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Abstract—Flame graphs are gaining rapidly in popularity in

industry to visualize performance profiles collected by stack-trace

based profilers. In some cases, for example, during performance

regression detection, profiles of different software versions have

to be compared. Doing this manually using two or more flame

graphs or textual profiles is tedious and error-prone.

In this ‘Early Research Achievements’-track paper, we present

our preliminary results on using differential flame graphs instead.

Differential flame graphs visualize the differences between two

performance profiles. In addition, we discuss which research

fields we expect to benefit from using differential flame graphs.

We have implemented our approach in an open source prototype

called FLAMEGRAPHDIFF, which is available on GitHub. FLAME-

GRAPHDIFF makes it easy to generate interactive differential

flame graphs from two existing performance profiles. These

graphs facilitate easy tracing of elements in the different graphs

to ease the understanding of the (d)evolution of the performance

of an application.

I. INTRODUCTION

One of the major challenges in performance analysis is
understanding the large amounts of data collected. Several vi-
sualization methods, such as heat maps [1] and icicle plots [2],
have been introduced to assist with this understanding. Over
the past few years, the flame graph [3], [4], a visualization
based on the icicle plot, has gained rapidly in popularity in
industry. A flame graph is a visualization of hierarchical data.
More specifically, it visualizes a collection of (stack trace

1,
value)-pairs in which value represents a metric monitored or
calculated for that specific stack trace. These pairs can, for
example, be obtained by using a stack trace-based profiler:
such a profiler records and aggregates metrics per executed
stack trace.

In a flame graph, elements are shown in a stacked fashion.
Stack traces are shown from bottom to top, where the top
element represents the function called latest in the stack trace.
As a result, the height of the graphed stack represents the
depth of the stack trace. The width of the stack represents the
relative size of the monitored values compared to the other
values. Hence, the element with the largest value (e.g., the
stack trace in which most time is spent) in the profiled data
is identified by finding the widest element in the graph.

Figure 1 depicts a sample program and its corresponding
CPU profile. In this profile, the CPU time spent within each

1Throughout this paper we consider a stack trace a report of the active
stack frames at a certain point in time during the execution of a program.
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Fig. 1. A sample program and its corresponding CPU profile
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Fig. 2. Flame graph for profile in Figure 1

stack trace is recorded during execution of the program. Note
that the times represent the total time spent within a stack
trace and that the profile does not contain information about
the execution order of these stack traces or about the time
spent in a single call. Because of this, the x-axis of a flame
graph does not and cannot show the passage of time, but
instead spans the sample population, with the ordering of
stacks sorted alphabetically to maximize merging of profiled
elements. Figure 2 depicts the corresponding flame graph2.
From this figure, it is easy to spot that most time is spent
within stack trace a().

In various cases, it is desirable to compare the performance
profiles of two or more different software versions. One of
these cases is performance regression analysis. The goal of
performance regression analysis is to find out whether and
why the performance of software degraded after an update
to the code [5], [6]. Current practice is to manually compare
profiles which is time consuming and tedious. In this paper, we

2Note that a random color palette is used to generate flame graphs, i.e., the
colors do not have a meaning.
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propose a method for doing this comparison using differential

flame graphs (DFGs). In a DFG, the differences between two
performance profiles are depicted using a flame graph.

In Section II, we present the DFG-set, explain its compo-
nents and give examples on how they can be used for perfor-
mance analysis. In Section III, we describe scenarios in which
we expect DFGs to be useful. We discuss the challenges and
the open source implementation of our approach in Section IV.
We discuss related work in Section V and we conclude our
paper in Section VI.

II. USING DFGS FOR PERFORMANCE ANALYSIS

Our main proposed application for DFGs is in the perfor-
mance analysis process. We propose to use DFGs in the three
following cases:

• To detect performance regressions (Section II-B)
• To validate the effect of a performance fix (Section II-C)
• To compare the performance of an application on differ-

ent systems (Section II-D)
Our approach is based on a combination of DFGs, the DFG-

set. In this section, we will first elaborate on the components
of a DFG-set and after that, explain how to use them in the
cases above.

A. Differential Flame Graph-Sets (DFG-sets)

For any two software versions v1 and a newer version v2, we
can record stack trace-based performance profiles p1 (for v1)
and p2 (for v2). A DFG-set visualizes the differences between
p1 and p2 using three components:

1) DFG1: A comparison of p1 and p2 with p1 as base
2) DFG2: A comparison of p1 and p2 with p2 as base
3) DFGdiff : A flame graph based on the differences of

DFG2

To generate a flame graph with p1 as base we draw the
base profile as a flame graph, so that the frames and their
widths reflect the base. We then add color to show the profile
differences. Note that we must compare the profiles both with
p1 and p2 as base to deal with stack traces that may be added
or removed in v2. DFG1 and DFG2 visualize the two options
for the performance engineer: either stay with v1 instead of
v2 (DFG1), or move from v1 to v2 (DFG2). The DFG-set of
three standard flame graphs does visualize all the necessary
profile data for regression analysis. However, we introduce
color as a dimension to show profile differences within each
flame graph. The colors of the components within the flame
graph depicting the comparison of p1 and p2 with p2 as base
(DFG2) represent the following:

• White – profile value unchanged in version v2
• Blue – profile value reduced in version v2
• Red – profile value grew in version v2
The interpretation of these colors depends upon the type

of profile: for a metric such as time spent, red represents
regression, while for a metric such as throughput, it represents
an improvement. In addition, we add intensity to the color -
a darker shade of blue or red indicates a reduction or growth
that is relatively large compared to the other elements that

have changed in v2. In DFG1, p1 is used as the base, and
the colors show the profile difference if we revert the changes
from v2 back to v1.

To further highlight the differences in performance when
using software version v2 instead of v1, we draw DFGdiff

which contains only the differences. This allows us to draw the
element width size relative to the size of the difference, making
it easy to spot the largest differences. We have chosen to draw
the differences of DFG2 in DFGdiff only as these are in our
opinion the most often investigated ones when searching for
performance regressions.

B. Detecting Performance Regressions

Performance regression can occur for various performance
metrics, such as CPU time and I/O traffic [6]. Below we give
examples on how to use a DFG-set to detect such regressions.

1) CPU Time Regression: We demonstrate the applicability
of a DFG-set on finding CPU time regressions using the
rsync3 test suite as an example. Rsync is a widely-used utility
software for synchronizing files and directories from one
location to another while minimizing data transfer by using
delta encoding. We used perf4 to record the number of CPU
cycles spent in each function during an execution of the test
suite of rsync, resulting in performance profile p1. To generate
profile p2, we have altered p1 to simulate a performance
regression which increases the cycles spent within the main
and md5_process functions.

Figure 3, 4 and 5 depict the DFG-set that results from
comparing p1 and p2. Figure 3 and 4 show that a regres-
sion occurred in a function called by main and in the
md5_process function, which are the regressions seeded
by us. Figure 5 further highlights these regressions. This can
especially be helpful in flame graphs with a large number of
elements or differences.

2) I/O Writes Regression: In earlier work [6], we have
proposed an approach for detecting regressions in the amount
of I/O write traffic. This approach generates a report when
comparing two code revisions, which contains a ranking of the
stack traces which were the most likely to have increased their
write traffic (impact). Table I depicts (part of) such a ranking.
The actual ranking contains 204 records. Because this ranking
is textual, it can be tedious to see relations between the stack
traces such as relative size and overlap. The interpretation of
the textual ranking can be made easier5 by using a DFG-
set instead, because a DFG-set allows us to see the relative
size and groups stack traces that share common elements
together. Figure 6 depicts the DFG-set corresponding to the
(full) ranking of Table I. An advantage is that minor increases
are easily ignored in the DFG-set. One can clearly see that the
database commit in the store_update_forward function
causes the largest part of the regression and that the increase in
writes caused by other functions is negligible in comparison. In

3http://rsync.samba.org/
4https://perf.wiki.kernel.org/index.php/Main Page
5Although one can argue that in this specific case the textual ranking is

already easy to read due to the large increase.
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Fig. 3. DFG1 for rsync test suite (unmodified version)
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Fig. 4. DFG2 for rsync test suite (version with seeded regression)

Rsync DFG_diff
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main md5_process
setlo..

Fig. 5. DFGdiff for rsync test suite

addition, we would not have been able to display both profiles
and the ranking on one page in a textual form, while using
flame graphs this is possible.

C. Validating a Performance Fix

After a regression occurred, or another performance issue
was found, the responsible code should be fixed. After apply-
ing this fix, a DFG-set can be used to validate the effect of
the fix. DFG1 in Figure 6 shows us what happens to the
performance of our application if we revert from the new
version of the code to the old version. Hence, we can validate
the effect of the ‘fix’ of undoing these changes. Likewise, we
can use blue-colored elements in a DFG to analyze whether a
performance fix had the desired effect.

D. Comparing Performance on Different Systems

The DFG-set is a representation of the absolute difference
between two profiles. In some cases, it may be more useful to
compare their relative difference, i.e., the proportion that each
stack trace takes up in the profile. An example of such a case
is when we want to compare two profiles recorded on different
systems, for example, when analyzing debug data which was
submitted through a number of crash reports by client users.
In this case, it may not be useful to compare the absolute
values in this data but to use normalized values instead. The
differences may help to learn more about the limitations and
system requirements of an application.
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Fig. 6. DFG-set for Dispersy test suite

# Impact Stack trace

1 435 MB dispersy/database.py:commit
dispersy/dispersy.py:store update forward
dispersy/tests/debugcommunity/community.py:create full sync text
...

2 0.4 MB dispersy/database.py:commit
dispersy/database.py:close
dispersy/dispersy.py:stop
...

3 0.2 MB dispersy/community.py:
dispersy/tool/tracker.py:
dispersy/tests/test candidates.py:
...

TABLE I
PARTIAL TEXTUAL RANKING OF THE APPROACH PRESENTED IN [6]

III. DIFFERENT APPLICATIONS

In this section, we present various different scenarios we
expect to be suitable for analysis with DFGs. These scenarios
can be used to guide the formation of new research questions
regarding DFGs.

A. Parallel/Distributed Computing

An important challenge in parallel and distributed comput-
ing is to divide a large task into several smaller subtasks.
We expect that DFGs can assist with the validation of this
division as DFGs allow easier analysis of differences between
profiles. Hence, DFGs make it easier to analyze the difference
in workload between various nodes performing similar tasks.

Another scenario in which we expect DFGs to help out,
is with the analysis of distributed algorithms, such as those
used in peer-to-peer networks. In such algorithms, the goal
is often to distribute the workload evenly over the available
peers. If such an algorithm contains a bug, it is difficult to
debug because the bug may only be exhibited when a large
number of peers is in the network. We expect that DFGs can
assist in debugging scenarios by allowing a quick comparison
of the profile of a large number of nodes. Likewise, we expect
DFGs can assist with the debugging process of load balancers.

B. GUI and Website Analysis

We expect that DFGs can be applied in fields other than
software performance analysis as well. GUI analysis exhibits
similarities with software performance: GUI usage can be
monitored by counting click-paths [7], which can be consid-
ered a stack trace of the actions performed in the GUI. After
adding a new option to the GUI, the DFG-set can be used to
investigate how the new click-path affects usage of existing
functionality. Note that these ideas apply to website analysis
as well.

IV. DISCUSSION

A. Challenges

The most important challenge of DFGs is data collection.
Because DFGs require full stack traces, profiles must be
recorded using profilers that can generate such traces. In
practice collecting such data appeared to be difficult for some
languages (e.g., Java and Python), due to the inavailability of
suitable profilers.

In large flame graphs it can be difficult to locate targets. In
future work, we will add a keyword search to FLAMEGRAPH-
DIFF to make this easier.

B. Implementation

The prototype implementation of our approach is available
as an open source project called FLAMEGRAPHDIFF6. FLAME-
GRAPHDIFF takes two files containing (stack, value)-pairs as
input and generates the corresponding DFG-set. Optionally,
values can be normalized before they are being graphed. To
generate the DFG-set, first the flame graphs are generated7.
Then, the profiles are compared and the elements of the flame
graphs are colored accordingly. Finally, DFGdiff is generated

6http://corpaul.github.io/flamegraphdiff/
7For more information on flame graph generation see the original Flame-

Graph repository: https://github.com/brendangregg/FlameGraph
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by hiding all stack traces from DFG2 of which the value of
the last function on the stack did not change.

FLAMEGRAPHDIFF generates the three DFGs in the DFG-
set as interactive SVGs. When the user hovers the mouse over
an element in any of the graphs in the set, the corresponding
elements are highlighted in the other graphs and their values
are displayed. This allows for easy tracing of elements over
the various graphs. A demonstration of several scenarios can
be found at the project website.

V. RELATED WORK

Performance regression analysis through visualization has
received surprisingly little attention in research. The widely-
used profiler OProfile [8] implements a technique known
as differential profiles, which expresses differences between
profiles in percentage. However, this is a textual approach and
does not offer a visualization.

Bergel et al. [9] have proposed a profiler for Pharo which
compares profiles using visualization. In their visualization,
the size of an element describes the execution time and number
of calls. Alcocer [10] extends Bergel’s approach by proposing
a method for reducing the generated callgraph. Additionally,
Alcocer et al. [11] propose Performance Evolution Blueprints
(PEBs), which show the evolution of an application. The data
graphed by PEBs is similar to the data graphed by DFGs,
however, DFGs appear to do this in a more compact fashion.
In future work, we will do a thorough comparison of the
opportunities and limitations of PEBs and DFGs.

Nguyen et al. [12] propose an approach for detecting perfor-
mance regressions using statistical process control techniques.
Nguyen et al. use control charts to decide whether a monitored
value is outside an accepted range. The violation ratio defines
the relative number of times a value is outside this range.
The main difference in the approach used by Nguyen and
our approach is the granularity. Their approach identifies
performance regressions in system-level metrics, while our
approach identifies regressions on the function-level, making
analysis of the regression easier. In future work, we will
investigate how our approach and Nguyen’s approach can
complement each other.

Trumper et al. [13] use icicle plots and edge bundles to
visualize differences between execution traces. They focus on
the functional aspects of an application, while our approach
focuses on a non-functional aspect (performance). In addition,
they focus on ordered sequences, while for our visualization,
the order of events is not important as we work with aggre-
gated data. Finally, the use of a color scheme to represent
differences rather than colored edge bundles results in a clearer
graph, which is beneficial for graphs with many elements.

Other visualizations have been proposed for large amounts
of performance data, such as heat maps [1], [14], but these
have not been applied to performance regression detection.

VI. CONCLUSION

In this paper, we have presented the differential flame
graph (DFG) for visualizing differences between performance

profiles. A DFG is a flame graph depicting the differences
of two performance profiles, using one of those profiles as a
base. A DFG-set combines three DFGs in one figure: one using
the first profile as a base, one using the second profile as a
base, and one in which the differences in the second DFG are
emphasized to facilitate easier analysis. Without a DFG-set,
comparing performance profiles is tedious and error-prone. In
this ERA-track paper, we have indicated and given examples
of how DFGs can be used for detecting performance regres-
sion, validating performance fixes and comparing performance
profiles recorded on different systems.

In addition, we present the prototype open source imple-
mentation of our approach, FLAMEGRAPHDIFF, which makes
it easier to generate and analyze DFGs and to trace elements in
multiple graphs. We expect this implementation to be useful in
several research areas, such as performance analysis, parallel
and distributed computing and GUI and website analysis.
Hence, we invite researchers from other fields to use our
prototype in their research or to contact us for research
collaborations. In future work, we will focus on thoroughly
evaluating DFGs in large research and industrial projects.
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