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ABSTRACT
Performance regressions, such as a higher CPU utilization
than in the previous version of an application, are caused by
software application updates that negatively a↵ect the per-
formance of an application. Although a plethora of mining
software repository research has been done to detect such
regressions, research tools are generally not readily avail-
able to practitioners. Application Performance Management
(APM) tools are commonly used in practice for detecting
performance issues in the field by mining operational data.

In contrast to performance regression detection tools that
assume a changing code base and a stable workload, APM
tools mine operational data to detect performance anomalies
caused by a changing workload in an otherwise stable code
base. Although APM tools are widely used in practice, no
research has been done to understand 1) whether APM tools
can identify performance regressions caused by code changes
and 2) how well these APM tools support diagnosing the
root-cause of these regressions.

In this paper, we explore if the readily accessible APM
tools can help practitioners detect performance regressions.
We perform a case study using three commercial (AppDy-
namics, New Relic and Dynatrace) and one open source
(Pinpoint) APM tools. In particular, we examine the ef-
fectiveness of leveraging these APM tools in detecting and
diagnosing injected performance regressions (excessive mem-
ory usage, high CPU utilization and ine�cient database
queries) in three open source applications. We find that
APM tools can detect most of the injected performance re-
gressions, making them good candidates to detect perfor-
mance regressions in practice. However, there is a gap be-
tween mining approaches that are proposed in state-of-the-
art performance regression detection research and the ones
used by APM tools. In addition, APM tools lack the abil-
ity to be extended, which makes it hard to enhance them
when exploring novel mining approaches for detecting per-
formance regressions.
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1. INTRODUCTION
The performance of modern software applications has be-

come a critical non-functional requirement [41]. Unfortu-
nately, due to the increased complexity of such applications
and the increased number of users, maintaining an adequate
level of performance becomes challenging.

Performance regressions occur due to software updates
that degrade the performance of an application. Regressions
have negative consequences such as increased costs of soft-
ware maintenance and user dissatisfaction [25, 30]. These
regressions can even lead to substantial financial losses [40].
Amazon [7] shows that a delay of one second in page load
time can decrease Amazon’s sales by as much as $1.6 billion
yearly. As a result, a large amount of research has focused on
studying the causes of performance regressions in software
applications and how to e�ciently detect such regressions
primarily by mining various types of operational data (such
as performance counters and logs) [15, 17, 28, 33, 38, 43].

In practice, performance regression testing is performed
on a software application before its release to detect per-
formance regressions [21, 23, 31]. Performance regression
testing is the process of applying a workload on two ver-
sions of a software application in order to detect whether
the code changes have introduced regressions [21]. Hence,
performance regression testing detects regressions when pro-
cessing a stable workload due to code changes.

A plethora of research that analyzes performance data has
been done to detect the performance regressions e↵ectively.
In particular, prior research in mining software repositories
has shown the e↵ectiveness of applying mining approaches
to help developers identify performance regressions in large
scale systems [21, 22, 27, 31, 32, 37]. However, most of such
research is not easily accessible to practitioners. On the
other hand, Application Performance Management (APM)
tools are commonly used in practice. By integrating min-
ing approaches on performance data into o↵-the-shelf perfor-
mance monitoring tools, APM tools are often used to detect
anomalies in the performance, instead of identifying perfor-
mance regressions. Table 1 illustrates the di↵erence between
performance regression testing and APM tools. Because of
the availability of mining approaches that are already in-
tegrated into APM tools and the importance of identifying
performance regressions, practitioners often tend to lever-
age APM tools to identify performance regressions. How-
ever, APM tools are not originally designed for that task
and there exists no knowledge about their e↵ectiveness for
such a task.



Table 1: Comparison between performance regres-

sion detection and APM tools

Perf. regression detection APM

Workload Stable Changing
Code base Changing Stable

In this paper, we investigate how suitable APM tools are
for detecting performance regressions. First, we briefly high-
light mining approaches used by the APM tools that make
them potential candidates to be used in detecting perfor-
mance regressions. Second, we study the e↵ectiveness of
APM tools in detecting performance regressions. We inject
performance regressions in three open source web applica-
tions (PetClinic, CloudStore and OpenMRS). We identify
these regressions using APM tools. Our study focuses on
web applications because some of the studied APM tools
(New Relic and Pinpoint) do not support standalone appli-
cations, and these APM tools are most commonly used for
web applications.

We study the e↵ectiveness of four APM tools, both com-
mercial and open source, in detecting performance regres-
sions caused by code changes. We survey the mining ap-
proaches that these APM tools use for finding and adjusting
performance baselines, and identifying performance prob-
lems. We find that APM tools usually only implement very
basic mining approaches, such as threshold-based anomaly
detection approaches. In addition, we find that locating
the root causes of the performance regressions is a time-
consuming task which requires a large amount of manual
work. We believe that using recently proposed software min-
ing approaches in literature can significantly help reduce the
debugging e↵ort. Finally, we find that APM tools lack the
ability to be extended, which makes it hard to enhance them
when exploring novel mining approaches for detecting per-
formance regressions.

Paper Organization. The rest of this paper is organized
as follows: Section 2 presents work related to our study.
Section 3 gives background information on APM tools and
explains what makes them potential candidates to be used
in detecting performance regressions. Section 4 describes
the setup of our case study to study the e↵ectiveness of the
APM tools in detecting performance regressions. Section 5
presents the results of our case study. In Section 6, we dis-
cuss the results of our case study and our experience with
using APM tools for detecting performance regressions. Sec-
tion 7 discusses the threats to the validity of our case study.
Finally, Section 8 concludes the paper.

2. RELATED WORK
Research on performance regression detection typically re-

lies on mining large-scale performance data to detect perfor-
mance regressions. Several recent studies report on the use
of performance regression detection research in an industrial
setting. Examples of the use of mining software repositories
approaches for performance purposes include: Nguyen et
al.’s work on the use of control charts to automatically de-
tect performance regressions [31]. Two key benefits of their
approach are the use of control charts which are simple to
implement. In addition, such historical performance data
are also associated with identified root-causes, in order to

model and predict a possible root-cause of newly identified
performance regression [32], and the use of readily avail-
able historical performance data that is archived in perfor-
mance repositories. Foo et al. [22] abstract the application
performance using a combination of di↵erent models that
are derived from mining performance data. Each of these
models corresponds to one test run. The combination of
models is used to detect performance regressions. Shang et
al. [37] cluster performance data and build statistical mod-
els on each cluster of performance data. Shang et al. can
detect performance regressions by measuring the modeling
error between two sets of performance data.

Similarly, mining software repository techniques are widely
leveraged to detect performance anomalies during the mon-
itoring of production applications. Chen et al. [16] propose
an approach to mine the execution logs in order to discover
the software components that are highly correlated with er-
rors. Cohen et al. [20] use a class of probabilistic mod-
els called Tree-Augmented Bayesian Networks to identify
the performance metrics that correlate with faults. Syer et
al. [39] link performance data with execution logs that are
generated from large software systems. Syer et al. cluster
similar system scenarios using execution logs and mine the
associated memory data in each cluster of scenarios to iden-
tify memory-related problems. Cherkasova et al. [19] pro-
pose a framework for automated detection of performance
anomalies based on on-line modeling of the CPU demand of
a software application. Maplesden et al. [28, 29] report on
the use of subsuming methods to mine execution logs to de-
tect performance optimization opportunities in a large scale
production application at Netflix.

Despite of the active mining research for detecting regres-
sions and anomalies, such research either has limited ap-
plicability or is not readily available for practitioners. The
novelty of our work is the use of the readily available tools
that already integrate mining approaches to detect perfor-
mance regressions. This allows practitioners to use their
current APM tools to detect performance regressions with-
out the need to identify, locate, install and configure specific
research tools.

3. APPLICATION PERFORMANCE MAN-
AGEMENT

APM tools have become an essential tool for practition-
ers who wish to monitor large software applications in the
field [19]. A plethora of commercial APM tools exist [1, 4, 8,
12]. In this section we explore the main concepts and struc-
ture of the APM tools that make them suitable for detecting
performance regressions.

3.1 What is an APM Tool?
An APM tool is usually used to monitor the performance

and the availability of a monitored web-based software appli-
cation [42]. An APM tool collects several performance met-
rics (such as response time) from the monitored application
and mines these metrics to measure the health of the appli-
cation (e.g., identify potential performance problems using
mining approaches). Most of the metrics that are mined by
the APM tools are used in performance regression detection
research as well. Hence, APM tools might be e↵ective in
detecting performance regressions using these metrics.

APM tools follow a typical workflow. After installation,



the APM tool discovers the di↵erent software artifacts of
the application that is being monitored. This discovery step
allows the APM tool to visualize the application deploy-
ment structure and to collect fine-grained metrics about the
transactions that are processed by the monitored applica-
tion. A transaction usually means a web request originating
either from a client browser or from another application us-
ing a web service request. Examples of fine-grained metrics
include: the amount of time spent in each application com-
ponent for each request and the total number of transactions
processed by each application component.

During the analysis phase, the APM tool collects the per-
formance metrics periodically. The APM tool mines a his-
torical repository of the collected metrics to determine whether
a transaction is abnormal (e.g., slower than usual). APM
then sends alerts to the practitioners about transactions hav-
ing slow performance or issues related to the computational
resources used by the monitored application.

These alerts can be categorized into three main categories:
• Transaction-related alerts: Information about sin-

gle transactions such as the response time and the
stack trace, in addition to aggregated information such
as the total number of transactions and the average re-
sponse time.

• Memory-related alerts: Information about memory
usage and possible excessive memory usage.

• Database-related alerts: Information about the ex-
ecuted database queries such as query details, number
of executed queries for each transaction and the time
consumed to run each query.

We believe that these types of information can be used
by practitioners not only to detect performance anomalies
in production due to workload changes, but also to identify
performance regressions (where the code is changing but the
test workload is stable) across versions of a software appli-
cation.

3.2 Study on APM Tools
We present an overview of three commercial APM tools:

AppDynamics [1], New Relic [8] and Dynatrace [4] and one
open source APM tool: Pinpoint [12], based on 1) their
ease of installation and 2) their used approaches for detect-
ing performance anomalies in production. Table 2 shows a
summary of the comparison of the studied APM tools. We
choose these commercial APM tools based on their popular-
ity [26], and Pinpoint is the only mature open-source APM
tool that is available today.

3.2.1 Installation
Modern large software applications are complex, as they

involve di↵erent technologies and may include several pro-
gramming languages. Commercial APM tools support a
wide range of programming languages as illustrated in Ta-
ble 3. However, the open-source APM tool (Pinpoint) sup-
ports the Java programming language only. Practitioners
who wish to monitor their large applications using APM
tools seek the ease of installation of such tools and the abil-
ity of these tools to discover performance anomalies in mul-
tilingual applications.

APM tools support two installation modes: cloud-based
and on-premise. Cloud-based installations o↵er practition-
ers an easy installation option because practitioners do not
have to manage the APM analysis and reporting compo-

Table 3: APM tools Supported Programming Lan-

guages

New Relic AppDynamics Dynatrace Pinpoint

Java X X X X
.Net X X X X

Php X X X X

Ruby X X X X

Python X X X X

Node.js X X X X

C/C++ X (Beta) X (Beta) X X

nents. Instead, practitioners only need to install a local
agent which communicates the monitored data back to the
cloud. The required total time to install the cloud-based
tools is less than 30 minutes. Both New Relic and AppDy-
namics support cloud-based installation.

On-premise installation consists of two or more compo-
nents, typically an analysis component and an agent to send
the data to the analysis component. The analysis compo-
nent can be further divided into several components. These
components can be installed separately (e.g., Pinpoint re-
quires a separate installation of a database to store the per-
formance data) or they can be a part of the installation
package (e.g., Dynatrace).

On-premise APM tool installation is a much more elabo-
rate process than cloud based installation. For example, we
needed several hours to install the components of Dynatrace
and to configure the required ports. Installation of Pinpoint
required more than one day to install all the components
and to troubleshoot the installation problems.

3.2.2 Application Monitoring
APM tools provide o↵-the-shelf support to collect the

hardware metrics (e.g., Memory use, CPU utilization, I/O
operations) and provide tools to visualize these metrics. The
metrics are used to visualize hardware utilization and to
manually specify areas of slow performance. In some situ-
ations, APM tools are unable to collect the required met-
rics to identify performance anomalies because the appli-
cation being monitored use some frameworks that are not
supported by the APM tool. Then, an additional step is
required to instrument the source code manually.

Automated Instrumentation. Instrumentation is the pro-
cess of adding code to a software application to monitor its
behavior [24]. The studied APM tools use bytecode instru-
mentation in which the APM tool automatically inserts its
monitoring code directly into the bytecode of the applica-
tion being monitored [5, 13]. All the studied APM tools
primarily monitor transactions, such as login, cart checkout
and search transactions. APM tools typically collect per-
formance metrics, such as response time and the number of
called database queries, for each transaction. In addition,
these metrics are aggregated to describe the overall appli-
cation health. Examples of these aggregated metrics are:
Average Request Size, Average Response Time, Calls per
Minute, Errors per Minute, Number of Slow Calls.



Table 2: Comparison between the studied APM tools

New Relic AppDynamics Dynatrace Pinpoint

Feature Easy Easy Medium Di�cult

Cloud-based installation X X X X

On-premise installation X X X X
Custom instrumentation X X X X

Table 4: Custom Instrumentation techniques in

APM tools

New Relic AppDynamics Dynatrace

Code-based
techniques

X X X

Configuration-
based

techniques
X X X

Manual Instrumentation. In some cases, practitioners are
allowed to manually instrument their code to obtain more
information about the performance of their application. For
example, if the APM tool is unable to automatically dis-
cover a specific transaction type, the practitioner can insert
custom code to help the APM tool in discovering this trans-
action type.

APM tools provide techniques to enable custom instru-
mentation of the monitored application. These techniques
can be categorized under two main categories [2, 6, 9]: 1) code-
based techniques and 2) configuration-based techniques.

Code-based techniques require changes to the source code
of the application being monitored. For example, adding
annotations to a specific method or class to allow the APM
to display detailed information about this specific method or
class. Configuration-based techniques allow the practitioner
to edit the instrumentation rules from within the APM tool
interface, hence it does not require code changes.

Table 4 shows the di↵erent instrumentation techniques
supported by the studied APM tools. It is worth noting
that the Pinpoint APM tool does not yet o↵er a way to add
custom instrumentation to the application being monitored.

3.2.3 Performance Analysis Approaches
The studied tools use two general mining approaches to

detect performance anomalies: 1) baseline-based and 2) threshold-
based. Some APM tools use only one approach (usually the
threshold-based approach) such as New Relic and Pinpoint.
Other APM tools support both approaches, such as AppDy-
namics and Dynatrace. Table 5 shows a comparison of the
approaches that are used by the studied APM tools.

Baseline-based Approach. In baseline-based approaches,
APM tools mine historical performance data to establish a
baseline. For example, an application is expected to have
a higher load during the working hours and a lower load
during weekends. Hence the APM tool needs to learn this
behavior. In order to detect performance anomalies, APM
tools detect metric values that deviate from this baseline.

APM tools use di↵erent mining approaches to establish

Table 5: Software Monitoring Approaches

New Relic AppDynamicsDynatrace Pinpoint

Baseline-
based

approach
X X X X

Threshold-
based

approach
X X X X

the baseline. For example, AppDynamics uses the average
value of a metric observed during a specific time range to
define the baseline. Dynatrace uses other statistical tech-
niques such as the 90th percentile and binomial distribution
to calculate the baseline. APM tools use these baselines as
indicators to notify practitioners when their application per-
formance deviates from the baselines. The specific details of
these statistical techniques are not available in the documen-
tation of the commercial tools. For example we are unable
to identify the parameters of the binomial distribution used
by Dynatrace.

Threshold-based Approach. A threshold is the value be-
yond which the performance of the monitored application
is considered unacceptable. A threshold can be calculated
using simple statistical methods or it can be configured ei-
ther by the software practitioners or by the APM tool itself.
APM tools support the following types of thresholds:

• Percentage deviation threshold: When a metric value
exceeds a specific percentage above the metric’s aver-
age.

• Standard deviation threshold: When a metric value ex-
ceeds multiples of standard deviations above the met-
ric’s average.

• Fixed threshold: When a metric value exceeds a pre-
defined fixed value.

Usually, a threshold is set for the transaction response
time metric because it is the APM tool’s primary concern.
However, some APM tools provide means to define thresh-
olds for other metrics, such as the failure rate and through-
put (in AppDynamics and Dynatrace).

Pinpoint uses fixed thresholds to decide whether the trans-
action is slow or not based on its response time. Specifically,
Pinpoint has four thresholds for the response time of the
transaction: less than one second, less than three seconds,
less than five seconds, and more than five seconds. Thresh-
olds can be manually defined by the user in all the studied
APM tools except Pinpoint. In addition, some APM tools
define default values for the thresholds. In the studied APM



tools, Dynatrace is the only tool that provides default values
for the used thresholds.

Even though APM tools typically depend on the mining
of large performance data to generate a baseline or threshold
for identifying abnormal performance, these tools do not
leverage the complex mining approaches that are proposed
in recent research [21, 22, 27, 31, 32, 37]. The finding may
imply a gap between current research and APM tools, or
more complex techniques are not needed. Therefore, we are
interested to explore whether such simple mining approaches
that are integrated in APM tools can still e↵ectively support
the detection of performance regressions.

4. CASE STUDY SETUP
In this section we present the setup of our case study to

evaluate the e↵ectiveness of the studied APM tools in de-
tecting performance regressions. In particular, APM tools
are designed to identify slow transactions and detect un-
usual behavior of the monitored application. Our goal is to
investigate their e↵ectiveness in detecting performance re-
gressions. First we present the methodology that our case
study followed. We present a brief description of the used
applications and finally we explain the types of injected re-
gressions.

4.1 Methodology
Our methodology aims at detecting performance regres-

sions and their root causes either using baseline-based or
threshold-based approaches provided by the APM tools. Gen-
erally, in order to detect regressions with APM tools using
a baseline-based approach, we perform the following steps:

1. Run a load test for one hour without injecting the per-
formance regressions to define the baselines.

2. Deploy another version of the application after inject-
ing the performance regressions.

3. Run the same load test again for one hour.
4. Explore the transaction types that show violations to

the learned baselines.

To detect regressions with APM tools using a threshold-
based approach, we perform the following steps:

1. Run a load test for one hour without injecting the per-
formance regressions.

2. Explore the transactions that are marked as slow and
check the methods in the stack trace of the slow trans-
actions.

3. Deploy another version of the application with injected
the performance regressions.

4. Run the same load test again for one hour.
5. Explore the transactions that are marked as slow and

find those transactions that were not detected in the
first step.

6. Inspect the methods in the stack traces of the detected
transactions and check for the methods that were not
detected before injecting the regressions.

After identifying the transaction types having performance
regressions using the above-mentioned approaches, we man-
ually drill down into the details of these transaction types
and we study the information provided by the APM tool
to describe each problem. Namely, we try to follow how a
developer may use an APM tool for finding a performance

regression. APM tools provide detailed information about
each transaction such as the stack trace of the transaction
and the time consumed by each method. In particular, the
time consumed by each method in the stack trace is the in-
clusive time required by all the method callees. Therefore if
we find a regression in a specific method, we check its callees
until the actual cause of the regression is determined.

We try to use existing load tests1 for our study (i.e., Pet
Clinic). However, in the cases where the tests are not present
(i.e., CloudStore and OpenMRS), we design and implement
the tests by ourselves, and ensure that we cover all the trans-
actions in which we inject the performance regressions. For
CloudStore, we design our tests to cover common online
shopping behaviours, such as browsing, searching, adding
items to carts, and checking out. For OpenMRS, we design
our tests to cover actions such as searching (by patient, con-
cept, encounter, and observation), and editing/adding/re-
trieving patient information. We use the MySQL backup
files that are provided by CloudStore and OpenMRS devel-
opers for our experiments. The backup file for Cloud Store
contains data for over 5K patients and 500K observations.
The backup file for Cloud Store contains about 300K cus-
tomer data and 10K items.

We perform our experiments on the studied APM tools
using the default configuration of each APM tool. The de-
fault configuration means that we do not perform extra ef-
fort to instrument the code or to configure the thresholds.
One of our goals is to explore whether the APM tools can
produce e↵ective results out-of-the-box. In future work, we
plan to explore the complexity of configuring such tools and
the techniques that can be used to optimize these config-
urations. We describe below how we detect performance
regressions by manually checking the output of each of the
studied APM tools in more details, the same approach as
how developers would use APM tools in practice.

New Relic. New Relic uses a threshold-based approach to
detect performance anomalies. This means that New Relic
does not learn baselines, rather it uses configurable thresh-
olds to decide the overall health of the application and the
health of individual transaction types.

New Relic displays the five most time consuming transac-
tion types sorted in a descending order. For each transaction
type, New Relic lists the most time consuming transactions
and methods. If we find that New Relic reports a slow trans-
action that was not previously detected (i.e., in the initial
load test), we consider that a regression was detected.

In order to identify the root cause of a detected regression,
we manually inspect the stack trace of each transaction that
is marked as slow by New Relic before and after injecting
the regressions. We manually compare the stack traces and
if we find the method in which we injected the performance
problem, we consider that the root cause is identified suc-
cessfully.

AppDynamics. AppDynamics uses a baseline-based approach
to detect performance anomalies. AppDynamics first learns
the baseline without the injected regressions. Then we de-
ploy a new version with the injected regressions. If AppDy-
namics flags that the response time of a specific transaction
type deviates from the baseline, we consider that the regres-

1https://github.com/jdubois/spring-petclinic



sion is detected.
AppDynamics records several types of information for each

transaction such as the stack trace and the database queries
involved in this transaction. We inspect this information in
the version having the injected regressions. In case we find a
transaction that is marked as slow and its stack trace or its
called queries point to the injected regression, we consider
that the root cause of the regression is identified correctly.

Dynatrace. Dynatrace uses a baseline-based approach to
detect performance anomalies. Similar to AppDynamics,
Dynatrace learns the baseline first. We follow the same ap-
proach as in AppDynamics to identify the regression and the
root cause.

Pinpoint. Pinpoint uses a fixed threshold-based approach
to detect performance anomalies. Pinpoint does not discover
the di↵erent types of transaction types. Instead, Pinpoint
lists all the transactions without grouping, which makes the
process of identifying the regressions harder.

Pinpoint records the stack trace and the database queries
of each transaction. Before injecting the regressions, we in-
spect the ten slowest transactions as recorded by Pinpoint.
We record the time consumed by all methods in those trans-
actions. Then we deploy a new version with the regressions,
and repeat the previous step. If we find that the slowest
transactions are di↵erent, or that the time required by a
method in which we injected the regression increases, we
consider that a regression is detected and the root cause is
identified.

4.2 Studied Applications
In our experiments, we use three open-source applications

that vary in size. The applications are PetClinic [11], Cloud-
Store [3] and OpenMRS [10]. These applications involve dif-
ferent technologies. For example, PetClinic and CloudStore
use heavy database transactions. OpenMRS has a RESTful
web service interface that is not available in the other two
applications.

PetClinic is a web application with a simple user interface
to manage a pet clinic. PetClinic uses the Spring frame-
work2 and the Hibernate Object Relational Mapping (ORM)
framework3.

CloudStore is an open-source e-commerce web applica-
tion. It is used as a benchmark application to help software
developers analyze and resolve scalability related problems.
CloudStore users can search for products and add products
to their carts. CloudStore also uses the Hibernate ORM
framework.

OpenMRS is an open-source medical records application.
OpenMRS provide functionalities to manage patients and
physicians in health care industry. We use the RESTful
web services interface of OpenMRS to send requests to the
application. Although OpenMRS has a web user interface,
we decided to use the RESTful web services interface to
study how the APM tools will discover the di↵erent types
of RESTful web services.

4.3 Injected Performance Regressions
Performance regressions may occur due to several reasons.

2http://projects.spring.io/spring-framework/
3http://hibernate.org/orm/

For example, a poorly designed database access code can
lead to loading a large amount of unnecessary data [17, 18].
Earlier research study di↵erent types of code issues that
cause performance regressions [17, 33, 34]. We inject perfor-
mance regressions that are commonly seen in web applica-
tions, as reported by prior studies [14, 17, 32, 36]. Moreover,
similar problems are known to exist in some of the studied
systems [17].

For a more realistic scenario, we run the studied appli-
cation with all the regressions injected at the same time.
Although this might be more di�cult for the APM tools
to detect, it simulates an application having several perfor-
mance regressions. Injecting a realistic regression requires a
large amount of manual work, which involves understanding
the architecture and workload of the studied systems. Thus,
we are unable to inject a large number of regressions.

Below, we discuss the injected regressions cover three main
areas: excessive memory usage, high CPU utilization and
ine�cient database use.

Excessive Memory Usage Regressions. We study two
types of excessive memory usage regressions: 1) unreleased
resources and 2) ine�cient use of streams.

• Unreleased resources (Memory Issue-1): One of
the well-known issues that cause an excessive memory
usage problem is the unreleased resources issue [43].
Typically, this problem occurs when a developer im-
plements a caching functionality by creating a static
list and adding items to that list without ever remov-
ing them. The regression occurs because the used heap
size keeps growing and the garbage collector is unable
to clear the resources.

• Ine�cient use of streams (Memory Issue-2): It
occurs when a large number of streams are being opened
and never closed. In this case, the garbage collector is
unable to release the stream object, which leads to ex-
cessive memory usage. This issue could happen when
a developer adds some code to open a stream (such as
a file stream to read a file) and forgets to close this
stream after reading or writing to the file is done.

High CPU Utilization Regressions. Ine�cient loops usu-
ally lead to higher CPU utilization [21]. Such loops cause a
delay in response time that may be detected by APM tools
in addition to the CPU spikes caused at the server side. We
inject two di↵erent ine�cient looping problems studied re-
cently by Nistor et al. [33, 34]: 1) unnecessary loops, and
2) loop with a missing break condition.

• Unnecessary loops (CPU Issue-1): This issue oc-
curs when a method contains an ine�cient nested loop.
This kind of loop typically consumes the CPU which
causes a long processing time. The regression occurs
because the application uses more CPU resources than
the previous version of the application.

• Loop with a missing break condition (CPU Issue-

2): It occurs when the code contains a loop that
should have called break when a specific condition is
met, but instead the loop continues for a specific num-
ber of times. The regression occurs because the ap-
plication uses more CPU resources than the previous
version of the application.



Inefficient Database Use Regressions. We inject perfor-
mance regressions that result from the ine�cient use of database
queries. A performance regression studied recently by Chen
et al. [17] occurs due to ORM anti-patterns. In particular,
two types of ORM anti-patterns are studied: 1) Excessive
Data and 2) One-by-one Processing.

• Excessive Data (Database Issue-1): A regression
that occurs because of ine�cient use of eager loading in
an ORM-based query. For example, in the CloudStore
application, it is ine�cient to load all the customer’s
orders on a login request. As the number of orders
increases, the cost of joining customer and order tables
for retrieving all the orders and their corresponding
details increases. It is more e�cient to load the orders
only when they are needed.

• One-by-one Processing (Database Issue-2) is the
opposite process of Excessive Data regression, where a
specific field is loaded in a loop by issuing multiple
queries to retrieve its value. The regression occurs if
a field is originally loaded lazily but it is not used in
the code, then a developer uses this field inside a loop
which results in running a separate database query to
load to the field during each loop iteration.

5. CASE STUDY RESULTS
In this section we present the results of our case study. We

report the results for each studied APM tool. For each APM
tool we report whether each injected performance regression
was detected, and whether its root cause was identified. In
Tables 6 and 7 we show a summary of our findings for the Pet
Clinic and CloudStore applications, respectively. We do not
present a similar table for OpenMRS application because
the APM tools did not deal well with OpenMRS business
transactions, making it di�cult to obtain useful information.
In the following subsections we describe our results in more
detail for each studied APM tool.

5.1 Results for New Relic

PetClinic. New Relic was able to identify five out of the six
injected performance regressions. The transaction with the
Memory Issue-1 was identified as slower than without the in-
jected regression. We inspected the stack trace of all the slow
transactions, but the slowest methods in these transaction
were not the method in which we injected the regression.

Two transactions having ine�cient CPU loads were iden-
tified as slow and New Relic pointed to the correct methods
with the injected regressions. We compared the stack traces
of the transactions before and after injecting the regressions.
We found one transaction in which the method having the
regression was marked as slow. We were not able to identify
this method before injecting the regression.

Finally, New Relic detected the DB Issue-1 and DB Issue-
2 and showed the details of the transactions for each one.
The regressions caused by both issues were detected because
we compared the number of executed queries in each trans-
action before and after injecting the regressions.

CloudStore. Following the same methodology for the Pet-
Clinic application, New Relic was able to identify three out
of five injected regressions along with the root cause method.
For CPU Issue-1, we had to compare the time consumed by

the methods in the slowest transactions as found by New
Relic before injecting the regression. Then, we inspected
the methods in the slow transactions after injecting the re-
gression and we found that the consumed time increased for
the method in which we injected the regression.

One other transaction containing a database regression
(DB Issue-1) was identified as slow, however the diagnosed
root cause was di↵erent from the correct root cause of the
original injected regression. The diagnosed root cause was
because of a pooled connection waiting issue rather than the
actual injected regression. Moreover, we were able to detect
DB Issue-2 by comparing the number of queries executed
before and after injecting the regression which allowed us to
detect the regression and identify its root cause.

OpenMRS. New Relic produced ine↵ective results for Open-
MRS. New Relic was unable to detect the di↵erent types
of RESTful services. Instead, it reported a group of GET
requests and another group of POST requests. Such group-
ing makes it di�cult for practitioners to discover perfor-
mance regressions because there is no distinction between
di↵erent transaction types. We tried to further analyze the
slow transactions in each transaction type. For the GET re-
quests, New Relic pointed us to another performance issue
in a database query; however, this issue existed in the run
without regression so we do not consider it a regression.

5.2 Results for AppDynamics

PetClinic. Using AppDynamics, we were able to detect five
out of the six injected regressions. First, AppDynamics
learned the baselines of all the transaction types without in-
jecting the regressions. Then we deployed a new version con-
taining all the regressions. AppDynamics identified the two
transaction types having the CPU regressions as slow. Then
we inspected the information provided by AppDynamics for
the slow transactions. We find that AppDynamics provides
the stack trace and the database calls for each transaction, in
addition to highlighting the potential methods or database
calls that are causing the slow response. We inspected the
slow transactions and we found that the methods containing
CPU Issue-1 and CPU Issue-2 were indicated by AppDy-
namics.

The transaction types having DB Issue-1 and DB Issue-
2 were also identified as deviating from the baseline. The
database queries used in each of the database regressions
were highlighted by AppDynamics as potential problems so
we considered that AppDynamics identified the root cause
of the database regressions.

CloudStore. AppDynamics showed the transaction types
with the performance regressions as the slowest transaction
types. For each type, we drilled down into each individual
slow transaction to explore the root cause of its slow re-
sponse. The root cause diagnosis of the slowest transaction
was usually a database connection issue. We were not able
to identify the methods with the performance regressions in
three out of six transaction types.

However, AppDynamics was able to identify the slow method
involving CPU Issue-1. Additionally AppDynamics was able
to detect the slow query in DB Issue-1 and the large number
of queries in DB Issue-2.



Table 6: Pet Clinic Results

New Relic AppDynamics Dynatrace Pinpoint

Identified Root Cause Identified Root Cause Identified Root Cause Identified Root Cause

Memory Issue-1 X X X X X X X X

Memory Issue-2 X X X X X X X X

CPU Issue-1 X X X X X X X X

CPU Issue-2 X X X X X X X X

DB Issue-1 X X X X X X X X
DB Issue-2 X X X X X X X X

Table 7: CloudStore Results

New Relic AppDynamics Dynatrace Pinpoint

Identified Root Cause Identified Root Cause Identified Root Cause Identified Root Cause

Memory Issue-1 X X X X X X X X

Memory Issue-2 X X X X X X X X

CPU Issue-1 X X X X X X X X

CPU Issue-2 X X X X X X X X

DB Issue-1 X X X X X X X X
DB Issue-2 X X X X X X X X

OpenMRS. The di↵erent types of RESTful services were
not detected automatically by AppDynamics using its de-
fault configuration, rather, the di↵erent web services need to
be configured manually. This configuration is time-consuming
for large applications and requires business knowledge of the
monitored application.

AppDynamics grouped all the transaction types under one
type only. We further analyzed the identified transaction
type, we were able to detect only the DB Issue-1 using Ap-
pDynamics, because one of the transactions having this re-
gression was identified as slow. This transaction allowed us
to explore the issue’s details and to identify the regression.

5.3 Results for Dynatrace

Pet Clinic. We were able to identify five out of six regres-
sions. By analyzing the memory snapshots captured by
Dynatrace, we found the growing list in Memory Issue-1
after injecting the regression although it did not exist be-
fore injecting the regressions. The transaction types having
CPU Issue-1 and CPU Issue-2 were identified as deviating
from the baseline. Dynatrace provided information about
the CPU time consumed by each method in a transaction.
From the CPU time provided by Dynatrace, we calculated
that the average CPU usage increased in the CPU Issue-1 by
14% and in CPU Issue-2 by 7%. Hence, we considered that
Dynatrace detected and identified the root cause of both
CPU regressions.

Both DB Issue-1 and DB Issue-2 were identified as re-
gressions because the response time of the corresponding
transaction types deviated from the baseline. Dynatrace
provides information about the number of executed queries
and the time spent to execute each query. Dynatrace was
able to identify that a database query is consuming a long
time (DB Issue-1) and that a large number of queries were

executed (DB Issue-2).

CloudStore. Dynatrace detected the high heap usage and
automatically created a memory snapshot. We were able
to identify the Java class that caused the excessive memory
usage regression (Memory Issue-1). However, we were not
able to identify Memory Issue-2. Additionally, we were able
to identify CPU Issue-1 that caused a CPU regression. Fi-
nally, we compared the database reports to detect database
regressions. We were able to conclude that DB Issue-1 ex-
ists by examining the di↵erence in the query running time
before and after injecting the regression. DB Issue-2 was
identified by Dynatrace because it detected the large num-
ber of executed queries, which did not exist before injecting
the regression.

OpenMRS. Dynatrace was not able to detect the di↵erent
types of services automatically. Rather, splitting the di↵er-
ent types of services needs to be done manually by the user.
Using our approach to detect regressions, we were only able
to identify DB Issue-2.

Pinpoint. Pinpoint uses a fixed threshold approach, which
depends on reporting the transactions times and identified
the slow ones if they exceed a fixed threshold. Fixed thresh-
olds are known to be less flexible and do not fit the complex
nature of modern software applications [35]. We were able
to identify DB issue-1 in Pet Clinic and DB Issue-1 in Cloud-
Store. The other regressions were not detected by Pinpoint.
The results of Pinpoint and the lack of open source APM
tools show that there is still much room of improvement for
the open source community to create and improve such open
source APM tools by integrating exiting research techniques
into practice.
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Commercial APM tools are good at detecting perfor-
mance regressions that cause a delay in the response
time; while open source APM tool (Pinpoint) is less flex-
ible and e↵ective in detecting performance regressions.
Using all the studied APM tools, we were able to detect
five out of six regressions in the Pet Clinic application
and four out of six regressions in CloudStore. However,
we cannot detect many performance regressions in Open-
MRS.

6. DISCUSSION
In this section we present a discussion on our experience

in detecting performance regressions using APM tools.

6.1 More Mining Approaches are Needed for
Reducing Manual Effort

The e↵ort required to identify the performance regressions
varies according to the features provided by each APM tool.
The easiest APM tool to detect the regressions is AppDy-
namics because it lists all the transaction details and the
corresponding executed database queries. However, using
these features, we still spent about six hours to detect the
six regressions and identify their root causes in each stud-
ied application. The other APM tools require even more
e↵ort because their features are either too simplified such as
Pinpoint, or too complicated such as Dynatrace. For Dyna-
trace, we spent about two days for each studied application
to identify the root cause of the injected regressions. Note
that we did not have prior knowledge about the APM tools.

We believe that leveraging more complex mining approaches
can significantly reduce the manual e↵ort for identifying per-
formance regressions. For example, some APM tools rank
transactions based on their absolute response time. How-
ever, the performance impact of some performance regres-
sions may not be large enough to be flagged by the APM
tools. As a system evolves, such performance regressions
may have larger impacts and become more di�cult to fix.
Instead, if the APM tools can apply mining approaches such
as statistical modelling to identify abrupt changes in the re-
sponse time for a specific transaction, practitioners can lo-
cate the performance regressions more easily.

6.2 APM Tools should Provide Better Data Ag-
gregation and Summarization

In this subsection, we provide our experience on using the
data presented by APM tools for identifying performance
regressions. In particular, we focus on three categories of
data: 1) transaction-related, 2) memory-related, and 3) DB-
related information.

Transaction-related Information. We use transaction re-
lated information to detect CPU regressions, since CPU re-
gressions cause a delay in the response time. Our results
show that the APMs are able to detect the transaction types
with CPU regressions e↵ectively. However, we also find
that all the APM tools, except Dynatrace, tend to show the
amount of processing time in each method as a bulk value
or a percentage of the total processing time, regardless the
amount of CPU, I/O, or waiting time in each method. Dy-
natrace shows the percentage of CPU, I/O and waiting time
spent in each method, which can be used to identify meth-
ods of increasing CPU times. We were able to detect the

regressions in PetClinic application, however the regressions
were not detected in CloudStore.⇤
⇥

�
�

APM tools need more fine-grained information, such as
the amount of CPU, I/O, or waiting time, about indi-
vidual method calls.

Memory-related Information. Although excessive mem-
ory usage is a common performance regression and all stud-
ied APM tool supports diagnostic approaches for memory-
related problems, we find that memory related information
needs more manual work to view and analyze than other
types of information. Since creating memory snapshots is
an expensive operation, APM tools tend to minimize or
even ignore this type of information. For example, Mem-
ory Issue-1 required creating manual snapshots in AppDy-
namics to be detected. On the other hand, Dynatrace au-
tomatically detected the increased use of heap memory and
created the snapshot, which allowed us to easily detect the
regression. The open streams memory regression (Memory
Issue-2) was not detected by any APM tool, although we
believe that such a linear increase in the created objects in
the heap must be identified as an issue by the APM tool. In
short, sampling memory usage and identify upward trends
using data analysis can significantly help practitioners iden-
tify memory-related performance regressions.⇤
⇥

�
�

APM tools need more complex analysis approaches in
order to detect memory regressions more e↵ectively.

Database-related Information. All APM tools report de-
tailed information about the used database queries and ex-
ecution times. However, all APM tools, except New Relic,
deal with the queries as a black box. This means that al-
though the APM tools can detect the exact executed queries,
and their corresponding counts and execution times, these
tools do not show details of the execution plan of the query,
or the used indices. New Relic, on the other hand, pro-
vides this functionality in its main APM tool by suggesting
changes to the executed query to optimize its performance.
Pinpoint shows the least amount of database information
with each database regression. For example, in DB Issues-1,
although there is a large number of executed queries, Pin-
point does not split the types of executed queries (such as
SELECT and UPDATE). Rather, it only displays the total
number of executed queries for this specific transaction.⇤
⇥

�
�

APM tools provide detailed DB-related information such
as the exact executed queries. However, only New Relic
provides suggestions to optimize slow queries.

6.3 APM Tools Lack Flexibility for Adding New
Mining Approaches

Based on our experience and the results of our experi-
ments, we were able to detect most of the performance re-
gressions we injected using current APM tools. The process
of detecting performance regressions was relatively simple,
however the process of identifying the method that contains



the regressions was more challenging. Using our method-
ology to detect performance regressions (based on baseline-
based and threshold-based approaches), APM tools may de-
tect a large number of slow transactions, some of which
are not directly related to the injected performance regres-
sion. For example, if the load on the database is high, then
some transactions will spend a long time waiting to obtain
a database connection. For this reason, we had to explore
a large number of transactions to identify the root cause of
the injected regression.

We find that APM tools lack the ability to be extended
using custom techniques that may make the process of find-
ing the root cause (i.e. the method having the regression)
easier. APM tools need more e↵ective techniques for sum-
marization and filtration of their results. Prior research by
Nguyen et al. [32] leverages mining historical performance
data with known root-causes in order to automatically iden-
tify root-causes of newly identified performance regressions.
APM tools can adopt such techniques to improve the identi-
fication of root causes. Summarization means that the APM
tools show a summary of the metrics and methods that con-
tain performance regressions. Control charts proposed by
Nguyen et al. [31] could be used to summarize the collected
metrics to show only the metrics that deviate from a spec-
ified threshold. Subsuming method analysis proposed by
Maplesden et al. [28] could be used to summarize the meth-
ods that contain performance regressions only. The current
APM tools show the complete stack trace of each transac-
tion.

Filtration means that the APM tool narrows down the
results to include only the relevant performance regressions
rather than showing all the performance anomalies to prac-
titioners. One way to achieve this is by mining code change
histories (such as details about modified, deleted or added
code). Hence APM tools can indicate the code that is re-
sponsible for the regression by only looking at the modified
code.

7. THREATS TO VALIDITY
In this section we discuss the threats to the validity of

our study. Although APM tools support several program-
ming languages, our study focuses on the Java programming
language. We believe this study can be extended to other
programming languages. This study does not essentially
present a full functionality review of the APM tools, rather,
it presents the basic ideas behind some of the many functions
provided by such well-founded APM tools.

The injected performance regressions are based on some of
the common regressions known in literature and in practice.
We try to keep the injected performance regressions simple
so that they will not introduce any functional impacts on
the studied systems; however, the implementation of such
regressions may vary from real life situations. We did not
consider other types of performance regressions from litera-
ture. These types of regressions may be included in future
work.

Our discussion of the APM tools is based solely on our
experience, and may be subjective. In the future, we plan
to conduct a user study regarding user experience of these
APM tools. We also plan to compare advanced algorithms
for detecting performance regressions with the approached
used in current APM tools.

We perform our case study on four APM tools based on

their popularity. However, there may not be a relation-
ship between a tool’s popularity and its e↵ectiveness. Other
available APM tools may have the ability to detect the in-
jected regressions more e�ciently. Additionally, we use only
three open-source applications, hence our results may not
generalize to other applications.

8. CONCLUSIONS
We explore a novel use of APM tools to detect perfor-

mance regressions caused by code changes across the same
workload. Although APM tools were primarily designed
to leverage the mining of large performance data to detect
performance anomalies in stable code base due to workload
changes, APM tools were e↵ective in detecting performance
regressions caused by code changes using a stable workload.
Our results show that APM tools can detect more than
75% of the injected regressions on average. This percent-
age dropped in applications using RESTful web services to
less than 20%.

APM tools could detect most of the regressions that we
injected, however, the process of identifying the root cause
of the regression (i.e. the exact method causing the regres-
sion) was more challenging. APM tools provide the stack
traces for a large number of transactions, many of which are
unrelated. Therefore, we had to explore a large number of
transactions to identify the injected regressions.

We consider APM tools strong candidates for detecting
performance regressions due to their availability for prac-
titioners and their out-of-the-box regression detection ca-
pability. However, there exists a gap between the mining
approaches that are integrated in APM tools and the min-
ing approaches that are leveraged in performance regression
detection research. We believe that future development of
APM tools should be focused on improving the extensibil-
ity of these tools, so that researchers can extend these tools
with their state-of-the-art approaches. In addition, the re-
porting capability of APM tools must be improved to reduce
the e↵ort that is required to analyze detected performance
regressions.
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