
CLIP meets GamePhysics: Towards bug identification in
gameplay videos using zero-shot transfer learning

Mohammad Reza Taesiri

taesiri@ualberta.ca

University of Alberta

Edmonton, AB, Canada

Finlay Macklon

macklon@ualberta.ca

University of Alberta

Edmonton, AB, Canada

Cor-Paul Bezemer

bezemer@ualberta.ca

University of Alberta

Edmonton, AB, Canada

ABSTRACT
Gameplay videos contain rich information about how players inter-

act with the game and how the game responds. Sharing gameplay

videos on social media platforms, such as Reddit, has become a

common practice for many players. Often, players will share game-

play videos that showcase video game bugs. Such gameplay videos

are software artifacts that can be utilized for game testing, as they

provide insight for bug analysis. Although large repositories of

gameplay videos exist, parsing and mining them in an effective and

structured fashion has still remained a big challenge. In this paper,

we propose a search method that accepts any English text query as

input to retrieve relevant videos from large repositories of gameplay

videos. Our approach does not rely on any external information

(such as video metadata); it works solely based on the content of the

video. By leveraging the zero-shot transfer capabilities of the Con-

trastive Language-Image Pre-Training (CLIP) model, our approach

does not require any data labeling or training. To evaluate our ap-

proach, we present the GamePhysics dataset consisting of 26,954
videos from 1,873 games, that were collected from the GamePhysics

section on the Reddit website. Our approach shows promising re-

sults in our extensive analysis of simple queries, compound queries,

and bug queries, indicating that our approach is useful for object

and event detection in gameplay videos. An example application

of our approach is as a gameplay video search engine to aid in

reproducing video game bugs. Please visit the following link for the

code and the data: https://asgaardlab.github.io/CLIPxGamePhysics/

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
video mining, bug reports, software testing, video games

1 INTRODUCTION
Video game development is a highly complex process. There are

many unique challenges when applying general software engi-

neering practices in video game development [32, 37, 40, 43, 48],

including challenges in game testing. Manual testing is a widely

accepted approach to game testing [39, 42, 52], however this manual

process is slow and error-prone, and most importantly, expensive.

On the other hand, it is challenging to automate game testing [31,

39, 47] due to the unpredictable outputs of video games. Despite

progress towards automated game testing methods [13, 34, 51, 52]

and game testing tools [5, 24, 41, 58], new approaches to game

testing must be researched.

Figure 1: Video identified by our approach with the bug
query ‘A horse in the air’ for Red Dead Redemption 2.

The difficulty of game testing due to the unique nature of games

calls for unique testing methodologies as well. For example, we

could leverage the visual aspect of games in the testing process.

Having a gameplay video is very helpful when trying to reproduce

a bug in the development environment for further analysis, as

bug reports often contain incomplete information [7]. The ability

to search a large repository of gameplay videos with a natural

language query would be useful to help reproduce such bug reports.

For example, in the game development domain, a bug report might

state ‘my car is stuck on the rooftop’ without any screenshot or

video to show what is actually happening. A gameplay video search

would allow game developers to find an example instance of a

specific bug in the pile of gameplay videos from their playtesting

sessions or the internet (e.g., YouTube, Twitch).

Despite containing rich information, the challenges related to

video parsing and understanding mean that gameplay videos are

difficult to utilize. Manually identifying bug instances is time con-

suming, and there is limited prior research on automatic methods

for mining large repositories of gameplay videos [33, 35].

In this paper, we address the challenges of extracting useful in-

formation from large repositories of gameplay videos. We propose

an approach for mining gameplay videos using natural language

queries by leveraging the Contrastive Language-Image Pre-Training

(CLIP) model [45] to identify similar text-image pairs without any

additional training (i.e., zero-shot prediction). We leverage CLIP

for videos by pre-processing the video frame embeddings and use

Faiss [23] to perform a fast similarity search for the pairs of text

queries and video frames. In our approach, we present two methods

to aggregate across the similarity scores of each text-image pair to

identify relevant videos. To evaluate our approach, we collected and

prepared the GamePhysics dataset, consisting of 26,954 gameplay

1

https://asgaardlab.github.io/CLIPxGamePhysics/
https://www.reddit.com/r/GamePhysics/comments/9rqabp

Mohammad Reza Taesiri, Finlay Macklon, and Cor-Paul Bezemer

videos that predominantly contain game physics bugs. We evalu-

ate our approach with sets of simple queries, compound queries,

and bug queries, and show that our approach can identify objects

and (bug-related) events in large repositories of gameplay videos.

Figure 1 shows an example of a video that was identified by our

approach when searching videos from the Red Dead Redemption 2

game using the bug query ‘A horse in the air’. The primary applica-

tion of our approach is as a gameplay video search engine to aid in

reproducing game bugs. With further work, e.g. setting thresholds

to limit false positives, our approach could also be used as a bug

detection system for video games.

The main contributions of our paper are as follows:

• We propose an approach to search for objects and events

in gameplay videos using a natural language text query.

• We collect and prepare the GamePhysics dataset, consisting
of 26,954 gameplay videos from 1,873 games.

• We report results that demonstrate the promising perfor-

mance of our approach in identifying game physics bugs

through 3 experiments with simple, compound, and bug

queries.

The remainder of our paper is structured as follows. In Section 2,

we motivate our study by providing relevant background infor-

mation. In Section 3, we discuss related work. In Section 4, we

present our approach to mining large repositories of gameplay

videos. In Section 5, we discuss collecting and pre-processing the

GamePhysics dataset. In Section 6 we detail our experiment setup,

and in Section 7 we present our results. In Section 8 we provide

discussion and insights on the performance of our approach. In

Section 9 we outline limitations of our approach. In Section 10 we

address threats to validity. We conclude our paper in Section 11.

2 MOTIVATION AND BACKGROUND
2.1 Video game (physics) bugs
In this paper, we are interested in a specific category of bugs in

video games that we call ‘game physics’ bugs. Game physics bugs

are not necessarily related to an inaccurate physics simulation.

Many of these bugs are related to the faulty representation of game

objects due to an error in the internal state of that object. A few

sample instances of game physics bugs can be seen in Figure 2.

In Figure 2a, a bug from Grand Theft Auto V related to object

collisions is shown. Figure 2b shows a bug from The Elder Scrolls V:

Skyrim, related to object clipping. In Figure 2c, a bug from Red

Dead Redemption 2 related to ragdoll poses can be seen. Figure 2d

shows a bug from Cyberpunk 2077, related to object collisions.

Identifying game physics bugs is challenging because we need to

be able to extract specific, high-level (abstract) events from the

gameplay videos, that are often similar to correct behaviour.

2.2 Challenges in mining gameplay videos
Until now, it has been challenging to extract valuable informa-

tion from large repositories of gameplay videos. Identifying bug

instances by manually checking the contents of gameplay videos

is time-consuming [33]. Therefore, automatic methods for mining

gameplay videos are required. The only existing approach for auto-

matically extracting events from gameplay videos requires manual

data labelling (and the training of new models) [35], which itself

is time-consuming. Therefore, an effective method for extracting

valuable information from gameplay videos should be able to au-

tomatically analyze the video contents without requiring manual

data labelling.

2.3 Contrastive learning and zero-shot transfer
While there are many approaches towards zero-shot learning, we

are interested in assessing the zero-shot performance of pre-trained

contrastive models. Contrastive learning is a machine learning

technique in which the goal is to learn a representation of inputs

such that similar items stay close to each other in the learned

space, while the dissimilar items are far away [3, 9]. In recent years,

contrastive learning has been one of the key drivers in the success

of self-supervised learning methods and has been used for zero-shot

transfer learning [11, 18, 28, 45]. Zero-shot learning is a family of

problems in machine learning, in which an algorithm is required to

solve a task without having a training set for that specific task [29,

30]. To illustrate this idea, suppose that a person has never seen a

zebra before. If we give a detailed description of a zebra to them

(e.g., an animal similar to a horse, but with black-and-white stripes

all over their bodies), that person can identify a zebra when they

see one.

2.4 The Contrastive Language-Image
Pre-Training (CLIP) model

One contrastive model that has proven zero-shot transfer capa-

bilities is the Contrastive Language-Image Pre-Training (CLIP)

model [45], which can leverage both text and image inputs together.

We decided to use CLIP because of its multimodal capabilities and

the size of its training dataset. The CLIP model consists of two

parts: a text encoder, and an image encoder. These two parts work

individually, and they can accept any English text and image as

input. When an encoder of this model receives an input, it will

transform it into an embedding vector. These embedding vectors

are high-level features that are extracted by the network, represent-

ing the input. More specifically, these embedding vectors are how

the neural network represents, distinguishes, and reasons about

different inputs. Both encoders of this model will produce vectors

of the same dimension for image and text inputs. Not only do these

vectors have the same dimension, but they are also in the same

high-dimensional feature space, and are therefore compatible with

each other. For example, the embedding vector of the text ‘an apple’

and the embedding vector of an image of an apple are very close to

each other in this learned space. The CLIP model was pre-trained

on over 400 million pairs of images and text descriptions that were

scraped from the internet, and has six different backbone architec-

tures: ‘RN50’, ‘RN101’, ‘RN50x4’, ‘RN50x16’, ‘ViT-B/32’, ‘ViT-B/16’.

The models with ‘RN’ in their name are ResNet-based [21] models

using traditional convolutional layers, while the ‘ViT’ models are

based on vision transformers [14].

3 RELATEDWORK
Event extraction from video content is of special importance for

various data mining tasks [36, 44]. Only two prior studies have ex-

plicitly explored automatic approaches for mining gameplay videos,

2

CLIP meets GamePhysics: Towards bug identification in gameplay videos using zero-shot transfer learning

(a) Bug in Grand Theft Auto V. Car stuck in a tree after colliding. (b) Bug in The Elder Scrolls V: Skyrim. Dragon stuck in the ground.

(c) Bug in Red Dead Redemption 2. Incorrect sitting animation. (d) Bug in Cyberpunk 2077. Cars stuck together after colliding.

Figure 2: Sample instances of game physics bugs.

with varying success. Lin et al. showed that using metadata (such as

keywords) to identify YouTube videos that contain video game bugs

is feasible [33], but our approach looks at the video contents, which

Lin et al. do not take into account. Our approach is more useful

for game developers, as we can identify objects and (bug-related)

events within gameplay videos. Luo et al. propose an approach for

automatic event retrieval in e-sport gameplay videos that requires

manual data labelling, a fixed set of classes (events), and the train-

ing of new models [35]. Our approach is more robust and easier

to set-up, as we can search gameplay videos with any English text

query to identify specific objects and events without performing

manual data-labelling.

Although there is limited prior work on mining large reposi-

tories of gameplay videos, there are several studies that propose

approaches to automatically detect graphics defects in video games.

One of the earliest approaches for automated detection of graphics

defects was published in 2008, in which a semi-automated frame-

work was proposed to detect shadow glitches in a video game

using traditional computer vision techniques [38]. Recent studies

have utilized convolutional neural networks in their approach to

automatically detect a range of graphics defects [10, 13, 34, 49]. In-

stead of detecting graphics defects, our work is concerned with the

automatic identification of game physics bugs in gameplay videos.

Tuovenen et al. leverage the visual aspect of games through an

image matching approach to create a record-and-replay tool for

mobile game testing [51]. Our approach leverages the visual aspect

of games in a different way; instead of recording tests through

gameplay, we automatically identify bugs in gameplay videos.

Some studies have proposed approaches for automated detection

of video game bugs through static or dynamic analysis of source

code. Varvaressos et al. propose an approach for runtimemonitoring

of video games, in which they instrument the source code of games

to extract game events and detect injected bugs [52]. Borrelli et al.

propose an approach to detect several types of video game-specific

bad smells, which they formalize into a tool for code linting [8].

Our approach differs as we do not require access to the source code

of games; instead we identify video game bugs based solely on the

contents of gameplay videos.

In addition to related work on automatic bug detection for video

games, there exists a wide range of work that leverages recent

advancements in deep learning to provide new tools and techniques

that address problems faced by game developers. Several studies

have sought to make AI methods accessible in the video game

development and testing cycle, either through the game’s internal

state, raw pixels, or through a high-level neural network-based

representation [27, 50]. Some studies have proposed approaches to

accompany a game designer through the creation process of a game

by providing suggestions and explanations to the designer [19, 20,

26]. Other studies have incorporated reinforcement learning and

evolutionary methods to create AI agents that can automatically

3

https://www.reddit.com/r/GamePhysics/comments/4jirzj
https://www.reddit.com/r/GamePhysics/comments/6652mm
https://www.reddit.com/r/GamePhysics/comments/bur1ke
https://www.reddit.com/r/GamePhysics/comments/kv41nk

Mohammad Reza Taesiri, Finlay Macklon, and Cor-Paul Bezemer

play games [6, 25, 55]. These AI agents can be further employed

to perform automated game testing sessions [4, 16, 17, 46, 58]. Our

work is different from those listed above, as we focus on assisting

game developers by providing an approach to efficiently search

large repositories of gameplay videos to find bug instances.

4 OUR APPROACH
To assist with detection and analysis of game bugs, we propose an

approach that quickly and effectively searches a large repository

of gameplay videos to find a specific object or event in a particu-

lar game. For creating such a powerful search system, one could

utilize a traditional supervised classification technique. However,

any supervised classification method requires a training dataset,

a test dataset, and a fixed number of classes. Maintaining these

two datasets and labeling each sample is demanding and labour-

intensive. On the other hand, the CLIP model provides zero-shot

transfer learning capabilities that allow us to develop an approach

to automatically mine gameplay videos while avoiding the afore-

mentioned issues. Figure 3 shows an overview of our approach.

4.1 Encoding video frames and the text query
Our approach accepts a set of videos and any English text query

as inputs. We first extract all frames from each video, and then

use the CLIP model to transform our input text query and input

video frames into the embedding vector representations described

in Section 2.4. We selected the CLIP model because it is flexible

enough to accept any arbitrary English text as a query and compare

it with a video frame, without any additional training.

4.2 Calculating the similarity of embeddings
As well as avoiding manual data labelling, our approach avoids

depending upon any extra information, such as metadata, to search

gameplay videos. Instead, we are able to calculate similarity scores

solely based on the contents of the video frames and the text query.

The similarity score in our problem is a distance between an em-

bedding vector representing a text query and another embedding

vector representing a video frame. To calculate similarity scores

for the pairs of embedding vectors, we opted for cosine similarity,

a widely-used similarity metric [15, 53, 54, 57]. We require an ex-

haustive search to calculate the similarity score of the text query

with each individual frame in each input video. The performance

of an exhaustive search will decrease inversely with an increasing

number of videos in a repository. To combat this, we use Faiss [23]

to conduct an efficient similarity search.

4.3 Aggregating frame scores per video
Although CLIP is designed to accept text and images as inputs, we

can leverage CLIP for videos by treating each video as a collection

of video frames (i.e. a collection of images). To identify specific

events that could occur at any moment in a gameplay video, we

cannot subsample the video frames as suggested in the original

CLIP, because due to the richness of events in a single gameplay

video, skipping any part of the video may lead to information loss

and inaccurate results. Therefore, we perform a similarity search

on all frames of all videos by comparing each individual video

frame with the target query text, and we subsequently aggregate

Encoding video frames
and the text query

Input video
frames

'a car flying
in the air'

Query

Aggregating
frame scores

per video

 embeddings

 embeddings

 embeddings

Calculating
the similarity
of embeddings

Search
Results

 embeddingsCLIP
Text Encoder

CLIP
Image Encoder

Figure 3: Overview of our gameplay video search approach.

the similarity scores across each video. Below we detail the design

of two different methods for aggregating the video frame similarity

scores for each gameplay video. Our approach supports the two

aggregation methods without the need to re-calculate the similarity

scores.

Aggregating frame scores using the maximum score. Our first score
aggregation method ranks videos based on the maximum similarity

score across all frames belonging to each video. This method is

highly sensitive, as a single frame with high similarity can lead to

an entire video being identified as relevant to the query.

Aggregating frame scores using the similar frame count. In the second
score aggregation method, we begin by ranking all frames of the

input videos based on their similarity scores with the text query.

Then, we select a predefined number (the pool size hyperparameter)

of highest-ranked frames across all videos. Finally, we count the

number of frames per video within this pool of highest-ranked

frames. This method is less sensitive than our first aggregation

method, as identified videos must have multiple frames that are

among the most similar to the input text query. We selected 1,000

as the default pool size value in our study.

5 PREPARING THE GAMEPHYSICS DATASET
5.1 Collecting the GamePhysics dataset
Developing and testing a new machine learning system requires a

dataset. Unfortunately, there is no such dataset for gameplay bugs.

To this end, we present the GamePhysics dataset, which consists

of 26,954 gameplay videos collected from the GamePhysics

subreddit. An overview of our data collection process can be seen

in Figure 4.

Extracting post metadata and downloading videos. To collect the

data, we created a custom crawler that uses both the official Reddit

API and the popular PushShift.io API [2]. In our crawler, we use

the PushShift.io API to get high-level information about each

submission in the GamePhysics subreddit. After obtaining high-

level data, we use Reddit’s official API to update the scores and

other metadata of each submission. For downloading the actual

4

https://www.reddit.com/r/GamePhysics/

CLIP meets GamePhysics: Towards bug identification in gameplay videos using zero-shot transfer learning

Extract post
metadata

GamePhysics
Subreddit

26,954
videosDownload

videos

Google
Search

Search game
name keywords

Extract game
information

Game
information

GamePhysics
DatasetLabel videos

with game name

Filter
posts

Post
metadata

Figure 4: Overview of our data collection process.

video files, we use a combination of youtube-dl and aria2c to

extract video links and download them.

Filtering posts. We applied several filters to our dataset during the

data collecting process to remove spam posts, low-quality content,

and outliers. There are several spam posts in the GamePhysics

subreddit, and these posts are marked explicitly as spam by the

subreddit’s moderators. Furthermore, we treat post scores as a

quality signal as this score captures up/down votes from Reddit

users, and consider any post with a score of less than one as low-

quality content. The lengths of the video files vary from a few

seconds to multiple hours. We avoid long videos in our dataset,

because they can contain multiple events of different kinds and are

very hard to process. We only keep videos that are longer than 2

seconds and shorter than 60 seconds. After applying our filters, our

final dataset contains 26,954 video files from 1,873 different games.

Labelling videos with the game name. In order to simulate the realis-

tic scenario in which a game developer would search a repository of

gameplay videos for a specific game, we extract the game name for

each gameplay video from the title of its respective post. Detecting

the game’s name from a GamePhysics submission is not straightfor-

ward. While there is a community guideline that suggests including

the name of the game in the submission’s title, people often forget

to include the game name or use several aliases for the game name,

meaning the task of detecting the game name can be hard. For

example, ‘GTA V’ is a widely-used alias that refers to the ‘Grand

Theft Auto V’ game. To address this issue, we created a second

custom crawler to search game name keywords in Google and sub-

sequently map them to the full game name. Google search results

provide a specific section called the Knowledge Panel that contains

the game name, as well as other relevant game information such

initial release date, genre, development studio(s), and publisher.

5.2 Pre-processing the videos
As discussed in Section 4.2, our approach can search a large repos-

itory of gameplay videos more efficiently by pre-processing the

embedding vectors of every frame for each video in the reposi-

tory before inputting any text queries. Therefore, for our dataset

to be suitable for our approach, we pre-process all videos in the

GamePhysics dataset before proceeding with any experiments. We

pre-processed all 26,954 videos using a machine with two NVIDIA

Titan RTX graphics cards, but it is certainly possible to perform

this step with less powerful graphics cards too. It is worth noting

that this is by far the most computationally expensive step in our

approach.

6 EXPERIMENT SETUP
In this section, we describe an extensive analysis of our approach on

the GamePhysics dataset through a diverse set of experiments. To

assess the performance of our video search method, we performed

several experiments with varying levels of difficulty. The main

obstacle to evaluating our search system is the lack of a benchmark

dataset. To this end, we designed three experiments with three

corresponding sets of queries to shed light on the capabilities of

our proposed method.

6.1 Experiment overview
In the first two experiments, we evaluate the accuracy of our ap-

proach when retrieving videos with certain objects in them. The

results for this step indicate the generalization capability of the

model for the third experiment. In the third experiment, we eval-

uate the accuracy of our approach when retrieving videos with

specific events related to bugs.

6.2 Selecting CLIP architectures
To understand the relative performance of the available ResNet-

based and vision transformer-based CLIP models, we opted to try

two different backbone architectures in our system, namely ‘RN101’

and ‘ViT-B/32’. We chose these backbones as fair baseline compar-

isons because they are the largest backbone architectures in their

respective families, assuming we stipulate equivalent input image

sizes (224 × 224). For comparison, the ‘ViT-B/32‘ backbone archi-

tecture contains 151,277,313 total parameters, while the ‘RN101‘

backbone architecture contains 119,688,033 total parameters. We

selected the largest architectures as we are performing inference

with these models, not training them.

6.3 Selecting video games
Our dataset contains videos from 1,873 different video games, and

the differences in their high-level characteristics, such as genre, vi-

sual style, gamemechanics, and camera view, can be vast. Therefore,

we performed a comprehensive evaluation in all three experiments

with 8 popular video games that differ in their high-level charac-

teristics. The only uniting characteristic for our selected games is

that they have open-world mechanics, because developers of open-

world games would find particular benefit from an effective video

search for bug reproduction. Open-world games allow a player to

freely explore the game world, providing a larger set of potential in-

teractions between the player and game environment. Open-world

games are therefore more likely to suffer from game physics bugs

that are difficult to reproduce. Table 1 shows each game we selected

for our experiments, as well as some game characteristics and the

reason for inclusion. In total, 23% of videos in the GamePhysics
dataset are from these 8 video games (6,192 videos).

6.4 Query formulation
To come up with a set of relevant search queries in the experiments,

we randomly picked 10 videos from each of the 8 selected games.

5

Mohammad Reza Taesiri, Finlay Macklon, and Cor-Paul Bezemer

Table 1: Games selected for evaluation of our approach. All selected games are open-world.

Game Key Genre Visual style Reason for inclusion Videos

Grand Theft Auto V GTA Action-adventure Realism Variety of vehicles 2,230

Red Dead Redemption 2 RDR Action-adventure Realism Historical style 754

Just Cause 3 JC3 Action-adventure Realism Physical interactions 680

Fallout 4 F4 Action role-playing-game Fantasy realism (Retro-futuristic) Unique look and feel 614

Far Cry 5 FC5 First-person shooter Realism First-person camera 527

Cyberpunk 2077 C77 Action-adventure Fantasy realism (Futuristic) High-quality lighting 511

The Elder Scrolls V: Skyrim ESV Action role-playing-game Fantasy realism Magical effects 489

The Witcher 3: Wild Hunt W3 Action role-playing-game Fantasy realism Mythical beasts 387

The first author manually reviewed each of the 80 samples to un-

derstand what was happening and how we could describe events in

gameplay videos that contain bugs. This sampling process helped

us pick relevant objects and events to use in our queries.

6.5 Experiment 1: Simple Queries
In this experiment, we searched for specific objects in videos, e.g.

a car. Our main objective in this experiment is to demonstrate the

capability of our system for effective zero-shot object identification.

As a reminder, we never trained or fine-tuned our neural network

model for any of these experiments or any video game. We cre-

ated 22 distinct queries for Experiment 1, including transportation

vehicles, animals, and special words describing the weather or envi-

ronment. For this experiment we wanted our approach to operate

with very high sensitivity, and so we selected our first aggregation

method, i.e. using maximum frame score per video (Section 4.3).

6.6 Experiment 2: Compound Queries
Continuing our evaluation, we search for compound queries, i.e.

queries in which an object is paired with some descriptor. Similar

to Experiment 1, we only use compound queries that are relevant

to each video game. For example, in the previous experiment, we

searched for videos in the Grand Theft Auto V game that contained

a car, but in this experiment we evaluate the performance of our

approach when searching for objects with a specific condition, like a

car with a particular color. For this second experiment, we created a

set of 22 compound queries, and again selected our first aggregation

method (using maximum frame score per video).

6.7 Experiment 3: Bug Queries
In the third experiment, we search for bug queries, i.e. phrases that

describe an event in the gamewhich is related to a bug.Wemanually

created specific textual descriptions for different bug behaviors in

the game and searched our dataset to see if we could detect bugs

in gameplay videos. Similar to the previous experiments, our bug

queries are game-specific. For this experiment, we created a set of

44 unique bug queries, with each query describing an event. Given

the complex nature of the bug queries in Experiment 3, we decided

to use our less sensitive aggregation method, based on the number

of highly similar frames per video (as described in Section 4.3).

Table 2: Average top-𝑘 accuracy (%) per game for simple
queries (Experiment 1).

GTA RDR JC3 F4 FC5 C77 ESV W3

ViT-B/32 Top-1 74 71 61 65 50 55 54 54

Top-5 89 86 67 71 88 73 62 62

RN101 Top-1 84 50 61 59 59 43 62 62

Top-5 89 79 83 82 94 71 92 85

6.8 Evaluating the experiments
Evaluating Experiment 1 and Experiment 2. In the first and second

experiments, we assess the sensitivity of our approach bymeasuring

top-1 and top-5 accuracy. This is because for our approach to be

useful to a game developer, the search system should be able to

reliably identify objects specified in the text queries. Top-𝑘 accuracy

is a binary measure; if there is a correct result in the top-𝑘 results,

the accuracy is 100%, otherwise the accuracy is 0% – there are no

possible values in between.

Evaluating Experiment 3. In the third experiment, we measured the

accuracy of our approach using recall @5. The reason for this choice

is that we want to see what proportion of videos are relevant to the

bug query, and how susceptible our system is to false positives when

searching with bug queries. It is possible to report recall at higher

levels, but the problem is that we cannot know how many videos

in the dataset exactly match the search query without manually

checking every video. Recall @5 is 100% when all five out of five

retrieved videos match the bug query, 80% when four out of five

retrieved videos match, etc. until 0% when there are no matching

videos.

7 RESULTS
In this section, we present the results of the three experiments we

designed to examine the ability of our proposed search system.

Results for simple queries (Experiment 1). In the first experiment we

measured the top-1 and top-5 accuracy of our system with simple

queries. The average accuracy for experiment 1 per game can be

seen in Table 2, and per query in Table 4. The overall average top-1

accuracy and average top-5 accuracy for ‘ViT-B/32’ is 60% and 76%

respectively, and for ‘RN101’ we have 64% and 86% respectively.

6

CLIP meets GamePhysics: Towards bug identification in gameplay videos using zero-shot transfer learning

Table 3: Average top-𝑘 accuracy (%) per game for compound
queries (Experiment 2).

GTA RDR JC3 F4 FC5 C77 ESV W3

ViT-B/32 Top-1 68 88 56 43 31 50 56 56

Top-5 100 100 81 64 69 75 89 67

RN101 Top-1 84 88 31 36 56 67 33 44

Top-5 95 100 75 79 94 83 78 56

Table 4: Average top-𝑘 accuracy (%) per query for simple
queries (Experiment 1). 𝑁 is the number of games searched.

ViT-B/32 RN101
Query 𝑁 Top-1 Top-5 Top-1 Top-5

Airplane 4 75 100 100 100

Bear 5 80 100 60 100

Bike 4 50 75 50 100

Bridge 8 88 88 50 100

Car 5 80 100 80 100

Carriage 4 50 50 75 100

Cat 6 33 50 33 67

Cow 8 63 75 25 75

Deer 7 57 71 75 100

Dog 8 25 38 38 63

Fire 8 88 100 100 100

Helicopter 5 60 60 60 100

Horse 3 67 100 100 100

Mountain 7 100 100 100 100

Parachute 2 0 67 67 100

Ship 8 50 63 38 75

Snow 6 67 83 33 50

Tank 3 67 67 100 100

Traffic Light 5 40 40 20 20

Train 5 80 100 17 67

Truck 4 75 100 100 100

Wolf 6 17 50 86 86

Average 5.5 60 76 64 86

These results show that our system can identify amajority of objects

in the game without fine-tuning or re-training.

Results for compound queries (Experiment 2). In the second exper-

iment we measure the top-1 and top-5 accuracy of our approach

with compound queries. The average accuracy for experiment 2

per game can be seen in Table 3, and per query in Table 5. For the

second experiment, we find that our approach shows particularly

high performance for all of our selected games, except for The

Witcher 3: Wild Hunt. Our approach achieves an overall average

top-5 accuracy of 78% using ‘ViT-B/32’ and 82% using the ‘RN101’

model. These results show that our approach is flexible enough to

effectively search gameplay videos with compound queries.

Results for bug queries (Experiment 3). In the final experiment, we

measure recall @5 of our approach with bug queries. Table 6 shows

Table 5: Average top-𝑘 accuracy (%) per query for compound
queries (Experiment 2). 𝑁 is the number of games searched.

ViT-B/32 RN101
Query 𝑁 Top-1 Top-5 Top-1 Top-5

A bald person 8 75 88 88 88

A bike on a mountain 4 25 75 50 75

A black car 5 80 100 80 100

A blue airplane 4 25 75 50 75

A blue car 5 80 80 40 100

A brown cow 7 29 71 57 71

A brown horse 3 100 100 100 100

A car on a mountain 4 75 75 75 100

A golden dragon 2 0 50 0 50

A gray tank 3 33 67 33 33

A man on top of a tank 4 25 50 0 0

A person in a jungle 7 57 100 57 100

A person on a mountain 7 71 100 57 100

A person wearing gold 8 50 88 50 100

A person wearing purple 8 50 88 25 63

A person with a pig mask 1 100 100 100 100

A police car 3 33 67 67 100

A police officer 3 33 33 67 100

A red car 5 80 100 80 100

A white airplane 4 75 75 50 100

A white horse 3 33 67 33 67

A white truck 5 40 60 60 80

Average 4.7 53 78 55 82

the results for Experiment 3 for each query with each game. Our

approach shows particularly high performance for Grand Theft

Auto V, Just Cause 3, and Far Cry 5. The average accuracy for

Experiment 3 across all 44 unique queries is 66.12% and 66.35%

using ‘ViT-B/32’ and ‘RN101’ respectively. These numbers suggest

that, in most cases, our approach can reliably retrieve relevant

videos based on an English text query containing a description of

an event. Moreover, we can conclude that contrastive pre-training

methods are powerful enough to be used in the video game domain,

especially for bug detection in gameplay videos.

8 DISCUSSION
In this section, we discuss the strengths and weaknesses of our

approach, based on the results of our experiments. Figure 5 shows

several example video frames from videos identified when search-

ing gameplay videos with text queries using our approach. These

examples help to illustrate the promising potential of our approach.

Given that our method does not require any training on gameplay

videos, our zero-shot object and event identification results are

promising. During our experiments, the first author manually ana-

lyzed each video returned by our search approach, including false

positives. Below, the causes of false positives in our search results

are detailed.

Adversarial poses. One important category of problems is the un-

usual pose of familiar objects. As extensively tested and reported by

7

Mohammad Reza Taesiri, Finlay Macklon, and Cor-Paul Bezemer

Table 6: Recall @5 (%) for bug queries (Experiment 3). Queries that were not used per game are shown with values of ‘-’.

ViT-B/32 RN101
Query GTA RDR JC3 F4 ESV W3 C77 FC5 GTA RDR JC3 F4 ESV W3 C77 FC5

A bike inside a car 40 - - - - - - - 20 - - - - - - -

A bike on a wall 100 - - - - - - - 100 - - - - - - -

A car flying in the air 100 - 100 40 - - 60 80 100 - 100 40 - - 100 80

A car on fire 60 - 80 - - - 60 80 60 - 100 - - - 80 100

A car in vertical position 100 - 100 - - - 80 100 100 - 100 - - - 80 60

A car stuck in a rock - - - - - - 40 - - - - - - - 20 -

A car stuck in a tree 60 - 40 - - - - 60 100 - 60 - - - - 40

A car under ground - - - - - - 60 - - - - - - - 20 -

A carriage running over a person - - - - 20 - - - - - - - 40 - - -

A dragon inside the floor - - - - 20 - - - - - - - 60 - - -

A head without a body - - - 20 - - - - - - - 0 - - - -

A headless person - 20 - - - - - - - 20 - - - - - -

A helicopter inside a car - - - - - - - 20 - - - - - - - 40

A horse floating the air - - - - 100 - - - - - - - 100 - - -

A horse in the air - 80 - - - 100 - - - 100 - - - 100 - -

A horse in the fire - 40 - - - 20 - - - 20 - - - 20 - -

A horse on fire - - - - 20 - - - - - - - 20 - - -

A horse on top of a building - 60 - - - - - - - 20 - - - - - -

A horse to stand on its legs - - - - - 60 - - - - - - - 100 - -

A person falling inside the ground - - - 20 - - - - - - - 40 - - - -

A person flying in the air 80 100 100 60 40 100 80 100 100 100 80 100 60 100 80 100

A person goes through the ground - 40 - - - - - - - 0 - - - - - -

A person in fire - 100 - 60 60 100 - - - 100 - 80 60 80 - -

A person inside a chair - - - 100 40 - - - - - - 40 40 - - -

A person inside a rock - - - - - 80 - - - - - - - 40 - -

A person on the house wall - - - - - 60 - - - - - - - 40 - -

A person stuck in a barrel - - - - 60 - - - - - - - 40 - - -

A person stuck in a tree 80 - - - - 40 - - 80 - - - - 40 - -

A person stuck inside a wall - - - 20 - - - - - - - 40 - - - -

A person stuck on the ceiling - - - - 40 - - - - - - - 40 - - -

A person under a vehicle 80 - - 60 - - 20 - 60 - - 60 - - 0 -

A person under a car 60 - - - - - - - 60 - - - - - - -

A person under a vehicle - - - - - - - 60 - - - - - - - 80

A person under the carriage - 40 - - - - - - - 40 - - - - - -

A person without head - - - 20 - - - - - - - 20 - - - -

A ship under water - - - - - 40 - - - - - - - 80 - -

A tank in the air 80 - 100 - - - - - 80 - 80 - - - - -

A vehicle inside the water 80 - 80 40 - - 80 100 80 - 100 40 - - 40 80

A vehicle on top of building 100 - 100 - - - 100 - 100 - 100 - - - 100 -

A vehicle on top of rooftop 60 - 80 - - - - - 100 - 80 - - - - -

An airplane in a tree - - - - - - - 100 - - - - - - - 80

An airplane in the water 20 - 60 - - - - 60 40 - 80 - - - - 80

Cars in accident 100 - 60 - - - 100 100 80 - 80 - - - 100 100

Two cars on top of each other - - - - - - 60 - - - - - - - 40 -

Average 77 60 82 44 44 67 67 78 83 50 87 46 51 67 60 76

Alcorn et al. [1], neural networks occasionally misclassify objects

when they have different poses than what they used to have in the

training set. For example, consider a neural network that can detect

a ‘car’ in an image. It is possible to find a particular camera angle

for which the neural network can not detect the ‘car’ in that image.

In a dataset of natural images, we might have lots of cars, but the

camera angle and the position of the car relative to the camera

do not vary a lot. A neural network trained on these datasets will

struggle to detect a car when it sees it from a very unusual angle

(e.g., when it is positioned vertically)

8

CLIP meets GamePhysics: Towards bug identification in gameplay videos using zero-shot transfer learning

(a) Video of ‘A head without a body’ from Fallout 4. (b) Video of ‘A person stuck in a barrel’ from The Elder Scrolls V:
Skyrim.

(c) Video of ‘A car in a vertical position’ from Grand Theft Auto V. (d) Video of ‘A person stuck in a horse’ from The Witcher 3: Wild
Hunt.

Figure 5: Relevant gameplay videos identified using our approach with bug queries.

Confusing textures and patterns in the images. The textures and

patterns can pose influential distractions and confusion for the

neural network model in our approach. Sometimes a part of a

game environment has a texture similar to another object. For

example, our model confuses a striped colored wall in the Grand

Theft Auto V game with a ‘parachute.’ This category of problems is

hard to encounter globally because each game has a diverse look

and feel and creative artistic directions.

Confusion about different types of vehicles. During analysis of the
videos that contain bugs related to cars, we noticed that sometimes

some of the results partially match the textual description, except

we see a bike instead of a car. Through our manual evaluation of the

search results, we found that the model in our approach sometimes

confused cars, bikes, airplanes, tanks, and other military vehicles.

An instance of this misclassification is when we search for ‘A car

on fire’. In some of the retrieved videos, we saw an airplane on fire

instead of a car.

Confusion about different four-legged animals. After reviewing sev-

eral results for queries related to animals, we found out that the

model in our approach struggles to distinguish different animals.

More specifically, for gameplay videos the CLIP model will confuse

‘dogs’, ‘cats’, ‘deer’, ‘wolves’, and sometimes ‘cows’ and ’horses’

with each other. A possible remedy for this problem is getting help

from a separate pre-trained animal detection model to verify the

CLIP model’s prediction.

9 LIMITATIONS
9.1 Adversarial samples
Every machine learning method suffers from a group of adversarial

attacks and out-of-distribution samples. As described extensively in

previous work [1], any data point outside the training distribution is

problematic for machine learning algorithms. Similarly, we observe

some cases in which the neural network model makes an incorrect

prediction. In particular, our model has some difficulty making a

correct guess if it saw an object in an unfamiliar or adversarial pose.

Due to physical simulations in video games, these adversarial poses

are prevalent.

Another observation we had is about text patches inside the

games. The CLIP model has the ability to ‘read’ the text inside

an image as well. This feature is not something that the model

was explicitly trained for, but rather some emergent behavior of

pre-training in a contrastive setting. Sometimes searching a par-

ticular text query will result in retrieving the video that ignores

the meaning of the text query, but the image contains that text. For

example, if any video frames include a text field containing ‘a blue

9

https://www.reddit.com/r/GamePhysics/comments/kl5d3z
https://www.reddit.com/r/GamePhysics/comments/g5pm35
https://www.reddit.com/r/GamePhysics/comments/6xplqg
https://www.reddit.com/r/GamePhysics/comments/8t7qfa

Mohammad Reza Taesiri, Finlay Macklon, and Cor-Paul Bezemer

car’, searching for the query ‘a blue car’, will retrieve that video.

Obviously, depending on the use case, this can be treated as both a

feature and bug.

9.2 Improvements on search speed
In our proposed method, we calculate the embeddings of all frames

in advance. With this pre-processing step, our system answers an

arbitrary text query in just a few seconds. It might not be possible

to perform this step in advance for some exceptional use cases. For

handling such cases, there are some performance improvement

techniques to run each neural network faster in inference mode,

at the cost of sacrificing the model’s accuracy. For example, it is

possible to reduce the floating point precision of a model [12] or

even binarize the entire model [22]. One simple but effective way to

achieve faster runtime is to cut the last layers of the neural network

gradually to reach an optimal performance vs. accuracy trade-off

[56]. Using these techniques, or similar speed-up approaches, im-

proving the presented system is possible.

10 THREATS TO VALIDITY
Threats to internal validity. Due to a lack of a benchmark dataset,

we designed a set of custom queries for searching the gameplay

videos in our GamePhysics dataset. To address potential bias when
generating these queries, the first author performed a pilot analysis

of 80 gameplay videos across the 8 selected games to determine

relevant objects and events before we designed the queries.

In each of our experiments, we assumed that an accuracy mea-

surement of 0% indicated that our approach failed to correctly

identify any relevant videos. For example, in Experiment 3 we as-

sumed that a recall @5 of 0% in our search results indicated that our

approach failed to identify that bug query in that game. However,

it could instead be the case that our dataset does not contain any

videos that match the query. Without a benchmark dataset, we do

not have the ground truth for whether a repository of gameplay

videos contains any matches for a given arbitrary text query. This

means that the reported performance values are possibly lower

estimates of the actual performance.

In Experiment 3, we used our second aggregation method (Sec-

tion 4.3), which involved the selection of a pool size hyperparameter.

Although we selected the default value of 1,000 based on manual

trial and error, different selections of this hyperparameter could

lead to different results for Experiment 3. Therefore, future research

is required to understand how the selection of the pool size in our

second aggregation method impacts the performance of our ap-

proach.

Threats to external validity. While our dataset predominantly con-

sists of gameplay videos that contain game physics bugs, our ap-

proach may not be as effective with other datasets of gameplay

videos. Non-curated datasets may contain many more false posi-

tives (non-buggy gameplay), for example if using gameplay stream-

ing footage. Additionally, we excluded long (>60 seconds) videos,

meaning our approach may not be effective for long videos. We

also ignored all videos with scores of zero from the GamePhysics

subreddit. After manually checking a random sample of low-scored

posts we observed that a score of 0 almost always indicated low

quality/spam/etc. This threshold might not be generalizable to other

subreddits. Future research is required to evaluate the performance

of our approach with long videos and non-curated datasets.

11 CONCLUSION
In this paper, we proposed a novel approach to mine large repos-

itories of gameplay videos by leveraging the zero-shot transfer

capabilities of CLIP to connect video frames with an English text

query. Our approach is capable of finding objects in a large dataset

of videos, using simple and compound queries. Additionally, our

approach shows promising performance in finding specific (bug-

related) events, indicating it has the potential to be applied in auto-

matic bug identification for video games. Even though we did not

perform any fine-tuning or re-training to adapt the CLIP model to

the video game domain, our approach performs surprisingly well on

the majority of video games. We evaluated our system on a dataset

of 6,192 videos from eight games with different visual styles and

elements. When experimenting with the bug queries, we measured

recall @5 and found the average accuracy of our approach across all

44 unique bug queries is 66.24% when averaged across both of the

CLIP architectures utilized in our experiments. Furthermore, our

manual analysis of the search results enabled us to discuss causes of

false-positives in our approach and identify several future research

directions. Our approach lays the foundation to utilizing contrastive

learning models for zero-shot bug identification in video games.

Future work in this line of research will provide more insights

into video games bugs, and will pave the way to creating a new

paradigm of automated bug detection methods for video games.

REFERENCES
[1] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn

Ku, and Anh Nguyen. 2019. Strike (with) a pose: neural networks are easily

fooled by strange poses of familiar objects. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 4845–4854.

[2] Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and

Jeremy Blackburn. 2020. The pushshift reddit dataset. In Proceedings of the
international AAAI conference on web and social media. Volume 14, 830–839.

[3] Suzanna Becker and Geoffrey E Hinton. 1992. Self-organizing neural network

that discovers surfaces in random-dot stereograms. Nature, 355, 6356, 161–163.
[4] Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén. 2020.

Augmenting automated game testing with deep reinforcement learning. In

2020 IEEE Conference on Games (CoG), 600–603.
[5] Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén. 2020.

Augmenting automated game testing with deep reinforcement learning. In

2020 IEEE Conference on Games (CoG). IEEE, 600–603.
[6] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław

Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris

Hesse, et al. 2019. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680.

[7] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Prem-

raj, and Thomas Zimmermann. 2008. What makes a good bug report? In

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of software engineering, 308–318.

[8] Antonio Borrelli, Vittoria Nardone, Giuseppe A Di Lucca, Gerardo Canfora,

and Massimiliano Di Penta. 2020. Detecting video game-specific bad smells in

unity projects. In Proceedings of the 17th International Conference on Mining
Software Repositories, 198–208.

[9] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun,

Cliff Moore, Eduard Säckinger, and Roopak Shah. 1993. Signature verification

using a “siamese” time delay neural network. International Journal of Pattern
Recognition and Artificial Intelligence, 7, 04, 669–688.

[10] Ke Chen, Yufei Li, Yingfeng Chen, Changjie Fan, Zhipeng Hu, and Wei Yang.

2021. Glib: towards automated test oracle for graphically-rich applications. In

Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 1093–
1104.

10

CLIP meets GamePhysics: Towards bug identification in gameplay videos using zero-shot transfer learning

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.

A simple framework for contrastive learning of visual representations. In

International conference on machine learning. PMLR, 1597–1607.

[12] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Train-

ing deep neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024.

[13] ParmidaDavarmanesh, Kuanhao Jiang, TingtingOu, ArtemVysogorets, Stanislav

Ivashkevich, Max Kiehn, Shantanu H Joshi, and Nicholas Malaya. 2020. Au-

tomating artifact detection in video games. arXiv preprint arXiv:2011.15103.
[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,

Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,

Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words:

transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
[15] MohammadAmin Fazli, Ali Owfi, and Mohammad Reza Taesiri. 2021. Under

the skin of foundation nft auctions. arXiv preprint arXiv:2109.12321.
[16] Pablo García-Sánchez, Alberto Tonda, Antonio M. Mora, Giovanni Squillero,

and Juan Julián Merelo. 2018. Automated playtesting in collectible card games

using evolutionary algorithms: a case study in hearthstone. Knowledge-Based
Systems, 153, 133–146.

[17] Camilo Gordillo, Joakim Bergdahl, Konrad Tollmar, and Linus Gisslén. 2021.

Improving playtesting coverage via curiosity driven reinforcement learning

agents. In 2021 IEEE Conference on Games (CoG), 1–8.
[18] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan

Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi

Munos, and Michal Valko. 2020. Bootstrap your own latent - A new approach

to self-supervised learning. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

[19] Matthew Guzdial, Nicholas Liao, and Mark Riedl. 2018. Co-creative level

design via machine learning. In Joint Proceedings of the AIIDE 2018 Workshops
co-located with 14th AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE 2018), Edmonton, Canada, November 13-14, 2018
(CEUR Workshop Proceedings). Volume 2282. CEUR-WS.org.

[20] Matthew Guzdial and Mark Riedl. 2016. Game level generation from gameplay

videos. In Twelfth Artificial Intelligence and Interactive Digital Entertainment
Conference.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep resid-

ual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 770–778.

[22] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. 2016. Binarized neural networks. Advances in neural information
processing systems, 29.

[23] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-scale similarity

search with gpus. IEEE Trans. Big Data, 7, 3, 535–547.
[24] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan

Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar,

et al. 2018. Unity: a general platform for intelligent agents. arXiv preprint
arXiv:1809.02627.

[25] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. 2019.

Deep learning for video game playing. IEEE Transactions on Games, 12, 1,
1–20.

[26] Faraz Khadivpour andMatthewGuzdial. 2020. Explainability via responsibility.

In Proceedings of the AIIDE Workshop on Experimental AI in Games.
[27] Nazanin Yousefzadeh Khameneh and Matthew Guzdial. 2020. Entity em-

bedding as game representation. In Proceedings of the AIIDE Workshop on
Experimental AI in Games.

[28] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,

Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised

contrastive learning. In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

[29] ChristophH. Lampert, Hannes Nickisch, and StefanHarmeling. 2009. Learning

to detect unseen object classes by between-class attribute transfer. In 2009
IEEE Conference on Computer Vision and Pattern Recognition, 951–958.

[30] Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. 2008. Zero-data learning

of new tasks. In AAAI number 2. Volume 1, 3.

[31] Chris Lewis and Jim Whitehead. 2011. The whats and the whys of games

and software engineering. In Proceedings of the 1st international workshop on
games and software engineering, 1–4.

[32] Chris Lewis, Jim Whitehead, and Noah Wardrip-Fruin. 2010. What went

wrong: a taxonomy of video game bugs. In Proceedings of the fifth international
conference on the foundations of digital games, 108–115.

[33] Dayi Lin, Cor-Paul Bezemer, and Ahmed EHassan. 2019. Identifying gameplay

videos that exhibit bugs in computer games. Empirical Software Engineering,
24, 6, 4006–4033.

[34] Carlos Ling, Konrad Tollmar, and Linus Gisslén. 2020. Using deep convolu-

tional neural networks to detect rendered glitches in video games. In Proceed-
ings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment number 1. Volume 16, 66–73.

[35] Zijin Luo, Matthew Guzdial, and Mark Riedl. 2019. Making CNNs for video

parsing accessible: event extraction from dota2 gameplay video using trans-

fer, zero-shot, and network pruning. In Proceedings of the 14th International
Conference on the Foundations of Digital Games, 1–10.

[36] Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, cam-

era, action: how software developers document and share program knowledge

using youtube. In 2015 IEEE 23rd International Conference on Program Com-
prehension. IEEE, 104–114.

[37] Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan.

2014. Cowboys, ankle sprains, and keepers of quality: how is video game

development different from software development? In Proceedings of the 36th
International Conference on Software Engineering, 1–11.

[38] Alfredo Nantes, Ross Brown, and Frederic Maire. 2008. A framework for the

semi-automatic testing of video games. In AIIDE.
[39] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli.

2018. How is video game development different from software development

in open source? In 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR). IEEE, 392–402.

[40] Fábio Petrillo, Marcelo Pimenta, Francisco Trindade, and Carlos Dietrich. 2009.

What went wrong? a survey of problems in game development. Computers in
Entertainment (CIE), 7, 1, 1–22.

[41] Johannes Pfau, Antonios Liapis, Georg Volkmar, Georgios N Yannakakis, and

Rainer Malaka. 2020. Dungeons & replicants: automated game balancing via

deep player behavior modeling. In 2020 IEEE Conference on Games (CoG). IEEE,
431–438.

[42] Cristiano Politowski, Fabio Petrillo, and Yann-Gäel Guéhéneuc. 2021. A survey

of video game testing. arXiv preprint arXiv:2103.06431.
[43] Cristiano Politowski, Fabio Petrillo, Gabriel Cavalheiro Ullmann, Josias de

Andrade Werly, and Yann-Gaël Guéhéneuc. 2020. Dataset of video game

development problems. In Proceedings of the 17th International Conference on
Mining Software Repositories, 553–557.

[44] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta,

Rocco Oliveto, Mir Hasan, Barbara Russo, Sonia Haiduc, and Michele Lanza.

2016. Too long; didn’t watch! extracting relevant fragments from software

development video tutorials. In Proceedings of the 38th international conference
on software engineering, 261–272.

[45] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, and Ilya Sutskever. 2021. Learning transferable visual mod-

els from natural language supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event
(Proceedings of Machine Learning Research). Volume 139. PMLR, 8748–8763.

[46] Shaghayegh Roohi, Christian Guckelsberger, Asko Relas, Henri Heiskanen,

Jari Takatalo, and Perttu Hämäläinen. 2021. Predicting game difficulty and

engagement using AI players. Proc. ACM Hum. Comput. Interact., 5, CHI, 1–17.
[47] Ronnie ES Santos, Cleyton VC Magalhães, Luiz Fernando Capretz, Jorge S

Correia-Neto, Fabio QB da Silva, and Abdelrahman Saher. 2018. Computer

games are serious business and so is their quality: particularities of software

testing in game development from the perspective of practitioners. In Pro-
ceedings of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 1–10.

[48] Patrick Stacey and Joe Nandhakumar. 2009. A temporal perspective of the

computer game development process. Information Systems Journal, 19, 5, 479–
497.

[49] Mohammad Reza Taesiri, Moslem Habibi, and Mohammad Amin Fazli. 2020.

A video game testing method utilizing deep learning. Iran Journal of Computer
Science, 17, 2.

[50] Chintan Trivedi, Antonios Liapis, and Georgios N. Yannakakis. 2021. Con-

trastive learning of generalized game representations. In 2021 IEEE Conference
on Games (CoG), Copenhagen, Denmark, August 17-20, 2021. IEEE, 1–8.

[51] J Tuovenen, Mourad Oussalah, and Panos Kostakos. 2019. Mauto: automatic

mobile game testing tool using image-matching based approach. The Computer
Games Journal, 8, 3, 215–239.

[52] Simon Varvaressos, Kim Lavoie, Sébastien Gaboury, and Sylvain Hallé. 2017.

Automated bug finding in video games: a case study for runtime monitoring.

Computers in Entertainment (CIE), 15, 1, 1–28.
[53] Markos Viggiato, Dale Paas, Chris Buzon, and Cor-Paul Bezemer. 2021. Iden-

tifying similar test cases that are specified in natural language. arXiv preprint
arXiv:2110.07733.

[54] Markos Viggiato, Dale Paas, Chris Buzon, and Cor-Paul Bezemer. 2022. Us-

ing natural language processing techniques to improve manual test case

descriptions. In International Conference on Software Engineering - Software
Engineering in Practice (ICSE - SEIP) Track. (May 8, 2022).

11

Mohammad Reza Taesiri, Finlay Macklon, and Cor-Paul Bezemer

[55] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu,

Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo

Ewalds, Petko Georgiev, et al. 2019. Grandmaster level in starcraft ii using

multi-agent reinforcement learning. Nature, 575, 7782, 350–354.
[56] Mehrshad Zandigohar, Deniz Erdoğmuş, and Gunar Schirner. 2021. Netcut:

real-time dnn inference using layer removal. In 2021 Design, Automation Test
in Europe Conference Exhibition (DATE), 1845–1850.

[57] Mehrshad Zandigohar, Mo Han, Deniz Erdoğmuş, and Gunar Schirner. 2020.

Towards creating a deployable grasp type probability estimator for a prosthetic

hand. In Cyber Physical Systems. Model-Based Design. Roger Chamberlain,

Martin Edin Grimheden, and Walid Taha, editors. Springer International

Publishing, Cham, 44–58. isbn: 978-3-030-41131-2.

[58] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang

Liu, Ruimin Shen, Yingfeng Chen, and Changjie Fan. 2019. Wuji: automatic

online combat game testing using evolutionary deep reinforcement learn-

ing. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 772–784.

12

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Video game (physics) bugs
	2.2 Challenges in mining gameplay videos
	2.3 Contrastive learning and zero-shot transfer
	2.4 The Contrastive Language-Image Pre-Training (CLIP) model

	3 Related Work
	4 Our Approach
	4.1 Encoding video frames and the text query
	4.2 Calculating the similarity of embeddings
	4.3 Aggregating frame scores per video

	5 Preparing the GamePhysics dataset
	5.1 Collecting the GamePhysics dataset
	5.2 Pre-processing the videos

	6 Experiment setup
	6.1 Experiment overview
	6.2 Selecting CLIP architectures
	6.3 Selecting video games
	6.4 Query formulation
	6.5 Experiment 1: Simple Queries
	6.6 Experiment 2: Compound Queries
	6.7 Experiment 3: Bug Queries
	6.8 Evaluating the experiments

	7 Results
	8 Discussion
	9 Limitations
	9.1 Adversarial samples
	9.2 Improvements on search speed

	10 Threats to validity
	11 Conclusion

