defined as the number of just-introduced logging statements
which were classified as changed (CC), over the number of all logging state-
ments which are changed (TL) as explained in Equation 2.

R =
CC

TL
(2)

22

F1-Score also known as F-measure (F) [34], is the harmonic mean of preci-
sion and recall, combining the inversely related measure into a single descrip-
tive statistic as shown in Equation 3 [18].

F =
2⇥ P ⇥R

P +R
(3)

Area Under Curve (AUC) is used to measure how well our classifier can dis-
criminate between changed logging statements and unchanged logging state-
ments. AUC is the area below the curve plotting the true positive rate against
the false positive rate. The value of AUC ranges between 0.5 (worst) for ran-
dom guessing and 1 (best) where 1 means that our classifier can correctly
classify every logging statement. We calculate AUC using the roc.curve func-
tion from the pROC package in R.

Removing Optimism in Performance Measures using Bootstrapping

The previously-described performance measures may overestimate the perfor-
mance of the classifier due to overfitting. To account for the overfitting in our
classifier, we use the optimism measure, as used by prior research [29, 14, 20].
The optimism of the performance measures is calculated as follows:

1. From the original dataset with m records, we select a bootstrap sample
with m records with replacement.

2. Construct a random forest classifier as described in (C2) using the boot-
strap sample.

3. Apply the classifier built from the bootstrap sample on both the bootstrap
sample and the original data sample, calculating the precision, recall, F-
measure and AUC for both data samples.

4. Calculate optimism by subtracting the performance measures of the boot-
strap sample from the original sample.

The above process is repeated 1,000 times and the average (mean) optimism
is calculated. Finally, we calculate optimism-reduced performance measures for
precision, recall, F-measure and AUC by subtracting the averaged optimism of
each measure, from their corresponding measure for the original data sample.
The smaller the optimism values, the less the chances that the original classifier
overfits the data and the more likely that the observed performance on our
testing data would generalize to unseen testing data (e.g., data from other
applications).

6.2 Results⇤
⇥

�
�

The random forest classifier achieves a precision of 0.83-0.91,
a recall of 0.65-0.85 and outperforms random guessing for our
studied applications with an AUC of 0.95-0.96.

23

Precision Recall F−measure AUC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ActiveMQ

Precision Recall F−measure AUC
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Camel

Precision Recall F−measure AUC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cloudstack

Precision Recall F−measure AUC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Liferay

Fig. 10: The optimism-reduced performance measures of the studied applica-
tions

Figure 10 shows the optimism-reduced values of precision, recall, F-measure
and AUC for each studied application. The classifier achieves an AUC of 0.95-
0.96. A random classifier, which randomly (p = 0.5) determines whether a
logging statement will change in the future, has an AUC of 0.5. Our results
show that random forest classifiers can accurately determine whether a just-
introduced logging statement will change in the future, with high precision
and recall.

24

Fig. 11: Overview of Cox model construction (C), validation (V) and flow of
data in the Cox model

7 Determining Whether a Long-Lived Logging Statement will
Change

Using a random forest classifier we could determine whether a just-introduced
logging statement will change in the future. However, the random forest clas-
sifier was constructed solely using data that is collected when the logging
statement was introduced. Subsequent changes to the file in which the logging
statement resides are not considered. Hence, for logging statements that have
a change history we leverage survival analysis techniques.

Using survival analysis we aim to determine the most stable logging state-
ments at any give time and explore the relationship of each metric on the
change likelihood of long-lived logging statements. This knowledge can help
developers of log processing tools avoid using unstable long-lived logging state-
ments, thereby reducing the e↵ort spent of maintaining their log processing
tools. It also helps in proactive analysis, where developers can use survival
analysis to be aware of the associated risks of using a particular logging state-
ment if an alternative, more stable logging statement cannot be found.

In this section, we explain our approach for constructing our survival analy-
sis model and the additional metrics that are collected for this model. Next, we

25

Lo
g

le
ve

l

Lo
g

va
ria

bl
e

co
un

t

Lo
g

te
xt

 le
ng

th

Co
de

 c
hu

rn
 in

 re
le

as
e

Lo
g

ch
ur

n
in

 re
le

as
e

Lo
g

ch
ur

n
ra

tio

Fi
le

 o
wn

er
sh

ip

De
ve

lo
pe

r e
xp

er
ie

nc
e

Lo
g

m
od

ific
at

io
n

ex
pe

rie
nc

e

De
cla

re
d

va
ria

bl
es

To
ta

l r
ev

isi
on

 c
ou

nt

Lo
g

ad
di

tio
n

Lo
g

de
ns

ity

Lo
g

co
nt

ex
t

SL
O

C

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Sp
ea

rm
an

 r
2

Fig. 12: Hierarchical clustering of variables according to Spearmans ⇢2 in
ActiveMQ for Cox models (the blue dotted line indicates our cuto↵ value
(|⇢2| = 0.7))

evaluate the performance of our survival analysis model and use the model to
explore the relationship of each metric with the change likelihood of long-lived
logging statements.

7.1 Approach

We construct a Cox proportionality hazards (Cox) model [8] to determine
the change likelihood of long-lived logging statements. Figure 11 provides an
overview of construction steps (C1 to C4) for constructing a Cox model, the
step (V1) for the validation of our model and identifying the statistically sig-
nificant metrics. We use the statistical tool R to model our data using the
survival package.

Step C1: Remove Correlated Metrics

Similar to our random forest classifier, we use the Spearman square rank cor-
relation to find correlated metrics in our data. As Cox models use data that is
collected from di↵erent releases of the applications, we merge all the releases
together and find the correlation between metrics across all releases. Figure 12
shows the hierarchically clustered Spearman ⇢2 values for the ActiveMQ appli-
cation in Cox models. Similar to random forests we find that the hierarchically
clustered Spearman ⇢2 values are similar between developer experience and log

26

modification experience and log churn in commit and log churn ratio and we
retain developer experience and log churn in commit respectively from our Cox
models. However, we find that total revision count and log churn in release
are not highly correlated as observed in random forest classifiers and hence we
retain both these metrics.

Step C2: Transform the Collected Metrics into the Cox Model Format

Before constructing a Cox model, we collect the metrics at every release for
every existing logging statement. When a logging statement is changed we
identify the release at which the logging statement is changed (i.e., the event)
and stop collecting metrics for that changed logging statements. Each obser-
vation for a logging statement consists of the following fields:

1. UID : We give a unique identifier for each logging statement that is intro-
duced into the application.

2. Start time: The end time of the previous release or ‘0’ for the first release
of the application.

3. End time: The start time of the release plus one, i.e., if the start time is
the 11th release of an application, the end time is 12.

4. Event : If the logging statement is changed we set event as true, ie., 1 or 0
if the logging statement did not change.

5. Metrics: Metrics that are calculated at every release of the application.

Step C3: Validation of the Cox Model Assumptions

Before constructing a Cox model it is essential to validate if the Cox models
can be applied to our dataset. To check if Cox models are applicable to our
dataset, we verify if the dataset satisfies the Cox model assumptions. The
first assumption of a Cox model is the existence of a linear relation between
each collected metric in Table 4-6 and the change likelihood of the logging
statements in the dataset, i.e., the change likelihood of a logging statement is
linearly dependent on the di↵erence between the values of the metrics and this
linear relation holds for all time. The second validation is to check for overly
influential observations i.e., outliers within the data which can influence the
model. We validate these two assumptions prior to the construction of our Cox
model.

To assess the existence of a linear relation between each collected metric
and the change likelihood of the logging statements, we employ graphical tech-
niques as they help in visually analyzing the linear relationship as numerical
methods are widely considered to be insu�cient [43, 24]. We leverage Schoen-
feld residuals [43, 24, 17], which plot only the changed logging statements to
assess the existence of a linear relation between each collected metric and the
change likelihood of the logging statement. Schoenfeld residuals can be thought
of as the observed values minus predicted values for each collected metric of a

27

2.3 3 4.6 6.3 7.7 9.7 12 15

−0
.0

05
0.

00
0

0.
00

5
0.

01
0

Time

Be
ta

(t)
 o

f S
LO

C

2.3 2.9 4.2 6 7.2 9 11 14

-6
-4

-2
0

2
4

6

Time

Be
ta

(t)
 o

f F
ile

 o
w

ne
rs

hi
p

2.3 2.9 4.2 6 7.2 9 11 14

-1
0

1
2

3

Time

Be
ta

(t)
 o

f V
ar

ia
bl

e
de

cl
ar

ed

Fig. 13: Three of the scaled Schoenfeld residuals for the Camel application.
We did not include all residuals to avoid cluttering the paper.

28

changed logging statement. If the Schoenfeld residuals have a random pattern
against time, i.e., the slope of the Schoenfeld residuals is ‘0’, the linear relation
is not violated. However, if a metric is dependent on time, the observed values
minus the predicted values for each collected metric can increase or decrease
with time. In such a case, the slope of the Schoenfeld residual is non-zero,
which implies that the Cox model assumption is violated. For example, in
Figure 13 we see that for metric SLOC, the Schoenfeld residuals is nearly con-
stant throughout time (the dotted lines indicate a conference interval of 95%),
implying that SLOC is independent of time. We plot the Schoenfeld residuals
using the cox.zph function from the R rms package.

Overly influential observations can skew the coe�cients of our final model
and can a↵ect the validity of Cox models. Hence, to identify the existence
of overly influential observations we calculate dfbeta residuals as proposed by
prior research [43, 24]. Dfbeta residuals calculate the influence of each obser-
vation by fitting a Cox model with and without the observation. The di↵er-
ence between the coe�cients for the metrics with and without the observation
shows the influence of that observation in the Cox model. Overly influential
observations will have dfbeta residuals greater than twice the inverse of the
square root of the number of logging statements in the application. We plot
dfbeta residuals for each metric using the residuals function within the R stats
packages and we use the abline function to demarcate the overly influential
observations. For example, we observe that in Figure 14 many metrics have
overly influential observations (i.e., points outside the area marked by the red
lines) which suggests that these observations are overly influential (absence of
red lines indicates that the metric has no overly influential observations). How-
ever, upon further analysis we find that these outliers are valid observations
and we do not exclude these observations in our Cox models.

Step C4: Cox Model Construction

After transforming the collected metrics into the Cox model format and en-
suring the Cox model assumptions are met, Cox models are constructed using
the cph() function from the R rms package.

Step V1: Validation of the Goodness of Fit of the Cox Model

In the previous steps we validated the metrics that are used for building the
Cox models. However, to validate the goodness of fit of the Cox models, we
leverage the Martingale residuals. Martingale residuals are widely used in the
field of biometrics and cancer research to measure the goodness of fit of the
Cox models [46, 33, 6]. A Martingale residual considers both unchanged and
changed logging statements and the plot ranges between (�1, 1) on the Y-
axis and the logging statements on the X-axis. If the Martingale residuals plot
has more negative values below -1 or positive values close to 1 it indicates that

29

Fig. 14: Three of the dfbeta residuals for the Camel application. We did not
include all residuals to avoid cluttering the paper.

30

Fig. 15: Martingale residuals to validate the fit of the Cox models for the
studied applications

our Cox model is not a good fit. We use the cph() function from the R rms
package to plot the Martingale residuals for the studied applications.

The residuals can be interpreted as the di↵erence between the observed
number of logging statement changes in the data and the number of predicted
logging statement changes by our Cox model. If a logging statement is changed
and our Cox model accurately classifies the change, the Martingale residual
has a value of 1. If a logging is not changed and our Cox models accurately
classifies the logging statement as not changed, the Martingale residual has
value 0. However, if there is a mismatch, i.e., the Cox model classifies the
logging statement as not changed but the logging statement is changed, the
Martingale residual has values lower than 0. For Cox models to be a good fit to
the dataset, the Martingale residuals should have an asymmetric distribution
between (-1,1) with minimal mismatches.

31

Fig. 16: Transformed scaled Schoenfeld residuals for file ownership and vari-
ables declared in the Camel application

7.2 Results

Our Cox models satisfy the linear relation between each collected metric and
the change likelihood of logging statements. The scaled Schoenfeld residuals in
Figure 13 show a random pattern against time except for file ownership and
declared variables (similar results were found for metrics in other applications).
This result suggests that file ownership and declared variables do not satisfy
the linear relation between each collected metric. Hence, we transform those
metrics by making them time dependent in our Cox model (i.e., we multiply
file ownership and declared variables by the number of releases that a logging
statement has existed) as proposed by prior research [9] and re-plot the scaled
Schoenfeld residuals. Figure 16 shows the scaled Schoenfeld residuals after we
transformed these two metrics and we observe that the Cox model assumptions
are now validate for both metrics. Therefore both file ownership and declared
variables can be used to build Cox models.

32

The built Cox models are a good fit for the studied applications. The
Martingale residuals shown in Figure 15 are asymmetrically distributed in
between (-1,1). These residuals plots show that our Cox models can accurately
determine the change likelihood of long-lived logging statements and that our
Cox models are a good fit for our survival data.

8 Important Metrics from Random Forest Classifiers and Cox
Models

In our previous sections (i.e., Section 6 and 7), we find that a random forest
classifier can accurately determine the change likelihood of a just-introduced
logging statement and that Cox models are able to model the change likeli-
hood of long-lived logging statements. Hence, in this section we analyze the
random forest classifier and Cox models to better understand the important
metrics which help in determining the likelihood of a logging statement chang-
ing. By analyzing the impact of the important metrics, developers can better
understand what drives the random forest classifiers and Cox models and get
a better understanding of the phenomenon of changing logging statements in
their own projects.

8.1 Important Metrics in our Random Forest Classifier

To find the importance of each metric in a random forest classifier, we use a
permutation test [42]. In this test, the classifier built using the training data
is applied to the test data during bootstrapping (see Section 6.1). Then, in
order to find the importance of the Xth

i metric, the values of the metric are
randomly permuted in the test dataset and the accuracy of the classifier is
recomputed [15]. The change in the accuracy as a result of this permutation
is averaged over all trees, and is used as a measure of the importance of the
Xth

i metric in the random forest. We use the importance function defined in
the RandomForest package of R, to calculate the importance of each metric.
We call the importance function during the bootstrapping process explained
in Section 6.1 to obtain 1,000 importance scores for each metric in our dataset.

As we obtain 1,000 data sets for each metric from the bootstrapping pro-
cess, we use the Scott-Knott E↵ect size clustering (SK-ESD) to group the
metrics based on their e↵ect size [45]. The SK-ESD algorithm groups metrics
based on their importance in determining the change likelihood of a just-
introduced logging statement. The SK-ESD algorithm uses e↵ect sizes that
are calculated using Cohen’s delta [22], to merge any two statistically indistin-
guishable groups. We use the SK.ESD function in the ScottKnottESD package
of R and set the e↵ect size threshold parameter to negligible, (i.e., < 0.2) to
cluster the two metrics into the same groups as seen in Table 8.

33

8.2 Selecting Statistically Significant Metrics in a Cox Model

After validating the Cox model assumptions and goodness of fit, we finally
identify the statistically significant metrics in our Cox models. We use the
backward selection method [14] for selecting the statistically significant metrics
in our Cox model since the backward selection method outperforms forward
selection methods [14]. In backward selection, multiple Cox models are built
and in each successive model the statistically insignificant metrics are elimi-
nated until only statistically significant metrics are left in the final Cox model.
If a metric has a p-value that is greater than 0.05, the metric is excluded from
the next model while metrics that have a p-value that is less than 0.05 are
retained in successive models. We use the validate.cph() method from the rms
package to identify the statistically significant metrics in our Cox models.

Important Metrics in a Cox Model

To determine the importance of each metric in Cox models, we use the chunk
test/ANOVA test [16]. In this test, the Cox model is constructed using the
statistically significant metrics after backward selection and the chi-squared
values [13] are computed using the residuals obtained from the Cox model for
each metric. By ordering the metrics based on their chi-squared values, we de-
termine the importance of each metric with respect to our Cox model, i.e., the
metric with the highest chi-squared value is the most important metric in our
Cox model. As chi-squared values are computed from residuals obtained from
statistical models, this method is not applicable for random forest classifiers.
We use the anova function defined in the stat package of R, to calculate the
chi-squared values of each metric.

8.3 Plotting the Important Metrics

After identifying the important metrics in both random forest classifiers and
Cox models, it is crucial to plot these important metrics to determine how the
metrics a↵ect the change likelihood of logging statements, i.e., to determine
the direction of the e↵ect of the metrics. To identify how a metric a↵ects
the change likelihood of a logging statement we plot each metric against the
predicted likelihood of whether a just-introduced logging statement will change
for random forest classifiers and against the relative risk (i.e., likelihood of
logging statement changing) for Cox models.

To plot the predicted value of whether a just-introduced logging state-
ment will change, we first construct a random forest classifier as explained in
Section 6 with training data (i.e., two-thirds of entire data). Next, using the
predict function in R, we determine whether a just-introduced logging state-
ment will change for our training data set (i.e., remaining one-thirds of the
data). We then plot the predicted value of whether a just-introduced logging

34

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20
log density of the file

Pr
ob

ab
ili

ty
 o

f l
og

 c
ha

ng
e

Camel

Fig. 17: Showing the change likelihood of logging statement change against
log density for random forest classifiers. Change likelihood varies between 0 to
1, where ‘1’ implies that the change likelihood of a logging statement is 100%
and ‘0’ implies that the change likelihood of a logging statement is 0%. Note
that there were no files with a log density larger than 0.20

0.8

1.0

1.2

1.4

1.6

0.00 0.05 0.10 0.15 0.20
Log density of the file

R
isk

 F
ac

to
r

Camel (Cox Model)

Fig. 18: Showing the relative risk of depending on a logging statement against
the log density for Cox models. A relative risk value over ‘1’ implies that these
logging statements have a higher risk of being changed than those logging
statements with a relative risk lower than ‘1’. Note that there were no files
with a log density larger than 0.20

statement will change against the significant metrics for our random forest
classifier. Using the qplot function in R, we fit a curve through the plotted
data points by setting the geom variable and set the confidence interval to
95% by configuring the span variable in qplot function as seen in Figure 17.

For the Cox models we use a similar approach and use the predict.cph func-
tion from rms package in R, instead of predict as used for the random forest

35

Table 7: Percentage of all logging statements in an application that are 1) in-
troduced by the top 3 developers, 2) changed by the top 3 developers and
3) the total number of developers that introduce logs in an application.

Introduced logging Changed logging Total # of
statements statements developers

ActiveMQ 956 (50.4%) 301 (31.4%) 41
Camel 3,060 (63.1%) 1,460 (47.7%) 151
Cloudstack 5,982 (35.7%) 2,276 (38.0%) 204
Liferay 3,382 (86.7%) 609 (18.0%) 351

classifiers. The predict.cph function returns the relative risk (i.e., likelihood
of logging statement changing) for each row in our test dataset and we plot
the risk against each metric. Next, we fit a curve through the plotted data
points using qplot function the same as for random forest classifiers. An ex-
ample of this is seen in Figure 18, where we observe the that relative risk of
a logging statement changing is higher for those logging statements present in
files having lower logging density (i.e., the relative risk is higher than 1), than
for logging statements in well logged files.

8.4 Results⇤
⇥

�
�

Developer experience plays an important role in determining
the change likelihood of both just-introduced and long-lived log-
ging statements.

From Table 8 and Table 9 we see that developer experience is one of the
four most important metrics in our studied applications for both the random
forest classifiers and Cox models for determining the change likelihood of just-
introduced and long-lived logging statements. From our analysis we find that
logging statements introduced by more experienced developers are more likely
to be changed in both random forest classifiers and Cox models for the Ac-
tiveMQ, Cloudstack and Liferay applications. From Figure 19 we observe that
with increase in developer experience (i.e., number of commits) in ActiveMQ
and Cloudstack there is a drastic increase in the change likelihood of a logging
statement.

However, we observe that logging statements introduced by the top devel-
opers are less likely to be changed as seen by the downward trend in Figure 19
for the ActiveMQ, Camel and Cloudstack applications. This downward trend
may be explained by the fact that in the studied applications the top develop-
ers are responsible for introducing more than 59% of the logging statements as
seen in Table 7 and up to 70% of the logging statements introduced by these
top developers never change.

36

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500
File ownership

Pr
ob

ab
ili

ty
 o

f l
og

 c
ha

ng
e

ActiveMQ (RF Classifier)

1.00

1.25

1.50

1.75

0 500 1000 1500
of commits made by the developer

R
isk

 F
ac

to
r

ActiveMQ (Cox Model)

0.00

0.25

0.50

0.75

1.00

0 2000 4000 6000 8000
of commits made by the developer

C
ha

ng
e

lik
el

ih
oo

d
of

 lo
gg

in
g

st
at

em
en

t

Camel (RF Classifier)

0.6

0.8

1.0

1.2

0 2000 4000 6000 8000
of commits made by the developer

R
isk

 F
ac

to
r

Camel (Cox Model)

0.00

0.25

0.50

0.75

1.00

0 200 400 600
of commits made by the developer

C
ha

ng
e

lik
el

ih
oo

d
of

 lo
gg

in
g

st
at

em
en

t

Cloudstack (RF Classifier)

0.6

0.9

1.2

1.5

1.8

0 200 400 600
of commits made by the developer

R
isk

 F
ac

to
r

Cloudstack (Cox Model)

37

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
of commits made by the developer

C
ha

ng
e

lik
el

ih
oo

d
of

 lo
gg

in
g

st
at

em
en

t

Liferay (RF Classifier)

0

1

2

3

4

1000 2000 3000 4000
of commits made by the developer

R
isk

 F
ac

to
r

Liferay (Cox Model)

Fig. 19: Comparing the probability of changes to just-introduced and long-lived
logging statement against the experience of the developer who introduces that
logging statement

Table 8: The most important metrics in random forest classifier, divided into
homogeneous rank groups using the Scott-Knott E↵ect Size clustering

ActiveMQ Camel
Rank Metric Importance Rank Metric Importance
1 Developer experience 0.246 1 Developer experience 0.272
2 Ownership of file 0.175 2 Ownership of file 0.151
3 Log density 0.163 3 Log level 0.138
4 Log variable count 0.101 4 SLOC 0.112
5 Log context 0.069 5 Log addition 0.090
6 Log level 0.063 Log density 0.088
7 Declared variables 0.048 6 Log variable count 0.063
8 Log text length 0.022 7 Log context 0.052

8 Declared variables 0.051

CloudStack Liferay
Rank Metric Importance Rank Metric Importance
1 Log density 0.224 1 Developer experience 0.195
2 Ownership of file 0.215 Log density 0.192
3 SLOC 0.192 2 Ownership of file 0.190
4 Developer experience 0.182 SLOC 0.188
5 Log text length 0.120 3 Log variable count 0.162
6 Log variable count 0.115 4 Log level 0.148
7 Log level 0.102 5 Log context 0.091
8 Declared variables 0.092 6 Declared variables 0.080
9 Log context 0.061 7 Log text length 0.071

38

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
File ownership

C
ha

ng
e

lik
el

ih
oo

d
of

 lo
gg

in
g

st
at

em
en

t

ActiveMQ (RF Classifier)

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
File ownership

R
isk

 F
ac

to
r

ActiveMQ (Cox Model)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
File ownership

C
ha

ng
e

lik
el

ih
oo

d
of

 lo
gg

in
g

st
at

em
en

t

Liferay (RF Classifier)

0.9

1.0

1.1

0.00 0.25 0.50 0.75 1.00
File ownership

R
isk

 F
ac

to
r

Camel (Cox Model)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
File ownership

C
ha

ng
e

lik
el

ih
oo

d
of

 lo
gg

in
g

st
at

em
en

t

Cloudstack (RF Classifier)

0.4

0.8

1.2

0.00 0.25 0.50 0.75 1.00
File ownership

R
isk

 F
ac

to
r

Cloudstack (Cox Model)

39

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
File ownership

C
ha

ng
e

lik
el

ih
oo

d
of

 lo
gg

in
g

st
at

em
en

t

Liferay (RF Classifier)

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
File ownership

R
isk

 F
ac

to
r

Liferay (Cox Model)

Fig. 20: Comparing the probability of changes to just-introduced and long-
lived logging statement against ownership of the file

Table 9: The most important metrics in the Cox model ranked using the chunk
test

ActiveMQ Camel
Rank Metric Importance Rank Metric Importance
1 Log variable count 12.55 1 Log density 4.05
2 File Ownership 11.55 2 Declared variables 3.37
3 Declared variables 8.73 3 File Ownership 3.10
4 Developer experience 4.82 4 Log variable count 0.29

CloudStack Liferay
Rank Metric Importance Rank Metric Importance
1 Log variable count 85.31 1 Log text length 41.01
2 SLOC 85.12 2 SLOC 20.79
3 File ownership 65.02 3 Developer experience 8.38
4 Developer experience 47.96 4 Total revision count 4.85
5 Code churn in commit 20.96 5 Log density 4.59
6 Log text length 8.73
7 Log density 0.63

⇤
⇥

�
�

Logging statements that are introduced by owners of the file
are unlikely to be changed in the future.

From Table 8 and Table 9, we see that file ownership (i.e., the number of
lines of code in a file that are introduced by a developer) is one of the top four
metrics after developer experience in determining the change likelihood of just-
introduced and long-lived logging statements. From Figure 20 we observe in
three of the studied applications, logging statements introduced by developers
who own more than 75% of the file are less likely to be changed. We also
observe that developers who own less than 15% of the file are responsible

40

for 27%-67% of the changes to logging statements in the studied applications,
which is seen as an upward trend from 0 to 0.15 in Figure 20 for the ActiveMQ,
Camel and Cloudstack applications. These results suggest that developers of
log processing tools should be more cautious when using a logging statement
written by a developer who has contributed less than 15% of the file.⇤

⇥

�

�
Logging statements in files with a low log density (i.e., files
having a lesser number of logging statements per line of code)
are more likely to change than logging statements in files with
a high log density.

Log density is defined as the number of logging statements to the total lines
of code within a file. From Table 8 and Table 9, we observe that log density
has the highest importance in the Liferay and Cloudstack applications for
just-introduced logging statements and in the Camel application for long-lived
logging statements. We find that in random forests, changes to just-introduced
logging statements are in files that have a lower log density than the files
containing unchanged logging statements. When we measure the median file
sizes, we find that logging statements with a higher change likelihood are
present in files with a significantly higher SLOC (2⇥-3⇥ higher) than logging
statements with a lower change likelihood. We find similar results for the Cox
models where long-lived logging statements have a higher change likelihood
in files where log density reduces over time than in files where log density
increases over time.

Though there are common patterns observed across di↵erent applications,
our analysis reveals that some metrics are important only in few of the stud-
ied applications. For example, from Table 8 and Table 9, we observe that the
number of variables logged is ranked in the top 3 for determining the change
likelihood of long-lived logging statements. However, for just-introduced log-
ging statements the same metric is ranked in the bottom 3 of the table. This
discrepancy suggests that, developers of log processing tools should analyze
their respective applications and produce risk tables from their analysis at
each release of the application.

9 Threats to Validity

External Validity. Our empirical study is performed on Liferay, ActiveMQ,
Camel and CloudStack. Though these studied applications have years of his-
tory and a large number of developers, these applications are all Java-based.
Other languages may not use logging statements as extensively. More stud-
ies on other domains, with other programming languages are needed to see
whether our findings can be generalized.

Our approach works well on projects that maintain a source code history,
and explicitly specify logging statements in their code that can be extracted us-
ing a regular expression (as explained in Section 4.1). To employ our approach

41

on projects that dynamically generate logging statements, a more advanced
data collection method (e.g., using an abstract syntax tree) is needed.

We extract the necessary metrics at every o�cial release of an application.
The o�cial release excludes minor releases, release candidates and any other
‘hotfixes’. This precautionary measure is taken to ensure that we only consider
logging statement changes which occur in di↵erent releases for our Cox models.
However, if a logging statement is introduced and changed within the same
release, the change is not collected as such a change would not a↵ect log
processing tools.
Construct Validity. In our study, we only explore the first change after the
introduction of a logging statement. While the first change is su�cient for
deciding whether a logging statement will change, we need more information
to determine how likely it is going to be changed again. In future work, we will
extend our study to give more specific details about stability of logs (i.e., how
likely will a changed log be changed again and why do some logging statements
exhibit a large number of changes in their lifetime).

Our heuristic for matching logging statements in code also matches logging
statements that are inside code comments. We verified the matched logging
statements and found that less than 1% of the logging statements in each stud-
ied application was inside code comments. Therefore, such logging statements
will not a↵ect the results of our study.
Internal Validity. Our study is based on the data that is collected from the
Git repositories of all the studied applications. The quality of the data that is
contained in the repositories can impact the internal validity of our study. For
example, rewriting the history of the repository (i.e., by rebasing the history)
may a↵ect our results [2].

Our results are not impacted by any threshold of Levenshtein distance used
in identifying the modification of logging statements.

We collect and study only a subset of the available metrics in our random
forest classifiers and Cox models. More metrics should be leveraged and studied
in depth in future studies.

Our analysis of the relationship between metrics that are important factors
in determining the stability of logging statements cannot claim causal e↵ects,
as we are investigating correlation but not causation. The important metrics
from our random forest models and Cox models only indicate that there exists
a relationship which should be studied in depth in future studies.

Our study utilizes two-thirds of the training data for drawing the plots
for risk factors for Cox models and change likelihood for random forest classi-
fiers. More exhaustive methods should be used in future studies to use all the
training data for drawing the plots.

10 Conclusion

Logging statements are snippets of code, introduced by developers to yield
valuable information about the execution of an application. Logging state-

42

ments generate their output in logs, which are used by a plethora of log pro-
cessing tools to assist in software testing, performance monitoring and system
state comprehension. These log processing tools are completely dependent on
the logs and hence are a↵ected when logging statements are changed.

In order to reduce the e↵ort that is required for the maintenance of such
log processing tools, we examine changes to logging statements in four open
source applications. The goal of our work is to help developers of log processing
tools select more stable logging statements by providing early advice about the
stability of a logging statement. We consider our work an important first step
towards helping developers to construct more robust log processing tools, as
knowing whether a log will change in the future allows developers to let their
log processing tools rely on logs generated by logging statements that are likely
to remain unchanged (or at least factor such instability into the maintenance
costs of their log processing tools). The highlights of our work are:

– We find that 20%-45% of the logging statements are changed at least once.
– We find that our random forest classifier for determining the change like-

lihood of a just-introduced logging statement achieves a precision of 83%-
91%, a recall of 65%-85% and an AUC of 0.95-0.96.

– We find that just-introduced and long-lived logging statements added by
a developer who owns more than 75% of a file are less likely to change in
the future in our studied applications.

– Well-logged files are less likely to have changes to both just-introduced and
long-lived logging statements in our studied applications.

– We find that our random forest classifiers and Cox models show that devel-
oper experience, file ownership, log density and SLOC play an important
role in determining the change likelihood of both just-introduced and long-
lived logging statements in our studied applications.

Our findings help in determining the likelihood of whether a logging state-
ment will change and calculate the relative stability of using a particular log-
ging statement. Developers of tools that process logs of proprietary software
often do not have access to the source code history of that software. Hence,
they cannot directly apply our approach as described in this paper. A possible
solution is that proprietary software vendors use our approach as described
and publish the risk factors, i.e., the change likelihood, for each log line with
every release of their software. These risk factors can then be used to build
robust log processing tools.

Developers of log processing tools can use the knowledge about the change
likelihood of logging statements for conducting preventative analysis by calcu-
lating the relative stability of each logging statement in a release and selecting
the most stable logging statements when building their log processing tools.
If developers have no alternative choices but have to use unstable logging
statements, they can leverage the risk factors calculated from survival anal-
ysis techniques for proactive analysis, such that they are more aware of the
risks of using that logging statement in their log processing tools.

43

Table 10: Data for survival analysis

ID Start Stop Log change (event) Number of
logged variables

Log � 1 0 1 0 3
Log � 1 1 2 1 1
Log � 2 0 1 0 3
Log � 2 1 2 0 4

Appendix A: Background on Survival Analysis

Survival analysis comprises a set of statistical modeling techniques that model
the time taken for an event to occur [31]. These modeling techniques can be
parametric, semi-parametric or non-parametric in form. However, they share
the common goal of modeling the time that it takes between the start of an
observation period (i.e., logging statement introduction) and an event (i.e.,
logging statement change) to occur i.e., they model the survival time of a
logging statement. Survival analysis also helps in identifying the important
metrics that a↵ect the survival time of a logging statement. The following
section discusses the crucial aspect of survival analysis as described in [43]:
survival analysis data and measuring time to event.

Survival Analysis Data and Measuring Time to Event

Survival analysis uses the data that is collected at specific time intervals to
observe the relation between how a subject changes over time and the oc-
currence of an event of interest (e.g., whether a log statement changes). We
explain survival analysis using the stability of logging statements as an exam-
ple.To model the time to change of a logging statement, we collect the data
about content, context and developers (metric) for each release (observation
period) after a logging statement (subject) is introduced into the application.
Each observation in the survival data contains the following fields:

1. UID: Unique number of each logging statements.
2. Start: Time of introduction of a logging statement.
3. Stop: the time at which the logging statement changes.
4. Event: (1) if the logging statement was changed or (0) if the logging state-

ment was not changed at the end of observation period.
5. Metrics: The content, context and developer metrics.

Table 10 shows the survival data for a logging statement (Log-1), where the
observations are recorded at the beginning of a release. If a logging statement
is changed (event occurs), the logging statement is not tracked and the study
halted for that particular logging statement. However, some logging statements
may never be changed and in such cases it is impractical to track them. Hence,

44

the logging statements are tracked for a certain period of time (e.g., 3 years),
during which they may or may not be changed.

To conduct the survival analysis we need to define how we measure the in-
troducing event (i.e., the first release after introduction of a logging statement),
the censored event (i.e., the subsequent months where the logging statement is
not changed) and the terminating event (i.e., month the logging statement is
changed). From Table 10, we find that the logging statement is changed in the
second release, which makes it the terminating event. In the prior releases, the
event of interest does not occur which makes the observations censored events.
In addition, when a logging statement is not changed during the period of
study (i.e., 3 years), their survival is considered equal to the period of study.
We include both censored and terminating events for our survival analysis as
the models can handle both censored and terminating events and can produce
e↵ective survival models without bias [17].

References

1. Luca Bigliardi, Mario Lanza, Alberto Bacchelli, Marco D’Ambros, and
Andrea Mocci. Quantitatively exploring non-code software artifacts. In
Quality Software (QSIC), 2014 14th International Conference on, pages
286–295. IEEE, 2014.

2. Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M.
German, and Prem Devanbu. The promises and perils of mining git.
In Mining Software Repositories, 2009. MSR’09. 6th IEEE International
Working Conference on, pages 1–10. IEEE, 2009.

3. Jerome Boulon, Andy Konwinski, Runping Qi, Ariel Rabkin, Eric Yang,
and Mac Yang. Chukwa, a large-scale monitoring system. In Proceedings
of Cloud Computing and its Applications, volume 8, pages 1–5, 2008.

4. David Carasso. Exploring splunk. published by CITO Research, New York,
USA, ISBN, pages 978–0, 2012.

5. Jacob Cohen, Patricia Cohen, Stephen G. West, and Leona S. Aiken. Ap-
plied multiple regression/correlation analysis for the behavioral sciences.
Routledge, 2013.

6. David Collett. Modelling survival data in medical research. CRC press,
2015.

7. Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei Lin,
Qiang Fu, Dongmei Zhang, and Tao Xie. Log2: A cost-aware logging
mechanism for performance diagnosis. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 139–150, 2015.

8. Chris Elbers and Geert Ridder. True and spurious duration dependence:
The identifiability of the proportional hazard model. The Review of Eco-
nomic Studies, 49(3):403–409, 1982.

9. Lloyd D. Fisher and Danyu Y. Lin. Time-dependent covariates in the cox
proportional-hazards regression model. Annual review of public health, 20
(1):145–157, 1999.

45

10. Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Louand Rui Ding, Qingwei
Lin, Dongmei Zhang, and Tao Xie. Where do developers log? an empirical
study on logging practices in industry. In Proceedings of ICSE Companion
2014: The 36th International Conference on Software Engineering,, pages
Pages 24–33.

11. Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution anomaly
detection in distributed systems through unstructured log analysis. In
Proceedings of the ICDM 2009, Ninth IEEE International Conference on
Data Mining, pages 149–158. IEEE, 2009.

12. Baljinder Ghotra, Shane McIntosh, and Ahmed E. Hassan. Revisiting the
impact of classification techniques on the performance of defect prediction
models. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 789–800. IEEE Press, 2015.

13. Priscilla E. Greenwood and Michael S. Nikulin. A guide to chi-squared
testing, volume 280. John Wiley & Sons, 1996.

14. Frank Harrell. Regression modeling strategies: with applications to linear
models, logistic and ordinal regression, and survival analysis. Springer,
2015.

15. Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.
The elements of statistical learning: data mining, inference and prediction.
The Mathematical Intelligencer, 27(2):83–85, 2005.

16. David C. Hoaglin and Roy E. Welsch. The hat matrix in regression and
anova. The American Statistician, 32(1):17–22, 1978.

17. David W. Hosmer Jr. and Stanley Lemeshow. Applied survival analysis:
Regression modelling of time to event data (1999), 1999.

18. George Hripcsak and Adam S. Rothschild. Agreement, the f-measure,
and reliability in information retrieval. Journal of the American Medical
Informatics Association, 12(3):296–298, 2005.

19. Ross Ihaka and Robert Gentleman. R: a language for data analysis and
graphics. Journal of computational and graphical statistics, 5(3):299–314,
1996.

20. Suhas Kabinna, Weiyi Shang, Cor-Paul Bezemer, and Ahmed E. Hassan.
Examining the stability of logging statements. In SANER 2016: Proceed-
ings of IEEE International Conference on the Software Analysis, Evolution
and Re-engineering,. IEEE, 2016.

21. Suhas Kabinna, Weiyi Shang, Cor-Paul Bezemer, and Ahmed E. Hassan
Hassan. Logging library migrations: A case study for the apache software
foundation projects. Mining Software Repositories, page To appear, 2016.

22. Vigdis By Kampenes, Tore Dyb̊a, Jo E. Hannay, and Dag IK. Sjøberg.
A systematic review of e↵ect size in software engineering experiments.
Information and Software Technology, 49(11):1073–1086, 2007.

23. Maurice George Kendall. Rank correlation methods. 1948.
24. A. Gunes Koru, Dongsong Zhang, and Hongfang Liu. Modeling the e↵ect

of size on defect proneness for open-source software. In Proceedings of the
Third International Workshop on Predictor Models in Software Engineer-
ing, page 10. IEEE Computer Society, 2007.

46

25. Heng Li, Weiyi Shang, and Ahmed E. Hassan. Which log level should
developers choose for a new logging statement? Empirical Software Engi-
neering, page To appear, 2016.

26. Heng Li, Weiyi Shang, Ying Zou, and Ahmed E. Hassan. Towards just-
in-time suggestions for log changes. Empirical Software Engineering, page
To appear, 2016.

27. Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. Mining
invariants from console logs for system problem detection. In Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Confer-
ence, USENIXATC’10, pages 24–24, Berkeley, CA, USA, 2010. USENIX
Association.

28. Haroon Malik, Hadi Hemmati, and Ahmed E. Hassan. Automatic detec-
tion of performance deviations in the load testing of large scale systems.
In Proceedings of(ICSE) 2013, 35th International Conference on Software
Engineering, pages 1012–1021, May 2013.

29. Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan.
An empirical study of the impact of modern code review practices on
software quality. Empirical Software Engineering, 2015.

30. Martins Mednis and Maike K. Aurich. Application of string similarity
ratio and edit distance in automatic metabolite reconciliation comparing
reconstructions and models. Biosystems and Information technology, 1(1):
14–18, 2012.

31. Rupert G. Miller Jr. Survival analysis, volume 66. John Wiley & Sons,
2011.

32. Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico
Cotroneo. Industry practices and event logging: Assessment of a crit-
ical software development process. In Proceedings of the 37th Inter-
national Conference on Software Engineering-Volume 2, pages 169–178.
IEEE Press, 2015.

33. Hening Ren, Ximing Tang, J. Jack Lee, Lei Feng, Allen D. Everett,
Waun Ki Hong, Fadlo R. Khuri, and Li Mao. Expression of hepatoma-
derived growth factor is a strong prognostic predictor for patients with
early-stage non–small-cell lung cancer. Journal of Clinical Oncology, 22
(16):3230–3237, 2004.

34. C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann,
Newton, MA, USA, 2nd edition, 1979. ISBN 0408709294.

35. Robert J. Serfling. Approximation theorems of mathematical statistics,
volume 162. John Wiley & Sons, 2009.

36. Weiyi Shang. Bridging the divide between software developers and oper-
ators using logs. In Proceedings of the 34th International Conference on
Software Engineering, pages 1583–1586. IEEE, 2012.

37. Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan,
Michael W. Godfrey, Mohamed Nasser, and Parminder Flora. An ex-
ploratory study of the evolution of communicated information about the
execution of large software systems. Journal of Software: Evolution and
Process, 26(1):3–26, 2014.

47

38. Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan,
Michael W. Godfrey, Mohamed Nasser, and Parminder Flora. An ex-
ploratory study of the evolution of communicated information about the
execution of large software systems. Journal of Software: Evolution and
Process, 26(1):3–26, 2014.

39. Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan,
Michael W. Godfrey, Mohamed Nasser, and Parminder Flora. An ex-
ploratory study of the evolution of communicated information about the
execution of large software systems. Journal of Software: Evolution and
Process, 26(1):3–26, 2014.

40. Weiyi Shang, Meiyappan Nagappan, Ahmed E. Hassan, and Zhen Ming
Jiang. Understanding log lines using development knowledge. In Proceed-
ings of ICSME 2014, The International Conference on Software Mainte-
nance and Evolution,, pages 21–30. IEEE, 2014.

41. Weiyi Shang, Meiyappan Nagappan, and Ahmed E. Hassan. Studying
the relationship between logging characteristics and the code quality of
platform software. Empirical Software Engineering, 20(1):1–27, 2015.

42. Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin,
and Achim Zeileis. Conditional variable importance for random forests.
BMC bioinformatics, 9(1):307, 2008.

43. Mark Syer, Meiyappan Nagappan, Bram Adams, and Ahmed E. Has-
san. Replicating and re-evaluating the theory of relative defect-proneness.
IEEE Transactions on Software Engineering,, 41(2):176–197, Feb 2015.

44. Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and Priya
Narasimhan. Salsa: Analyzing logs as state machines. In WASL’08: Pro-
ceedings of the 1st USENIX Conference on Analysis of System Logs, pages
6–6. USENIX Association, 2008.

45. Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and
Kenichi Matsumoto. An Empirical Comparison of Model Validation
Techniques for Defect Prediction Model. http://sailhome.cs.queensu.
ca/replication/kla/model-validation.pdf, 2015. Under Review at
Transactions on Software Engineering (TSE).

46. Terry M. Therneau, Patricia M. Grambsch, and Thomas R. Fleming.
Martingale-based residuals for survival models. Biometrika, 77(1):147–
160, 1990.

47. Log4j Last visited March’16. URL http://logging.apache.org/log4j/
2.x/.

48. Xpolog. URL http://www.xpolog.com/.
49. Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jor-

dan. Detecting large-scale system problems by mining console logs. In
Proceedings of the ACM SOPS 2009, 22nd symposium on Operating sys-
tems principle, pages 117–132.

50. Xiwei Xu, Ingo Weber, Len Bass, Liming Zhu, Hiroshi Wada, and Fei Teng.
Detecting cloud provisioning errors using an annotated process model. In
Proceedings of MW4NG 2013, The 8th Workshop on Middleware for Next
Generation Internet Computing, page 5. ACM, 2013.

48

51. Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee, Xiaom-
ing Tang, Yuanyuan Zhou, and Stefan Savage. Be conservative: enhancing
failure diagnosis with proactive logging. In in OSDI 2012, USENIX Sym-
posium on Operating Systems Design and Implementation, pages 293–306.

52. Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Sav-
age. Improving software diagnosability via log enhancement. Proceedings
of ASPLOS 2011, The 16th Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 3–14, 2011.

53. Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging
practices in open-source software. In Proceedings of ICSE 2012, The 34th
International Conference on Software Engineering, pages 102–112. IEEE
Press, 2012.

54. Dongsong Zhang, Khaled El Emam, and Hongfang Liu. An investigation
into the functional form of the size-defect relationship for software mod-
ules. IEEE Transactions on Software Engineering,, 35(2):293–304, 2009.

55. Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and
Dongmei Zhang. Learning to log: Helping developers make informed log-
ging decisions. In Proceedings of ICSE 2015, The 37th International Con-
ference on Software Engineering - Volume 1, pages 415–425, Piscataway,
NJ, USA, 2015. IEEE Press.

49

View publication statsView publication stats

https://www.researchgate.net/publication/315920544

