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Abstract The popularity of mobile apps continues to grow over the past few
years. Mobile app stores, such as the Google Play Store and Apple’s App
Store provide a unique user feedback mechanism to app developers through
the possibility of posting app reviews. In the Google Play Store (and soon in
the Apple App Store), developers are able to respond to such user feedback.

Over the past years, mobile app reviews have been studied excessively
by researchers. However, much of prior work (including our own prior work)
incorrectly assumes that reviews are static in nature and that users never
update their reviews. In a recent study, we started analyzing the dynamic
nature of the review-response mechanism. Our previous study showed that
responding to a review often has a positive e↵ect on the rating that is given
by the user to an app.

In this paper, we revisit our prior finding in more depth by studying 4.5 mil-
lion reviews with 126,686 responses for 2,328 top free-to-download apps in the
Google Play Store. One of the major findings of our paper is that the assump-
tion that reviews are static is incorrect. In particular, we find that developers
and users in some cases use this response mechanism as a rudimentary user
support tool, where dialogues emerge between users and developers through
updated reviews and responses. Even though the messages are often simple,
we find instances of as many as ten user-developer back-and-forth messages
that occur via the response mechanism.
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Using a mixed-e↵ect model, we identify that the likelihood of a developer
responding to a review increases as the review rating gets lower or as the review
content gets longer. In addition, we identify four patterns of developers: 1)
developers who primarily respond to only negative reviews, 2) developers who
primarily respond to negative reviews or to reviews based on their contents,
3) developers who primarily respond to reviews which are posted shortly after
the latest release of their app, and 4) developers who primarily respond to
reviews which are posted long after the latest release of their app.

We perform a qualitative analysis of developer responses to understand
what drives developers to respond to a review. We manually analyzed a statis-
tically representative random sample of 347 reviews with responses for the top
ten apps with the highest number of developer responses. We identify seven
drivers that make a developer respond to a review, of which the most impor-
tant ones are to thank the users for using the app and to ask the user for more
details about the reported issue.

Our findings show that it can be worthwhile for app owners to respond to
reviews, as responding may lead to an increase in the given rating. In addition,
our findings show that studying the dialogue between user and developer can
provide valuable insights that can lead to improvements in the app store and
user support process.

1 Introduction

Mobile apps continue to rapidly gain popularity over the last few years. Mobile
apps can be downloaded from app stores, such as the Google Play Store, which
has more than 3.1 million apps available as of July 2017 [9]. These app stores
allow users to express their opinion about an app through posting reviews,
including a rating, that other potential users of the app see in the store.

A 2015 survey shows that 69% of the users consider the app rating as an
important or very important deciding factor when downloading an app. In
addition, 77% of the users will not download an app that has a rating that
is lower than 3 stars [30]. Hence, the success of an app is closely tied to the
reviews and ratings that it receives.

The reviewing and rating processes have always been one-way mechanisms,
as developers1 were not allowed to respond to the reviews or ratings. As a
result, issues that are raised in reviews can discourage other users from down-
loading the app, even though the raised issue may be inaccurate or might be
easily solved.

Recently, app stores have given developers the opportunity to engage in
a dialogue with the users of their apps by responding to user reviews. The
Google Play Store provides guidelines for responding to a posted review [15].
In addition, Apple’s App Store is expected to add support for responding to
a posted review soon [38]. Such dialogue allows developers to provide possible

1 Throughout this paper we use ‘developer’ to indicate the person(s) or company who are
responsible for making an app.
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solutions for the issues that are raised in the review, or to ask users to clarify
their unsatisfaction with their app. In addition, developers can also encour-
age users to change their review or rating, which in turn can result in more
downloads as reviews become more positive.

Prior work on mobile app reviews focuses on extracting useful information
for developers from those reviews, such as bug reports or feature requests.
However, prior work (including our own) falsely assumes the following: (1) app
reviews and ratings are considered to be immutable, even though a user may
change them over time, and (2) reviewing and rating apps is considered a
one-way mechanism, even though the dynamic nature of app reviews and the
response mechanism can lead to a rich dialogue between developers and users.

In this paper, we empirically study the dynamic nature of app reviews. In
particular, we study the dialogue that takes place between users and developers
in 2,328 free-to-download apps in the Google Play Store. We study 126,686
dialogues that contain messages between the user and the developer. First,
we conduct a preliminary study of the benefit of responding to a user review.
We show that responding to a review increases the chances of users updating
their given rating for an app by up to six times compared to not responding.
Second, we conduct the following studies:

Study I: A study of the characteristics of user-developer dialogues

Motivation: To understand how users and developers interact via the review
system in the Google Play Store, we study the characteristics of these
dialogues that emerge through back-and-forth (updated) app reviews and
developer responses.
Results: A user-developer dialogue was triggered by 2.8% of the user re-
views. If users change the review rating after a developer response, users
tend to increase the review rating (in 4.4% of the reviews that received a
response). In comparison, only 0.7% of the reviews that do not receive a
response change their rating. Hence, app owners should assign more e↵ort
to responding to user reviews as a response is likely to lead to an increased
rating.
Study II: A quantitative study of the likelihood of a developer

responding

Motivation: In our preliminary study and Study I, we observed that re-
sponding to reviews can be beneficial for developers. Therefore, in our
second study, we investigate which metrics are related to the likelihood
of a developer responding to a review. The goal of Study II is to provide
recommendations for store owners and developers to easier identify reviews
that may require a response. For example, store owners could automatically
highlight reviews that a developer is likely to respond to.
Results: When developers respond, they tend to respond to reviews that
are longer and have a low rating. In addition, we find four patterns of devel-
opers: (1) developers who primarily respond to only negative reviews, (2)
developers who primarily respond to negative reviews or to reviews based
on their contents, (3) developers who primarily respond to reviews which
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are posted shortly after the latest release of their app, and (4) developers
who primarily respond to reviews which are posted long after the latest
release of their app.
Study III: A qualitative study of what drives a developer to re-

spond

Motivation: In Study II we found how we can identify reviews that may
require a response. However, the results obtained from Study II do not
explain the actual contents of a response. Understanding the contents of
developer responses can lead to improvements in the review-response mech-
anism, or to improvements in the way that developers use reviews and re-
sponses. For example, if developers turn out to ask users for more details
in many of their responses, such requests can be better accommodated
by next-generation automated review mechanisms. Therefore, we conduct
a manual study of the contents of responses to understand better what
drives developers to respond to reviews.
Results: We manually examined a statistically representative random sam-
ple of 347 reviews for the top ten apps with the highest number of developer
responses. We identify seven di↵erent drivers for responding, of which the
most important ones are to thank the user for using the app and to ask for
more details about the reported issue. In addition, we uncover interesting
opportunities for developers, such as the opportunity to automatically gen-
erate frequently asked questions (FAQs) that can be published to improve
the user support process.

The main contributions of this paper are as follows:

1. Our paper is the first work to demonstrate the dynamic nature of reviews.
Much of prior work (including our own prior work) incorrectly assumes
that reviews are static in nature and users never update their reviews. Our
paper shows that this is an incorrect assumption – an assumption that
impacts studies in this nascent research area. For example, prior work on
studying user complaints in mobile app reviews is impacted, as the static
view that such work currently has of reviews cannot reflect changing user
complaints.

2. Furthermore, we are the first to demonstrate a peculiar use of the app-
review platforms as a user support medium – we do acknowledge that not
as many developers are using the review system in this way. Nevertheless,
this is a use which further work needs to explore, especially given that the
Apple App Store is expected to add support for responding to a posted
review soon [38]. Given the nascent nature of app reviews, it might be
worthwhile that such type of use is encouraged and better supported in
next generation app-review platforms.
By encouraging such use, future mining studies of reviews will have access
to a richer and more complete view of user concerns. Currently, in many in-
stances developers encourage users to continue discussions via other medi-
ums (e.g., email). Hence, the reviews do not provide an in-depth view of
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the user concerns (as previously thought – for instance, this observation
impacts recent publications which mine reviews to gather requirements).

3. Furthermore, our work is the first work to deeply explore developer re-
sponses in a systematic manner. Our analysis is much deeper and uses
considerably more data. The more in-depth analysis led us to reformulate
some of our prior observations/recommendations. For instance, in compar-
ison to our prior work [34], we still see that responding to user reviews
may increase the rating but we find that the chances of a user updating a
review based on a developer response to be quite low (even though they
are up to six times higher than without a response). A deeper investigation
shows that all too often, the developer responses are rather simplistic and
are just asking users to raise their ratings.

4. Finally, our classification of developer-responses highlights the value of pro-
viding canned or even automated responses in next generation app-review
platforms. For instance, 45% of the developer-responses ask for more de-
tails. Furthermore, the ability to auto-construct FAQs based on the com-
monly repeated questions and answers in the user-developer dialogue is a
valuable one for next generation app-review platforms.

The rest of this paper is organized as follows. Section 2 gives background
information about the user-developer dialogue in the Google Play Store. Sec-
tion 3 describes our methodology for collecting the user-developer dialogues
from the Google Play Store. Section 4 describes a preliminary study for the
user-developer interactions. Section 5 discusses the characteristics of user-
developer dialogues in the Google Play Store. Section 6 and 7 present our
quantitative and qualitative studies of what drives developers to respond. Sec-
tion 8 discusses the implications of our studies. Section 9 discusses the limita-
tions and threats to the validity of our findings. Section 10 discusses the related
work and describes the di↵erence between our prior work and the current work
that is presented in this paper. Finally, Section 11 presents our conclusion.

2 Background

In this section, we give background information for our study by explaining
how the user-developer dialogue in the Google Play Store works. Figure 1
shows an abstraction of the user-developer dialogue in the Google Play Store.
A user initiates the dialogue by posting a review, including a rating, for an
app (S1). User reviews can contain valuable information such as bug reports,
feature requests and complaints or praise about the user experience [29]. In
turn, the app developer engages in the dialogue by responding to the review
(S2). The Google Play Store notifies a user when a developer responds to the
user review. Both the user review and the developer response can be updated
at any time. Hence, by considering the changes made to the review and the
response in a chronological order, we can see the dialogue between the user
and developer. Note that the app store shows only the latest versions of the
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Fig. 1: User-developer dialogue in the Google Play Store

review and the response. Hence, to study such a dialogue we must contin-
uously crawl the app store reviews to spot any changes to user reviews or
developer responses. Today, the Google Play Store is the only store with sup-
port for developer responses. Apple’s App Store is expected to add support
for responding to reviews soon [38].

The Google Play Store sends an email notification to app users when a
developer responds to their comments (i.e., when the user-developer dialogue
changes from state S1 to state S2) [16]. In addition, the Google Play Store sends
email notifications to app developers when users change their posted reviews
after a developer response (i.e., when the user-developer dialogue changes from
state S2 to state S1). However, the store does not notify developers when users
keep updating their review (i.e., remain in state S1). In addition, the store does
not notify users when developers keep changing their response (i.e., remain in
state S2). In summary, developers and users are not always notified when a
review or response changes.

Table 1 shows an example of how such a dialogue emerges when a user
and a developer update their review and response for the AppLock app. The
dialogue shows how a user raises an issue in his review and how the developer
helps the user to solve that issue. After solving the issue, the user increases
the given rating from 2 stars to 5 stars out of 5 stars.
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Table 1: User-developer dialogue for the AppLock app

Dialogue State Rating

User: “Applock stopped locking apps suddenly.... help” S1

Developer: “Hi Vikhyath, thanks for using AppLock. To
solve this problem, please open phone settings, then select se-
curity, then select apps with usage access, enable AppLock.”

S2 -

User: “Applock stopped locking apps suddenly.... help . edit:
why is it asking for usage access all of a sudden ? Reply
please.”

S1

Developer: “Hi Vikhyath, since Lollipop system, there are
some changes in Android system. In order to make AppLock
work, please open phone settings, then select security, then
select apps with usage access, enable AppLock.”

S2 -

User: “Thank you .thank you for response” S1

Developer: “Hi Vikhyath, thanks for your support all along.
:) We will keep working to provide the best user experience.
Have a nice day!”

S2 -

3 Data Collection

In this section, we describe our approach for collecting the user-developer dia-
logues from the Google Play Store. Figure 2 gives an overview of our approach.

3.1 Selecting Apps

We select the apps to study based on the following criteria:

1. App popularity: We focus on popular apps since popular apps contain
more reviews than unpopular apps [20], which should facilitate enough data
for studying user-developer dialogues.

2. App maturity: We focus on mature apps to ensure that the apps have
had enough time to gather reviews and responses.

We select the top popular 12,000 free-to-download apps in 2013 according
to App Annie [8] as these apps were top apps one year prior to our study.
This decision was made to ensure that the studied apps had enough reviews
and that their development teams were concerned about their apps (i.e., not
abandoned apps). In our study, we focus on free-to-download apps to avoid
the influence of the pricing of the app. The price of a paid app is very likely
to be a confounding factor, as the app price may a↵ect the expectation of a
user.

After verification, we find that 8,218 apps out of these 12,000 free-to-
download apps are still available in the Google Play Store. As an additional
measure for selecting mature apps only, we select only apps with at least 100
reviews. After removing all apps that have less than 100 reviews, we end up
with 2,328 apps that match our selection criteria.
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Fig. 2: An overview of our approach for collecting user-developer dialogues

3.2 Collecting Data

We use a Google Play crawler [6] to collect data from the Google Play Store.
For each studied app, we collect the following data:

1. General data: app title, app description, number of downloads, app rating
and app developer.

2. Updates: date of each update.
3. User-developer dialogues: review title, review text, review time, re-

viewer name, rating, user device model, the time it took a developer to
respond and the text in the developer response.

The crawler uses the Samsung S3 device model to connect to the Google
Play Store, as the Samsung S3 is a popular mobile device [3]. When the crawler
connects to the store, the crawler collects the latest 500 reviews for each con-
figured app.

During our study, we noticed that apps di↵er in the amount of new data
that can be collected for an app per day. For example, the Facebook app
receives thousands of new reviews per day while other apps receive only a
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Table 2: Dataset description

Number of studied apps 2,328
Number of collected reviews (A) 4,474,023
Number of collected changes in reviews 355,600
Number of collected responses (B) 126,686
Percentage of reviews with responses (100 ⇤ B

A ) 2.8%

Table 3: Mean and five-number summary of collected data for every studied
app

Mean Min. 1st Qu. Median 3rd Qu. Max.

Number of reviews per app (Aapp) 1,922 100 177 357 1,026 184,693
Number of reviews with responses per app (Bapp) 53 0 0 0 8 6,055

Percentage of reviews with responses per app (100 ⇤ Bapp

Aapp
) 4.9% 0.0% 0.0% 0.0% 1.4% 98.6%

small number of new reviews per day. To avoid flooding the Google Play Store
with requests, we adapted the crawler to automatically adjust the number of
times that it checks for new data to match the rate with which new review
content is being posted for each studied app.

Every time the crawler connects to the Google Play Store, it checks whether
there is new or updated data available for each studied app. The crawler
collects the new or the updated data and appends that data to a database in
which data for all apps is stored. As a result, we get a chronological overview
of newly-posted reviews, ratings and responses and changes to those reviews,
ratings and responses.

We run our crawler from September 22nd 2015 to December 3rd 2015.
During that period, we collect almost 4.5 million reviews for 2,328 apps and
over 355,000 changes that are made to those reviews. More than 126 thousand
collected reviews have received a response from the app developer. Table 2
describes our dataset.

Table 3 shows the mean and five-number summary of the number of re-
views, the number of reviews with responses and the percentage of responses
for each studied app.

4 Preliminary Study

Ideally, responding to a review results in either a rating increase or an updated
review that contains more information about the issue that was raised by
the user. In this section, we describe the results of our preliminary study
to demonstrate the chances of a user updating the review or rating after a
developer responded to the review.

A user-developer dialogue was triggered by 2.8% of the user re-

views. As shown in Table 2, developers responded to 2.8% of the user reviews
during the studied period. Figure 3 shows the distribution of the percentage of
reviews that have triggered a dialogue between the user and developer, i.e., re-
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Fig. 3: The percentage of reviews to which a developer responded for each
studied app. The figure displays only the 794 apps that have at least one review
to which a developer responded.

views that have received a developer response, for each studied app. For clarity
we display only the data for the 794 apps for which the developer responded
at least once to a user review. As shown by Figure 3, there is a broad variation
in the percentage of reviews that receive a response for each studied app. The
broad variation suggests that developers of di↵erent apps assign a di↵erent
value to the opportunity of engaging in a dialogue with the user through the
Google Play Store.

The chances of a user updating their rating after receiving a

response are six times as high compared to users who did not receive

a response. Table 4 shows the percentage of reviews and ratings that change
with and without receiving a response. Of the reviews that did not receive
a response, only 0.7% increased their rating, while 4.4% of the reviews that
received a response increased their rating. The percentage of decreased ratings
does not change (0.7%), indicating that a response is more likely to have a
positive e↵ect on the rating. In addition, we studied the number of times a
given rating both increased and decreased over time (0.0% of reviews without
a response and 0.1% of reviews with a response). These rare cases are caused
by a user changing the rating several times, usually over a longer period of
using the app. For example, Table 5 shows an example dialogue in which
the user increased and decreased the rating. As illustrated in Section 2, for
the represented example in Table 5, a developer should receive four email
notifications (i.e., an email each time the user changes in the review). In some
cases, users may update their reviews several times after receiving developer
responses. For example, a user may follow up to a developer response by writing
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Table 4: The percentage of reviews and ratings that change with and without
receiving a response.

Reviews without a response: Total number
% of total reviews
without a response

Collected reviews 4,350,541 100%
Changed review contents 100,142 2.3%
Increased ratings 28,903 0.7%
Decreased ratings 31,344 0.7%
Both increased and decreased ratings 4,469 0.0%

Reviews with a response: Total number
% of total reviews
with a response

Collected reviews 123,556 100%
Changed review contents 9,246 7.5%
Increased ratings 5,457 4.4%
Decreased ratings 925 0.7%
Both increased and decreased ratings 81 0.1%

few details about an issue and then the user modifies the posted review to
add more details. As illustrated in Section 2, the Google Play Store will not
notify the developer with the new modification. Thus, the developer may lose
potential information that may help in solving the reported issue.⇤

⇥
�
�

There lies great potential in responding to reviews. The chances of

seeing an increase in the given rating are six times as high after

responding to a review.

Now that the potential of responding to reviews is clear, we study the
phenomenon of the user-developer dialogue in the Google Play store in more
depth in the remainder of the paper.

5 Study I: A Study of the Characteristics of User-Developer

Dialogues

5.1 Motivation

Most prior studies of the app review mechanism in mobile app stores focus on
extracting developer-relevant information from reviews. However, reviews form
only part of the app review mechanism. As explained in the previous sections,
the possibility of responding to such reviews leads to new opportunities for
developers to increase the rating of their app and elicit more information
about issues that are raised by their users. Prior work [34] has only touched
the surface of the emerging phenomenon of developers responding to reviews.
In this section, we examine the characteristics of this phenomenon in more
detail.
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Table 5: An excerpt from a single user-developer dialogue for the Piano+

app. The dialogue emerged as the user and developer updated their review
and response. We omitted the rest of the dialogue as the review and response
updates became repetitive.

Dialogue State Rating

User: “I can’t play a song from the song book :(” S1

Developer: “Hi Brandon, we feel so sorry for any inconve-
nience you experienced. Please leave us a message at sup-
port@rubycell.com to let us know more clearly about your
problem. If possible, show us a screenshot of the issue so that
we can o↵er you some help. We truly look forward to your
response. Many thanks. ”

S2 -

User: “I can’t play a song from the song book :( On Samsung
galaxy S4”

S1

Developer: “Hi Brandon, we feel so sorry for any in-
convenience you experienced. Please contact us at sup-
port@rubycell.com and have a detailed discussion. We faith-
fully promise to help you address this problem. Hope for your
response soon! ”

S2 -

User: “I can’t play a song from the song book :( On Samsung
galaxy S4... Sorry about this but I love this app and not being
able to play it sucks.”

S1

Developer: “Hi again, as we said before, we really want to
receive your message at support@rubycell.com and have a de-
tailed discussion about this problem with you. Please give us
a hand to get it fixed. Many thanks!”

S2 -

User: “Sorry the problem was my phone I fixed it The best
piano app on here by a long shot Download this app if you
haven’t already you’ll enjoy it!!”

S1

Developer: “Hi Brendon, we are very glad to know that your
problem was handled and hope you will find more good time
with Piano+. Best wishes. ”

S2 -

User: “I think this version was Ok, but there are many things
I don’t like, like the absence of the play all button ( instead
the play button is play all) sometimes I just want to listen/
play to the 1st part of the song but with this update you need
to listen to both, (also the play/play all button is glitchy, let-
ting the game play the song for you is glitchy with that), also
some parts of songs (for ex. MIDIs) won’t display the not for
that part but instead the other part will play it, AlsoNotAsPol-
ished”

S1

Developer: “Hi there, in new version, though ”Play all” is
not available we sure that the current ”Play” button has same
function. It is the matter of change in name. If you still have
a problem with this button, do not hesitate to send us your
email. We promise to provide you with the most suitable an-
swer. Many thanks. ”

S2 -
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5.2 Approach

We studied the length and speed of the dialogue between a user and developer,
and the e↵ect of a developer responding to a review.

To calculate the length of the dialogue, we counted the number of iterations
in the user-developer dialogue during the studied period for each review. We
counted a transition from state S1 to S2 in the state diagram in Figure 1 as a
single iteration. Hence, the dialogue in Table 1 consists of 3 iterations.

To calculate the speed of the dialogue, we measured the developer response
time as the time di↵erence (in hours) between the time when a user posts a
review and the time when a developer responds to the user review.

To quantify the e↵ect of a developer responding to a review, we studied the
di↵erence in the review rating before and after receiving a developer response.
We used the Wilcoxon signed-rank test [5, 14], a paired statistical test that
validates if two samples have the same distribution. A p-value of less than
0.05 means that the di↵erence between the distributions of the two samples is
statistically significant and that there is a change in the review rating after a
developer response.

In addition, we calculated Cli↵’s delta (d) [28] e↵ect size to quantify the
di↵erence in the distributions of the metrics. We used the following thresholds
for interpreting d, as provided by Romano et al. [39]:

E↵ect size =

8
>>><

>>>:

negligible(N), if |d|  0.147.

small(S), if 0.147 < |d|  0.33.

medium(M), if 0.33 < |d|  0.474.

large(L), if 0.474 < |d|  1.

We conducted several manual analyses to better understand our findings.
For example, we manually studied why users decrease their rating after a
developer responds to their review. In all manual analyses, we went through
the following process:
Step 1: We used an iterative process that is similar to the coding method [40]
to study the following cases:

– To understand why user-developer dialogues last for just one iteration, we
read the user-developer dialogues which lasted for only one iteration and
we identified why such dialogues did not continue.

– To understand why the percentage of reviews with responses is high for
some apps, we read the user-developer dialogues for the five apps whose
developers responded to at least 95% of the reviews and we identified why
such developers responded to almost all the reviews for their apps.

– To understand why users decrease the rating after a developer response,
we read the user-developer dialogues in which the rating is decreased and
we identified the most likely explanation for the decrease.

– To understand why users increase the rating after a developer response, we
read the user-developer dialogues in which the rating is increased and we
identified the most likely explanation for the increase.
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To eliminate human bias, the first and the second author (as two coders)
conducted the manual analysis. Both coders independently read the user-
developer dialogues and identified the explanations for the studied cases. When
there was no exact explanation specified in the dialogue, the explanation was
identified based on the experience and intuition of the coders.
Step 2: Both coders compared their results. To resolve conflicts, the coders
discussed the di↵erences to come to a consensus on the most likely explanation.

Table 6: The length and speed of the user-developer dialogues.

Number of
reviews

Number of
review-
response
iterations

Median
response

time (hours)

Median
review

update time
(days)

Number of
apps

4,350,541 0 NA NA 2,328
123,556 1 14.7 4.1 794

2,774 2 15.9 5.4 308
255 3 12.9 4.8 78
61 4 10 4.1 35
18 5 14 2.0 15
11 6 6.1 4.6 9
5 7 3.1 3.6 5
4 8 0.4 2.0 4
1 9 0.5 24.2 1
1 10 0.2 NA 1

5.3 Results

The vast majority of user-developer dialogues last for just one itera-

tion. Table 6 shows the distribution of the number of iterations within a user-
developer dialogue. During our studied period, we found that user-developer
dialogues can be as elaborate as up to ten iterations. However, 97.5% of the
dialogues end after one iteration. After manual inspection of a statistically rep-
resentative random sample (with a confidence level of 95% and a confidence
interval of 10%) of 96 user-developer dialogues that ended after one iteration,
we find the following explanations for the large number of short dialogues:

1. Users do not always require a response from the developer (67% of the
sample). For example, the developer responds simply to thank the user for
downloading the app or posting a review.

2. Users are requested by the developer to continue the dialogue through
another channel, such as email (29% of the sample).

3. Users do not provide the additional information that is requested by the
developer response (10% of the sample).

Table 5 shows an excerpt of a longer dialogue between a user and app
developer that we found in our study. In this dialogue, the review-response
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mechanism is used in two ways. First, the user is asked to provide more details
through another channel (email). Second, the user is explained that the ‘play
all’ functionality is now provided by the ‘play’ button. In addition, the dialogue
demonstrates how a developer response can impact the user rating (i.e., a
rating increase and decrease occur – the given ratings vary from three to five
stars!).

Developers tend to respond faster as the number of iterations

in the user-developer dialogue increases. As shown in Table 6, the me-
dian value for the developer response time decreases as the number of it-
erations in the user-developer dialogue increases. We manually analyzed the
user-developer dialogues that have more than five iterations. We observed that
users and developers leverage longer dialogues as a user support mechanism.
During the user-developer dialogue, users either continue the discussion (e.g.,
follow up on the reported issue) or start a new discussion (e.g., raise a new
complaint). As explained in Section 2, the Google Play Store notifies app de-
velopers when users follow up to a response. Table 6 suggests that developers
give priority to responding to such notifications.

An interesting observation in Table 6 is that the median review update
time is much longer (i.e., several days) than the median response time (i.e.,
several hours). Upon inspection, the longer median review update time appears
to be caused by users posting new issues that they encountered after using
the app for some time in the updated reviews. Next generation reviewing
systems should somehow consider the changes in users’ long term impressions
while calculating the app rating. Moreover, store owners should notify app
developers about such changes so developers can track the changes in users’
impressions about their app.

When more than 95% of the reviews of an app have a response,

the responses are mostly repetitive. As shown in Table 3, the maximum
percentage of reviews with responses for an app is 98.6%. This high percentage
indicates that the developer of such apps responded to almost all reviews. To
understand better why these the percentage of reviews with responses is high
for some apps, we studied the five apps whose developers responded to at least
95% of the reviews. Together, these five apps responded 4,301 times to 4,431
reviews.

The first and second author of this paper manually analyzed a statistically
representative random sample of 353 out of the 4,301 responses with a con-
fidence level of 95% and a confidence interval of 5%. We found that in 275
out of 353 (78%) cases in the sample, the response is generic in nature and
based on a template. 55% of the responses in the sample ask the user to con-
tact the company email in case they have issues with the app. For example,
the “PrankDial - #1 Prank Call” app uses the following template response:
“Please send us a mail to support@prankdial.com if you are having any is-

sues with the app. Thank you.” In 61% of the sample, the developer simply
expresses appreciation for using the app using a template response. For exam-
ple, the “Podcast Player - Free” app uses the template response: “Thanks for
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Table 7: Rating change after a developer response. The diagonal values (i.e.,
bold values) mean that there is no change in the user rating value. The values
above the diagonal mean that the rating value is increased and values below
the diagonal mean that the rating value is decreased.

After response
Before

response

48.8% 4.6% 7.7% 11.5% 27.5%

15.3% 31.9% 10.4% 14.4% 28.0%

7.1% 7.8% 33.1% 17.7% 34.3%

3.4% 2.1% 7.2% 43.2% 44.1%

4.5% 3.3% 4.5% 3.9% 83.7%

the 5 stars, *user*!”, in which *user* is replaced with the name of the user
posting the review.

The value of the type of responses above for a user is questionable. On
the one hand, a response shows that the developer is appreciative of the user.
On the other hand, such unremarkable responses lead to more clutter in the
Google Play Store. Google has set a quota of 500 responses per day per app
in the Google Play Developer API [16], which suggests that Google is trying
to prevent developers from posting a large number of automated responses to
their reviews.

To study the value of template-based responses, we compared the percent-
age of rating increases and decreases after template-based and non-template-
based responses. The percentage of rating decreases was similar (approxi-
mately 8.0%) across template-based and non-template-based responses. Sur-
prisingly, the percentage of ratings that are increased after a non-template-
based response is lower (42.6%) than after a template-based response (48.2%).
However, after manual inspection, we observed that the template-based re-
sponses that resulted in an increased rating were responses that contained
useful information for the user. For example, the response contained an email
address that could be used to contact the developers, or the developers re-
sponded using a template-based solution for an issue that was raised in the
review. Hence, these observations suggest that providing useful information in
the response improves the chances of a rating increase, even if that information
is template-based.

A developer response can have a positive impact on the given rat-

ing. We tracked the changes in the review rating during the user-developer
dialogue. We observed that in 11,813 out of the 126,686 iterations (9.3%)2,
users follow-up on the developer response. The Wilcoxon signed-rank test in-
dicates that there is a significant change in the review rating before and after
a developer response, with a small e↵ect size.

Table 7 shows the percentage of the change in the user review rating after a
developer responds to a review. The bold values indicate that the rating does

2 Note that this number is di↵erent from the numbers in Table 4, since in Table 4 we
count the number of reviews/ratings that changed at least once during the dialogue.
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not change. As illustrated by Table 7, users tend to increase the review rating
(in particular, to 5-stars) if they change the review rating after a developer
response. We calculated that in 5,504 reviews, the rating increases after a
developer response. We found 942 reviews in which the user decreases the
rating after a developer response. The first and the second author of this
paper manually examined a statistically representative random sample of 87
of such reviews (a confidence level of 95% and a confidence interval of 10%).
We identified the following reasons for decreasing a rating:

1. The user raises a new issue after a developer response, and the decreased
rating is based on the severity of the new issue (31% of the sample).

2. The user has an issue and the developer responds that the issue cannot
be fixed or the issue will be solved in one of the next releases (13% of the
sample).

3. The user has an issue and the developer recommends a solution for the
raised issue. The user complains that the provided solution does not work
(15% of the sample).

4. The user has an issue and the developer responds to that issue by asking
for more details. The user decreases the rating as follows:

(a) The user decreases the rating without providing the requested details
to the developer (15% of the sample). We believe that the user was
expecting the issue to be solved directly without asking for more details.

(b) The user provides the requested details and expresses their disappoint-
ment that the issue is not solved yet (23% of the sample).

We found two dialogues in which a user decreased the rating without expla-
nation after having a positive experience with the app. A possible explanation
is that those users misinterpreted the scale of the rating system (i.e., they
mistakenly assumed that a 1-star rating is better than a 5-star rating).

App developers can solve 34% of the reported issues without

deploying an app update. We found that in 5,504 reviews, the rating in-
creased after a developer response. To understand why users increased the
rating after a developer response, we manually investigated a statistically rep-
resentative random sample of 94 of such reviews (a confidence level of 95% and
a confidence interval of 10%). Table 8 shows the identified reasons for a rating
increase. As illustrated in Table 8, developers could guide users to solve 34% of
the reported issues without having to deploy an app update. This percentage
shows that in one-third of the studied dialogues, it was relatively easy for the
developer to achieve a rating increase.⇤

⇥

�

�

The majority of user-developer dialogues last for one iteration.

However, if the user decides to change the given rating during the

dialogue, the rating is increased in most cases. In one-third of the

studied dialogues, a rating increase was achieved by simply explain-

ing to the user how to resolve the reported issue.
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Table 8: The identified reasons for rating increase (ranked by the percentage
of responses).

Percentage
of responses

Reason for rating increase

34% The developer guides the user to solve the reported issue without
having to deploy an app update.

24% The developer deploys an app update to address the reported
issue.

13% The details of the solution are communicated outside the store.
7% The developer asks a satisfied user for a rating increase.
6% The user appreciates that the developer cared by responding,

even though the issue cannot be fixed.
5% The developer indicates that the reported issue is temporary and

the rating is increased when the issue is addressed.
5% The user raises a new issue.
4% No reason could be identified.

6 Study II: A Quantitative Study of the Likelihood of a Developer

Responding

6.1 Motivation

In the previous section, we illustrated that responding to user reviews can
have a positive e↵ect on the user rating. Reading and responding to user
reviews is a time-consuming process, especially if an app has a large number
of user reviews. Providing a better understanding of the metrics that drive
a developer to respond, can be used by app developers and store owners to
facilitate a better and more e�cient user-developer dialogue. For example, the
identified metrics can be used by store owners to highlight reviews that are
more likely to require a response, thereby helping developers to prioritize the
reviews to read and respond to.

6.2 Approach

In this section, we describe our approach for analyzing the relationship be-
tween the studied metrics and the likelihood of a developer responding. Fig-
ures 4 and 5 depict the steps of our approach. As shown in Figures 4 and 5,
our approach contains three steps. First, we collected metrics that may have
a relationship with the likelihood of a developer responding. Second, we con-
structed statistical models (i.e., mixed e↵ect models) to capture the relation-
ship between the studied metrics and the likelihood of a developer responding.
Finally, we analyzed the constructed models to understand which metrics are
related to the likelihood of a developer responding. In the next sections, we
detail every step.
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Fig. 4: An overview of our data selection and metrics collection step.

Fig. 5: An overview of our approach for studying the relationship between the
studied metrics and the likelihood of a developer responding to a user review.
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6.2.1 Data Selection and Metrics Collection

In order to create a model to understand which metrics are related to a devel-
oper responding to a user review, we need to study apps that have su�cient
user reviews and developer responses. Hence, we removed apps in which less
than 5%3 of the reviews have a response. After removing such apps, there
remained 415 apps with 556,314 reviews and 103,612 responses in total. Con-
sequently, the results that are presented in this section are valid for developers
who respond to at least 5% of the posted reviews.

Table 9 presents the two levels of metrics that we collected in our study.
app-level metrics are at the app level (e.g., the app category) while review-level
metrics are at the review level (e.g., the review rating).

In the app-level metrics, we collected the app ID, app rating and app cat-
egory. In the review-level metrics, we collected the review title length, review
text length, days since last release, review rating and positive/negative senti-
ment.

We used the SentiStrength tool [2] to measure the review sentiment met-
rics. SentiStrength is designed for analyzing sentiments in a short text such
as online reviews [44]. Several studies have shown that the SentiStrength tool
is applicable to the software engineering domain (e.g., [45] and [17]). In par-
ticular, the SentiStrength tool was previously used to analyze user reviews of
mobile apps (e.g., [18], [29] and [33]).

SentiStrength provides for each analyzed sentence two values: (1) a positive
sentiment value that ranges from 1 to 5 and (2) a negative sentiment value
that ranges from -1 to -5. Tourani et al. [45] studied the sentiment analysis in
developer emails and found that the maximum sentiment value per line can be
used to represent the sentiment value for the entire email text. Hence, we fol-
lowed the same approach by calculating the sentiment value per sentence and
consider the maximum sentiment values across all sentences as the sentiment
value for the entire review text.

For example, a user for the “Daily Yoga - Get Fit & Relaxed” app posts
a review “Brilliant App Very easy to use and extremely good fun!
Would recommend it to all ages. I would down load it twice if I could!”. The
highlighted sentence has the highest positive sentiment value (i.e., a sentiment
value of 5) while the other sentences have lower sentiment values (i.e., sen-
timent values of 1 and 2), so we considered this review to have a positive
sentiment value of 5.

6.2.2 Constructing the Models (CM)

In order to examine the metrics that have a relationship with the likelihood
of a developer responding, we performed the following steps to construct our
models. Note that we are not trying to predict whether a developer will respond
to a review.

3 We experimented with several thresholds, as explained in Section 9, which resulted in
very similar models.
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Table 9: Collected metrics for each studied review.

Metric
category

Metric Values Description (D) - Rationale (R)

App-level
metrics

App ID Categorical D: Identifier for the studied app.
R: Including the app identifier can be used to understand how each app behaves
when it comes to user-developer interactions.

App rating Categorical D: The app rating (e.g., 3.4).
R: Apps with certain popularity (i.e., app rating value) may provide better user
support than apps with di↵erent rating.

App category Categorical D: The category of the app (e.g., games or tools).
R: Apps in certain categories may provide better user support than apps in other
categories.

Review-level
metrics

Review title length Numerical D: The number of characters in the review title.
R: Developers may tend to respond to issues with well-described titles.

Review text length Numerical D: The number of characters in the review text.
R: Developers may tend to respond to issues with well-described text.

Days since last release Numerical D: The number of days between the review posting date and the last released
update of the app.
R: Users tend to post reviews in the short period after a new update [37]. Hence,
developers may tend to respond to reviews that are posted shortly after an update.

Review rating Numerical D: The star rating of a user review.
R: The review rating reflects the review content (e.g., negative reviews have a
low rating) [25]. Hence, developers may tend to respond to reviews with a low
rating to increase the overall rating of their app.

Positive / Negative
sentiment

Numerical D: Two metrics that indicate the positive and negative sentiment values for the
review content. The positive sentiment metric has values that range from 1 to 5.
The negative sentiment metric has values that range from -1 to -5.
R: The review sentiment can be used to indicate the purpose of the user review
(e.g., user complaints have a negative sentiment) [29]. Developers may tend to
respond to reviews based on the review sentiment.
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(CM-1) Removing correlated and redundant metrics. We removed highly
correlated review-level metrics before constructing our models to remove the
risk that those correlated metrics interfere with our interpretation of the mod-
els [41]. We measured the correlation between the review-level metrics using
the Spearman rank correlation test (cut-o↵ value for ⇢ is 0.7). We then used
a metric clustering approach to construct a hierarchical overview of the inter-
metric correlation using the implementation of the varclus function that is
provided by the Hmisc R package [23]. To detect multicollinearity, we per-
formed a redundant analysis using the implementation of the redun function
that is provided by the Hmisc R package [23]. After doing the correlation and
redundancy analysis, we found that no metrics were correlated or redundant.
Hence, no metrics were removed from our dataset.

(CM-2) Constructing the mixed-e↵ect models.As explained in Section 6.2.1,
the collected metrics represent two hierarchical levels (i.e., the app level and
the review level). Constructing a simple regression model that ignores the hi-
erarchical nature of the collected metrics may produce inaccurate results [7].
As the user reviews were collected from di↵erent mobile apps, the likelihood
of a developer responding may vary depending on the mobile app. For exam-
ple, developers of one particular app may have the policy to never respond to
reviews or the metrics that are related to the response likelihood might di↵er
between groups of apps (something that we observe later on in our analysis).

In a traditional linear regression model, all subjects have the same relation
with the outcome y:

y = ↵x+ � + ✏ (1)

with the slope ↵ and the intercept � being fixed and ✏ being the standard
error. Because all subjects have the same relation with y, such a model cannot
express di↵erences for subjects at di↵erent hierarchical levels.

To study the user review characteristics while considering mobile applica-
tion context, we used a mixed-e↵ect model [42] instead. A mixed-e↵ect model
includes two types of metrics, i.e., explanatory metrics and context metrics.
Explanatory metrics (review-level metrics) are used to explain the data at the
user review level, while context metrics refer to the app level (i.e., app cat-
egory and app ID). A mixed-e↵ect model expresses the relationship between
the outcome (i.e., a developer responding) and the review-level metrics (e.g.,
review rating), while taking into consideration the di↵erent app-level metrics
(e.g., the app ID).

There are two ways to construct a mixed-e↵ect model: (1) a random in-
tercept model and (2) a random slope and intercept model [43]. A random
intercept model contains di↵erent intercepts (for the app-level metrics) and
fixed slopes (for the review-level metrics). Such a model assumes that each
app has its own baseline likelihood to respond, while the final likelihood to
respond is related to a general model that is the same across all apps (i.e., a
fixed slope for the review-level metrics).

A random slope and intercept model contains di↵erent intercepts (for the
app-level metrics) and di↵erent slopes (for the review-level metrics). Such a
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model assumes that the likelihood to respond varies per app and per review-
level metric for each app. In our study, we constructed both types of mixed-
e↵ect models using the glmer function of the lme4 R package [10].

6.2.3 Analyzing the Models (AM)

After building the mixed-e↵ect models, we evaluated the explanatory and dis-
criminative power of the models and we estimated the impact of the review-
level metrics. In addition, we examined the relationship of each metric to the
likelihood of a developer responding.

(AM-1) Evaluating the explanatory and discriminative power of the mixed-

e↵ect models. Explanatory power measures the goodness-of-fit of a model [12].
To calculate the explanatory power explmixed of a mixed-e↵ect model, we cal-
culated:

explmixed =
Dnull �Dmixed

Dnull
(2)

where Dnull is the deviance (which is a goodness-of-fit measure) of the null
model and Dmixed is the deviance of the mixed-e↵ect model. The null model
is the simplest possible mixed-e↵ect model that contains only app-level met-
rics. The explanatory power explains the proportion of the data that can be
explained by the review-level metrics, with 0 being the lowest proportion, and
1 being the highest proportion.

The discriminative power of a model measures the model’s ability to dis-
criminate between whether a developer will or will not respond to a review.
We calculated the discriminative power using the Area Under the receiver
operator characteristic Curve (AUC). The Receiver Operator Characteristic
(ROC) curve plots the true positive rate against the false positive rate for dif-
ferent threshold settings. AUC values range between 0 (worst performance),
0.5 (performance of random guessing), and 1 (best performance) [4, 19].

(AM-2) Estimating the impact of review-level metrics. To understand the
most impactful metrics in our mixed-e↵ect models, we used Wald statistics to
estimate the relative contribution (�2) and the statistical significance (p-value)
of each review-level metric in the model. The larger the �2 value, the larger
the impact that a particular review-level metric has on the performance of the
model. We used the ANOVA implementation that is provided by the Anova

function of the car R package [13] to calculate the Wald �2 and the p-value of
each review-level metric in the model.

(AM-3) Examining the relationship between the review-level metrics and

likelihood of a developer responding. To study the relationship between the
review-level metrics and the likelihood of a developer responding, we plotted
the likelihood that developers will respond corresponding to the changes in
each review-level metric while holding the other review-level metrics at their
median values.
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Table 10: Summary of the model analysis of the mixed-e↵ect models that we
used to understand the relationship between review metrics and the likelihood
of a developer responding to a review.

Model Statistics
Random
intercept
model

Random
intercept &

random
slope model

Explanatory power 0.28 0.34
Discriminative power (AUC) 0.92 0.93

Random Intercept Statistics

App-level Metrics Variance Variance

App ID 4.4 9.4
App rating 1.8 2.2
App category 0.1 0.4

Random Slope Statistics

Review-level Metrics Variance Variance

Review rating —a 1.6

Review-level Metrics Statistics for the Random Intercept Model

Review-level Metrics
Coe↵ ± Std.

Error
�2

Review rating -1.018 ±0.00 62,533 ***
Review text length 0.003 ±0.00 2,317 ***
Days di↵erence -0.007 ±0.00 504 ***
Review title length 0.005 ±0.00 192 ***
Negative sentiment 0.040 ±0.01 39 ***
Positive sentiment 0.010 ±0.01 4 -

Review-level Metrics Statistics for the Random Intercept & Random Slope Model

Review-level Metrics
Coe↵ ± Std.

Error
�2

Review text length 0.003 ±0.00 2,278 ***
Days di↵erence -0.006 ±0.00 457 ***
Review title length 0.006 ±0.00 235 ***
Negative sentiment 0.024 ±0.01 13 ***
Positive sentiment 0.011 ±0.01 3 -

Statistical significance of the �2 test:
‘***’ <0.001, ‘-’  1

a There is no variance value for the review rating metric for the ‘Random Intercept’ model
because the random intercept model has a fixed slope for the review-level metrics.
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6.3 Results

Table 10 shows the statistics for the two mixed-e↵ect models.
Di↵erent mobile apps have a di↵erent likelihood of a developer

responding. Table 10 shows that the random intercept of the app ID metric
varies across di↵erent apps, which indicates that apps have a di↵erent likeli-
hood of a developer responding. As shown in Table 10, the random intercept
of the app rating metric varies across di↵erent apps, which indicates that apps
with di↵erent ratings have a di↵erent likelihood of a developer responding.
Table 10 shows that the app category metric has the lowest influence in the
mixed-e↵ect model.

Reviews with a low rating have the highest likelihood of receiving

a response. Table 10 displays the ANOVA results of the random intercept
model. The review rating metric accounts for the largest �2 value in the model,
indicating that review rating contributes the most to our model.

Figure 6 shows the relationship between the likelihood of a developer re-
sponding and each review-level metric in the random intercept model. We omit
the plots for the random intercept and random slope model because the plots
are very similar to Figure 6. As illustrated by Figure 6, the likelihood that
a developer will respond increases as the review rating gets lower. Hence, we
conclude that developers are likely to respond to reviews with a low rating.

The relation that the review rating has with the likelihood of a

developer responding is di↵erent across mobile apps. Table 10 shows
that there is a variance in the review rating coe�cient (for the random slope
and random intercept model) which indicates that app developers di↵er in the
way their likelihood of responding is related to the review rating.

Longer reviews have a higher likelihood of receiving a response.

Figure 6 shows the likelihood of a developer responding for each review-level
metric. The grey area in Figure 6 represents the confidence interval of 95%.
As shown in Figure 6, the likelihood of a developer responding increases as
the length of the review text increases. However, as most reviews are short,
the confidence interval for the longer reviews is larger.

6.4 Identifying Response Patterns

Since we found that each mobile app exhibits di↵erent behavior (as the app-
level metrics and the review rating slope change per app), we performed a
deeper investigation to identify the common patterns for developer responses.
Figure 7 shows an overview of our approach.

To group apps that share a behavioral pattern when it comes to responding
to a user review, we constructed a logistic regression model for each app using
the glm function that is provided by the stats R package [1]. The logistic
regression model indicates the likelihood of a developer responding based on
the values of the review-level metrics.
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Fig. 6: The relationship between the review-level metrics and the likelihood
that a developer will respond. The grey area represents the confidence interval.
Note that these plots show the likelihood that a developer will respond for apps
with responses to at least 5% of the reviews.
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Fig. 7: An overview of our approach for identifying the developer response
patterns.

We found that the constructed models di↵er in the importance of each
review-level metric and the relation of each review-level metric (i.e., the review-
level metric is either positively or negatively related) to the likelihood that a
developer responds. Hence, we digested the generated app model by extracting
the following key features from each model:

1. The percentage of importance for each review-level metric. To
calculate the percentage of importance for each review-level metric, first
we measured the power of each review-level metric. We used Wald statistics
to estimate the relative contribution (�2) for each review-level metric in the
model. We then calculated the percentage of �2 for each review-level metric
to the total �2 for all review-level metrics. For example, the percentage of
importance for the review rating in the model described by Table 10 is
95.6%.

2. The sign of the slope for each review-level metric. In order to
estimate the direction of the relationship of review-level metrics for each
model, we extracted the sign of the slope for each review-level metric.
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Table 11: The extracted key features for the generated logistic regression model
for the “MapFactor GPS Navigation Maps” app

The review-level
metric

�2 Slope
Percentage of
importance

Sign of the
slope

Review rating 55.32 -5.80 79.2% Negative
Negative sentiment 6.61 -1.49 9.5% Negative
Review title length 2.68 0.03 3.8% Positive
Review text length 2.24 0.00 3.2% Positive
Positive sentiment 1.99 -0.46 2.8% Negative
Days di↵erence 0.98 0.02 1.4% Positive

Table 11 shows the extracted key features for the generated logistic re-
gression model for the “MapFactor GPS Navigation Maps” app. We used the
extracted key features from each model as input to a clustering technique. We
used the clustering implementation of the kmeans function that is provided by
the stats R package [1]. In order to identify the optimal number of clusters, we
started with the minimal number of clusters (two clusters) and increased that
number until the newly-found clusters are only sub-clusters of the previous
run. Eventually, we identify four clusters of developer response patterns using
our heuristic. The four clusters can be explained as follows:

1. Developers who primarily respond to only negative reviews. In the
first cluster (231 apps), developers responded mainly to negative reviews
(the mean value for the importance of the review rating metric is 78%).

2. Developers who primarily respond to negative or longer reviews.

In the second cluster (95 apps), developers responded mostly to negative
reviews (the mean value for the importance of the review rating metric
is 40%). However, in addition to the negative reviews, developers in the
second cluster appear to pay attention to the length of a review as well
(the mean value for the importance of the review text length is 26%).

3. Developers who primarily respond to reviews which are posted

shortly after the latest release. In the third cluster (50 apps), devel-
opers responded mostly to reviews which are posted soon after the latest
update (the mean value for the importance of the days since last release
metric is 47%).

4. Developers who primarily respond to reviews which are posted

longer after the latest release. In the fourth cluster (39 apps), devel-
opers have a higher likelihood of responding to reviews that are posted
long after the deployment of the latest update (the mean value for the
importance of the days since last release metric is 42%).

The explanation for the first and second cluster is quite obvious, as negative
and longer reviews are the most likely to be candidates for a rating increase.
The third and fourth cluster are less intuitive. We manually read a sample
review to which a developer responded for each app in the third and fourth
cluster. We noticed that for both clusters developers responded shortly after
the review is posted. For the third cluster, we noticed that in most cases users
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complain about an issue in the latest update and developers try to solve the
issue or announce that they are working on fixing the issue. For example, we
noticed that in 18 apps (out of 50 apps belonging to this pattern) the median
number of days between the update and a posted review is less than a week.
Hence, the third cluster can be explained as developers focusing on issues that
arise directly after an update.

The fourth cluster can be explained as developers who focus mostly on
issues that are raised longer after an update. A possible explanation for the
focus of these developers is that they focus on reviews that raise issues that
need to be fixed. Hence, shortly after an update, the same obvious issues are
reported by many users, yet these developers respond to only a few of them.
Instead, they shift their focus to responding to issues in reviews that are raised
at a later stage, which are less likely to be noticed by users, therefore taking
a longer time to be reported in reviews.

7 Study III: A Qualitative Study of What Drives a Developer to

Respond

7.1 Motivation

In the previous section, we gave a quantitative view of the metrics that are
related to the likelihood of a developer responding to a review. These metrics
can be used to identify reviews that are likely to require a response. However,
these metrics do not explain the actual contents of a response, nor do they
explain the rationale for a developer responding to a review. In this section,
we study more qualitatively what drives developers to respond. Getting a
better understanding of what drives developers to respond to a user review
can be beneficial for developers, as it allows them to identify flaws in their
user support process. For example, it can help them to improve or extend the
Frequently Asked Questions (FAQs) on their website. In addition, identifying
the drivers for responding can assist the app store owners by revealing useful
functionality for developers that can be added to their store.

7.2 Approach

In order to identify what drives developers to respond to a user review, we
conducted a manual analysis of their responses. First, we ranked the apps by
the number of responses by a developer. To avoid bias in our manual study, we
examined a statistically representative random sample (with a 95% confidence
level and a 5% confidence interval) of the responses for each of the 10 apps with
the highest number of responses. Table 12 shows a summary of the selected
ten apps together with the size of the selected sample. In total, we selected
3,431 responses.

For our manual analysis, we examined a statistically representative ran-
dom sample of 347 responses from the selected 3,431 responses (with a 95%
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Table 12: Data summary of the top ten apps with the highest number of reviews with responses.

App name
Number of

collected reviews
with responses

Number of
downloads

Average
rating

Category
Number of
selected
responses

Clean Master (Boost & AppLock) 6,128 500M - 1,000M 4.66 Tools 362

Daily News, eBooks & Magazines 4,554 10M - 50M 4.24 News & Magazines 354

PicsArt Photo Studio 4,481 100M - 500M 4.44 Photography 354

AppLock 4,471 100M - 500M 4.35 Tools 354

Solo Launcher Clean Smooth Diy 4,187 100M - 500M 4.48 Personalization 352

Hungama Music - Songs & Videos 3,949 10M - 50M 4.11 Music & Audio 350

The PCH App 2,452 1M- 5M 4.46 Lifestyle 332

UC Browser - Fast Download 2,193 100M - 500M 4.55 Communication 327

FrostWire - Torrent Downloader 2,026 10M - 50M 3.93 Media & Video 323

WeChat 2,023 100M - 500M 4.25 Communication 323
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confidence level and a 5% confidence interval). The first author and the third
author of the paper (the coders) went through the following process to identify
the drivers that make developers respond to a user review:
Step 1: The coders independently followed a method similar to the open
coding method [11, 27] to identify the drivers that make developers response.
The open coding method iteratively builds a list of identified drivers. For
every studied developer response, the coder identifies the driver. If the driver
is not in the list of identified drivers, the coder extends the list and revisits all
developer responses using the new list of identified drivers. The open coding
method terminates when there are no newer drivers to be identified and all
developer responses are studied.

Using the open coding method, we can identify multiple drivers for a sin-
gle developer response. For example, a user posted a review “Good” and the
developer response is “Dear Rama Thanks for your valuable feedback. Please

revise your ratings to support us better since 3 star that you have rated is lower

and 5 star is the highest.”. We tagged this response with the “Thank the user”
and “Ask for endorsement” labels.

The output from this step is the list of drivers that the coders identified
for each studied response.
Step 2: The first coder compared the drivers that were identified by both
coders for all studied responses and marked the di↵erences.
Step 3: The coders discussed the di↵erences and came to a consensus about
the final codes for each studied response. We found 19 developer responses
that had di↵erences in the identified drivers between the two coders. After
discussion, all di↵erences were easy to resolve.

7.3 Results

We identified seven drivers that make a developer response to a review. Ta-
ble 13 shows the identified drivers for responding along with their description
and examples of a developer response. Table 14 shows statistics about the
identified drivers for responding. In particular, Table 14 shows for each driver
the number of responses, the percentage of the total number of responses in
the sample, the number of apps whose developers had that driver at least once
for responding, the number of reviews that were changed after a developer re-
sponse and the number of reviews that changed their rating after a developer
response.

In 24% of the responses, app developers use the review mecha-

nism to ask users to increase their given rating. In general, users

tend to ignore these requests and do not update their rating. Table 14
shows that the “Ask for endorsement” label occurs in responses for nine out
of ten studied apps, which indicates that this kind of request is common. Only
in 3 out of 83 developer responses, users change their review after a developer
asks for a rating increase and in only two cases the rating actually increases.
The observation about developers asking for a rating increase is in line with
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Table 13: The identified drivers for responding.

Driver for responding Description (D) - Example (E)

Advertise other products D: The developer advertises one of his other products.
E: “Hi Michael we hope you enjoy the PCH App. Please feel
free to try one of our other fun and exciting opportunities to
win like PCH Lotto Blast and PCH Cash Slots. If you ever
need any assistance please check out our app FAQ page within
the app itself.”

Ask for endorsement D: The developer asks a user to market for the apps by in-
creasing the review rating or by sharing the good experience
with others.
E: “If you like AppLock please rate 5 stars to support us and
share it thanks.”

Ask for more details D: The developer asks for additional details in order to solve
the user complaint.
E: “Hi Pratik Could you please let us know if this is happen-
ing all the time or is it a recent occurrence? Does it happen
with a particular song or all of them? Kindly share more de-
tails about this issue and we will provide you with optimum
support.”

Justify the advertisements D: The developer explains the rationale for the existing ad-
vertisements in the app.
E: “Sorry for making you trouble with ads and we also com-
pletely understand your concern. We are always try to im-
prove our app and we want to provide our user a good and
free clean master. So we hope you could understand that we
need this part for our income. Thank you!”

Provide guidance D: The developers provides guidance and additional details
to the users.
E: “Please open phone settings, then select security, then se-
lect apps with usage access, enable AppLock.”

Wait for updates D: The developer notifies the user that the reported issue will
be solved or the requested feature will be added and asks the
user to wait for upcoming updates.
E: “Your feedback is received and will be handled as soon
as possible. Stay tuned with us for updates. Thanks for your
support!”

Thank the user D: The developer thanks the user for using the app or posting
a review.
E: “Hi Shani Thank you for your fantastic review!!”

Unspecified D: The developer response is generic or the developer response
is not in the English language.
E: “Dear User We hope you enjoy using the app and becomes
a satisfied users of the app.”

our finding in Section 6.3, where we show that developers are more likely to
respond to reviews with low ratings. These observations combined confirm (in
accordance with literature [30]) the importance of ratings to developers.

In 45% of the developer responses, developers ask for more de-

tails about the reported issues. Users tend to post reviews that contain
a complaint but do not contain enough information for the developer to ad-
dress the complaint. For example, developers ask for more details about the
hardware or the OS version on which an issue occurred. Developers ask the
user to provide the additional details through one of the following channels:
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Table 14: Statistics for the drivers for responding (ranked by the number of
responses).

Driver
Number

of
responses

Percentage
of

responses⇤

Number
of apps

Number of
changed
reviews

Number of
changed
rating

Thank the user 219 63% 10 8 5
Ask for more details 155 45% 9 12 6
Provide guidance 86 25% 10 7 3
Ask for endorsement 83 24% 9 3 2
Advertise other products 47 14% 3 1 0
Wait for updates 31 9% 8 2 1
Justify the advertisements 5 1% 3 0 0
Unspecified 3 1% 2 0 0
⇤Since a response can have several drivers, this column does not add up to 100%.

(1) directly in the dialogue (i.e., by updating the review), (2) using the crash
reporting mechanism in the app or (3) by email.

Moran et al. [35] propose an approach for guiding users to report the steps
that produce reported issues. Store owners and developers can include more
detailed information about the reported issues by following Moran et al.’s
approach.

In 25% of the responses, developers provide guidance to users

to solve their issues. We notice that often, users encounter the same issue
as others. During our manual analysis, we find eight cases of the same issue
that is reported by multiple users to which the developer responses mostly
the same. For each case, we manually extract keywords from the responses
(e.g., ‘clear cache’) and search for responses containing those keywords for
that app in the total set of reviews. We then manually check how many times
the response occurs in the total set of reviews (not just our manually coded
reviews). Table 15 shows the top five responses that occur the most often,
together with a description of the reported problem and the given response.

As Table 15 shows, the repeated responses often indicate an issue that
occurs for many users. Knowing about such issues can be beneficial for devel-
opers, as they can improve their app to address the issue. Another possibility
is to address the issue in the Frequently Asked Questions (FAQs) section of the
app to help users solve the issue without having to post a review (which often
includes a low rating). For example, the “AppLock” issue that is addressed by
520 reviews can be summarized by the question “How can I use the AppLock

app to lock other apps?” By studying the reviews and responses, developers
can semi-automatically (e.g., using keywords) extract issues that should be
addressed in the FAQ section.

⇤

⇥

�

�
Developers can benefit from the analysis of user reviews and de-

veloper responses by extracting repeated questions. These questions

can help to identify issues that should either be fixed, or discussed

in the Frequently Asked Questions (FAQs) section of the app.



34 Safwat Hassan et al.

Table 15: The identified similar responses.

App

Number
of

similar
reviews

Description (D) - Response (R)

AppLock 520 D: The user asks how to use the “AppLock” app to lock other apps.
R: “Please open phone settings security apps with usage access enable
AppLock.”

PicsArt 271 D: The user complains that the app is very slow.
R: “Hi Vincent this issue can sometimes be solved by clearing the
cache. To do so go to your device’s Settings - Apps - PicsArt and tap
‘Clear data’ and ‘Clear cache’. If the issue persists please feel free to
contact us at support@picsart.com and we will be happy to investigate
the issue so you can use the app without problems. ”

AppLock 109 D: The user complains that the app stops working.
R: “Please open AppLock to check whether the app is locked. Then
try to enable advanced protection.”

WeChat 70 D: The user complains that the app does not display or upload pic-
tures.
R: “You can try following tips to troubleshoot your problems:
1.Download and install the latest version of WeChat. We suggest you
migrate your chat history before uninstalling WeChat to prevent data
loss. 2.Select any one of the chat pages and send ‘//switchsdcard’. If
the above tips can’t fix your issue contact us again.”

FrostWire 26 D: The user complains that the app does not work after updating to
Android Marshmallow (Android version 6).
R: “Have you just updated your operating system to Android 6? We
are still working on a compatible release... lots to change. In the mean
time you can go to Phone Settings and go to Apps find FrostWire then
select Permissions and enable all of the permissions listed. Everything
else should work just fine :)”

8 Implications

In this section, we discuss the implications of our work for researchers and app
store owners.

8.1 Implications for Researchers

App reviews and app ratings are not immutable. Prior work on app
reviews has always assumed that reviews and ratings are posted and thereafter
not changed. However, our work shows that users may change their reviews
and ratings over time. Even though the portion of changed reviews (3.7% in
our studied period) and ratings (1.4%) is fairly low, researchers need to be
aware of the potential impact of changes in reviews and ratings on their work.
Future studies are necessary to better understand the implications of changing
reviews and ratings on prior research findings.

Reviews only do not provide an in-depth view of user concerns.

Recently, several approaches were proposed for extracting requirements from
app reviews. For example, Martin et al.’s [32] survey shows that existing re-
search uses reviews as a tool for requirements engineering (e.g., by extracting
user complaints and feature requests). In our study, we observed that in many
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cases, developers ask a user for more information based on the review (in
particular the final revision of a review). Hence, studying only reviews does
not give a complete overview of user concerns. Future studies on extracting
requirements from app reviews should investigate how user concerns in app re-
views can be combined with concerns expressed through other channels, such
as email or a support forum.

Developers use the review mechanism as a user support medium.

Even though not many developers use the review mechanism in this way, future
studies should monitor this type of usage to identify possible improvements to
the review mechanism that may better facilitate developers and users.

8.2 Implications for Store Owners

Developers need to resort to alternative channels, such as email, to

be of full assistance to a user. We encountered in many cases developers
asking users to contact them through an alternative channel, such as email.
One possible explanation is that the user is forwarded to a more technical
support team. Another possible explanation is that the review mechanism of
the app store is not su�cient to provide adequate support. Mobile app store
owners should study in depth how developers and users are using the review
mechanism to find out how the mechanism can be improved.

Developers need to be notified whenever users update their re-

views. As illustrated in Section 2, developers are not always notified when
users update their reviews, which prevents developers from tracking users’
changes in their impressions about the app. Moreover, missing notifications
about user updates may hinder developers from noticing any additional infor-
mation that is added by users to the posted reviews.

Developers can be assisted by highlighting reviews that are more

likely to require a response. We showed that, depending on the app, there
can be several types of reviews identified that developers respond to. Store
owners can improve the response mechanism by highlighting reviews that are
longer or have a low rating. The highlighting could be done using thresholds for
the length of the review text, and the number of given stars. These thresholds
can be automatically defined for developers based on their response behavior,
or they could be configured by the developers themselves.

Not all developers follow the published guidelines for responding

to reviews. Although Google has set guidelines for responding to reviews
in the Google Play store [15], we showed that not all developers follow these
guidelines. For example, several developers thank every user for their review.
Developers are discouraged from posting such responses in the guidelines as
they do not contain useful information for other users. A possible solution
for avoiding such responses is to automatically filter repetitive or very short
responses. Another possible solution to lower the number of useless responses
is to put a limit on the total number of responses that can be posted per
day. With such a limit, developers need to be more selective in deciding on
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which reviews to respond to. Google has recently introduced a limit of 500
responses per day per app in the Google Play store API [16]. Future studies
must investigate whether a limit of 500 responses is su�cient to ban useless
responses from the store.

Many users may share the same concerns about an app. Store
owners can improve the way in which reviews are displayed by clustering re-
views and responses based on the concerns that are expressed and addressed
in them. The most often-expressed concerns (and if available, their respons-
es/solutions!) can then be displayed on the product page of an app. Clustering
reviews and responses is beneficial for both developers and users, as (1) it gives
developers the chance to explain to users how to handle a concern after down-
loading the app, and (2) it gives users the chance to adjust their expectations
of the app.

9 Threats to Validity

9.1 Construct Validity

In our quantitative study of the metrics that are related to the response likeli-
hood of a developer, we filtered out apps for which less than 5% of the reviews
have responses. To evaluate whether our filtering has an impact on our results,
we constructed our models using a threshold of 3%, 5% and 8%. We found that
the most important metrics (i.e., the review rating and review text length) do
not change across thresholds. Hence, we conclude that the threshold of 5%
does not impact our results.

There are several approaches to understand what drives a developer to
respond. For example, interviewing and surveying developers might be one
way. In this paper, we chose to instead look at the actual responses. Both
approaches have their benefits and limitations. For example, with surveys de-
velopers might miss reporting on some reasons since we are depending on their
recollection. Nevertheless, a mining approach has its limitation as well. For ex-
ample, the collected data cannot represent all reasons for responding to user
reviews. Thus, we suggest that future studies are needed to triangulate our
observations through developer surveys.

9.2 Internal Validity

In our study, we analyzed the top free popular apps from 2013 for a two months
period. Including more apps and extending the study period may provide more
insights about developer responses. While we studied considerably more data
than prior work on developer responses [34], future studies should revisit our
findings for data that is collected during a longer period (i.e., years).

We assume throughout this paper that the posted responses are written by
app developers. We were unable to find information about the team size and
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structure of the teams that built the top 25 apps with the highest percentage
of developer responses. Clutch4, a company that lists 2,532 mobile app devel-
opment firms, shows that 1,732 out of 2,532 (68%) of these firms have less than
50 employees. Hence, while we do not have strong evidence that responses were
written by actual software developers, we do have evidence that most mobile
app development firms are small. Therefore, due to the small team size, it is
likely that responses to reviews are posted either by app developers themselves
or by other team members who are in close contact with the app developers.
Future studies should investigate further the team size and structure of mobile
app development teams.

The results for our manual studies are impacted by the experience of the
coders and the amount of the collected data. To reduce the errors in the manual
analysis, three authors of this paper (at least two coders in each manual study)
with past experience in analyzing mobile app data were involved in the manual
analysis process. In addition, while doing the manual analysis, we extracted
reasons for posting reviews and responses based on the implications of their
contents. Hence, while we put considerable e↵ort to mitigate the bias, the
extracted reasons may be biased by our experience and intuition.

9.3 External Validity

App store data changes very rapidly and the Google Play Store provides only
the latest 500 reviews per app. Therefore, the crawler may miss to crawl data
when the crawls are not executed as often as required. Martin et al. [31] illus-
trate the sampling problem in analyzing app store data. In order to overcome
this issue, we scheduled our crawler to connect to the Google Play Store several
times per day to collect as many reviews as possible. In our study, we collect
the data for 8,218 apps. During the study period (from September 22nd 2015
to December 3rd 2015), in only 307 out of 547,966 crawls (0.06%) the max-
imum of 500 reviews (either new or updated reviews) could be downloaded.
This shows that in at least 99.94% of the crawls, we were able to collect all
the new reviews and the changes that were made to the existing reviews.

We studied developer responses for reviews of free apps only. One of the
main reasons for removing non-free apps is that the pricing of an app is very
likely to act as a major confounding factor. Developers and users of paid apps
may have di↵erent expectations and attitudes than developers and users of
free apps. Hence, our findings are valid for free apps only.

In this paper, we classify developer response patterns based on general
characteristics (e.g., review rating). The characteristics of developer responses
may vary based on other factors such as the company size, team structure
and cultural di↵erences. Further studies are needed to investigate the nature
of user-developer dialogues based on di↵erent factors (e.g., the cultural di↵er-
ences). However, our documentation of the type of patterns is an essential first
step for future studies.

4 https://clutch.co/

https://clutch.co/
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10 Related Work

While mobile app stores have been the subject of many studies recently, few
studies have focused on the user-developer dialogue inside these stores. Instead,
most studies focus on the analysis of user reviews only. In the remainder of
this section, we give an overview of the most important related work. We
refer to Martin et al.’s survey for an extensive overview of mobile app store
research [32].

10.1 User Reviews

User reviews provide useful information for software developers. In this section,
we represent relevant research on analyzing user reviews.

Iacob et al. [21] manually analyzed 3,279 reviews for 161 apps from the
Google Play Store. They found that 23.3% of the analyzed reviews contain
feature requests. Iacob et al. proposed the MARA (Mobile App Review An-
alyzer) approach for extracting and analyzing feature requests from reviews.
Later, they improved their MARA tool to use linguistic rules to identify re-
views that contain bug reports or feature requests [22].

Khalid et al. [24, 25] manually analyzed 6,390 user reviews for 20 apps in
the Apple Store. They identified 12 labels for di↵erent user complaints. Khalid
et al. found that functional errors, feature requests and app crashes are the
most frequent labels in the studied reviews.

McIlroy et al. [33] built on the Khalid et al. [25] work by developing an
automated approach which analyzes 601,221 reviews for 12,000 apps in the
Google Play Store. They found that 30% of the studied reviews contain di↵er-
ent types of user complaints. McIlroy et al.’s automated approach multi-labels
user reviews with the corresponding complaint types. The approach was eval-
uated to have a 66% precision and 65% recall.

Khalid et al. [26] surveyed the existing mobile reviews research work. They
proposed an approach for presenting and grouping user reviews based on dif-
ferent factors (such as complaint type, review rating and app update version).
The proposed approach can be used by app developers to easily access reviews
that are related to a certain factor.

Maalej et al. [29] analyzed 1.3 million reviews for 1,186 apps in the Google
Play and the Apple Stores. They classified the reviews into four categories:
feature requests, bug reports, app rating and user experience. Maalej et al.
used di↵erent review analysis techniques (such as sentiment analysis, Natu-
ral Language Processing (NLP) and string matching) in order to classify the
reviews. Their approach achieves precision and recall values that range from
71% to 97% based on the technique that is used for classifying the reviews.

Table 16 summarizes the previous work that has been performed in analyz-
ing user reviews. Our work di↵ers from the existing review analysis research
as our work focuses on studying the bidirectional dialogue between app users
and app developers instead of only the unidirectional user reviews.
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Table 16: Summary of the previous studies on analyzing user reviews

Study Store
Number of
studied apps

Number of
analyzed
reviews

Number of
manually analyzed

reviews

Number of
analyzed responses

Iacob et al. [21] G 161 136,998 3,279 -
Khalid et al. [24, 25] A 20 226,797 6,390 -
McIlroy et al. [33] A, G 24 230,277 7,456 -
Maalej et al. [29] A, G 1,186 1,303,182 4,400 -
McIlroy et al. [34] G 10,713 111,099 384 111,099
This paper G 2,328 4,474,023 347 126,686

(G = Google Play Store, A = Apple App Store)

10.2 User-Developer Dialogue in App Stores

Oh et al. [36] surveyed 100 users to study the di↵erent approaches for user-
developer interactions. Oh et al. found that users prefer posting reviews on
the mobile stores over giving feedback through other communication channels
(such as email or telephone).

McIlroy et al. [34] studied the impact of a developer response on the rating
given by a user. They found that users often increase the given rating after
a developer responds to the posted review. McIlroy et al. showed that the
majority of developer responses provide assistance to the user or ask the user to
contact the developer through another communication channel. In our paper,
we revisited McIlroy et al.’s findings by conducting a more in-depth study on a
larger dataset (as well tracking such user-developer dialogues over an extended
period of time).

McIlroy et al. found that 13.8% of the apps respond to at least one review.
In our study, we found that 794 out of 2,328 apps (34.1%) respond to at least
one review. A possible explanation for this di↵erence is that we studied apps
that have more than 100 reviews only (to ensure maturity of the app). By
including all still-active apps (8,218 apps) in our analysis, we found that there
are 1,311 (out of 8,218) apps (16%) in which developers respond at least once
to a user review. McIlroy et al. indicated that apps with a large number of
reviews tend not to respond to reviews as they may be overwhelmed by the
large number of reviews. In this paper, we showed that this perception appears
to be changing, since we focused on apps that have at least 100 reviews.

In addition, McIlroy et al. found that a developer response has an impact
on the review rating in 38.7% of the studied cases. In this paper, we found the
number of reviews in which the rating is changed after a developer responds
to be much lower (3.8%). Our findings did confirm that the rating change is
often positive. A possible explanation for this di↵erence is that we found that
in many of the responses, the user is not actually being assisted directly by
the developers. The large number of “Thank you” responses may influence the
number of rating changes. The lack of assistance in the responses may be due
to the large number of reviews that developers are dealing with, leading to
(semi-)automated responses.
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11 Conclusions

The Google Play Store provides a mechanism that allows users and developers
to engage in a dialogue. On the one hand, users leverage this mechanism
by reading, writing, and updating reviews for an app. On the other hand,
developers use this mechanism to respond to the posted user reviews.

In our study, we analyzed 4.5 million reviews with 126 thousand responses
for 2,328 top free popular apps in the Google Play Store. We found that
users and developers leverage the user-developer dialogues as a user support
mechanism. However, in most cases the dialogue between the user and the
developer is short.

Below are some of the most notable findings of our study:

1. Reviews and ratings change over time by a user. Hence, researchers need
to consider the dynamic nature of reviews while analyzing user reviews.

2. When the rating is changed after a developer response, it is increased in
most cases. Hence, app owners should focus more on responding to reviews,
especially given that in many cases reported issues can be resolved without
having to deploy an app update.

3. Users and developers use the user-developer dialogue as a user support
mechanism. However, in most cases, the dialogue is short.

4. In general, developers are more likely to respond to reviews with a low
rating and that are longer. The more in-depth analysis led us to identify
four di↵erent patterns of developers. App store owners can facilitate a
better responding mechanism by automatically highlighting reviews that
are likely to require a response.

5. In 45% of the responses, the user is asked to provide more details about a
reported issue. App store owners can improve the review-response mech-
anism by automatically providing developers with more details about the
raised issues.

The presented findings in this paper show that responding to a review
improves the chances of a user rating increase. However, we observed that
developers do not leverage the potential of the response mechanism, as a large
percentage of the responses consists of template-based responses. In particular,
app owners should focus more on sending tailored responses that actually
address the concerns that are raised by users. In addition, app store owners
should improve their review-response mechanism as currently, developers need
to ask the user to contact them via another communication channel to retrieve
more details about a raised issue.
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