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Abstract—The goal of performance maintenance is to improve
the performance of a software system after delivery. As the
performance of a system is often characterized by unexpected
combinations of metric values, manual analysis of performance
is hard in complex systems. In this paper, we extend our previous
work on performance anomaly detection with a technique that
helps performance experts locate spots — so-called performance
improvement opportunities (PIOs) —, for possible performance
improvements. PIOs give performance experts a starting point for
performance improvements, e.g., by pinpointing the bottleneck
component. The technique uses a combination of association
rules and several visualizations, such as heat maps, which were
implemented in an open source tool called WEDJAT.

In this paper, we evaluate our technique and WEDJAT in a
field user study with three performance experts from industry
using data from a large-scale industrial application. From our
field study we conclude that our technique is useful for speeding
up the performance maintenance process and that heat maps are
a valuable way of visualizing performance data.

I. INTRODUCTION
In the ISO standard for software maintenance1, four cate-

gories of maintenance are defined: corrective, adaptive, per-
fective and preventive maintenance. Perfective maintenance is
done with the goal of improving and therefore perfecting a
software system after delivery. An interesting application of
perfective maintenance is performance maintenance, as many
software performance issues become obvious after deployment
only. While a large amount of research has been done on
software performance engineering in general [1], only few pa-
pers deal with software performance maintenance. In addition,
experience from industry shows that performance engineers
mainly use combinations of simple and rather inadequate tools
and techniques rather than integrated approaches [2], making
performance maintenance a tedious task.

Perfecting software performance is typically done by inves-
tigating the values of two types of metrics [2]. On one hand,
high-level metrics such as response time and throughput [3] are
important for getting a general idea of the performance state
of a system. On the other hand, information retrieved from
lower-level metrics, e.g., metrics for memory and processor
usage — so called performance counters [4] —, is important
for pinpointing the right place to perform a performance im-
provement. However, determining a starting point for analysis
of these lower-level metrics is difficult, as the performance of

1http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?
csnumber=39064

a system is often characterized by unexpected combinations of
performance counter values, rather than following simple rules
of thumb [5]. This makes manual analysis of performance in
large, complex and possibly distributed systems hard.

In previous work, we have presented an approach for
detecting performance anomalies using performance counter
measurements [6]. This approach allows us to detect perfor-
mance anomalies by identifying system states at which the
system is performing relatively slow based on performance
counter values. We have also shown that our approach allows
faster detection of problems than a ‘traditional’ threshold
setting for the average response time. In this paper, we extend
this approach with a technique that helps performance experts
locate spots for possible performance improvements. Our
technique describes such spots as performance improvement
opportunities (PIOs). PIOs give performance experts a starting
point for performance improvements, e.g., by pinpointing
the bottleneck component. The technique uses a number
of visualization methods, amongst which heat maps [7], to
provide a compact overview of the performance history of
a system. We have implemented this technique in an open
source tool called WEDJAT, which we present and evaluate
by conducting a field study with performance experts from
industry in this paper. Our technique is a high-level approach:
it works complementary to lower level approaches such as
profiling [8], as it helps narrow down the server or hardware
which requires more investigation.

This paper is organized as follows. In Section II we discuss
relevant background information. In Section III we present
our idea of using heat maps for performance analysis. The
implementation of this idea is presented in Section IV. We
evaluate our approach using a field user study (Section V)
and present the results in Section VI. Results are discussed in
Section VII. We present related work in Section VIII and we
conclude our work in Section IX.

II. BACKGROUND

In previous work [6] we presented an approach that allows
to identify performance anomalies, e.g., sudden slowdowns, in
a software system using low-level performance measurements
only. That work contrasts earlier studies that used the response
time as the main indicator of performance anomalies. We have
shown that by using low-level performance measurements, we
were able to efficiently identify performance anomalies that
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originate at the server. Furthermore, our technique worked
very precisely in that it keeps track of performance profiles
per user, so that a user with many database records versus a
user with a relatively low number of database records gets
treated differently. While we could very precisely identify
when a performance anomaly occurred, we had no means of
identifying its cause and that is what this paper adds.

In the next two subsections we briefly describe our approach
from [6]. As our approach is a learning-based approach, we
first describe the training phase in Section II-A, before we go
over to the actual classification phase in Section II-B.

A. Training Phase
Central to our approach [6] are the SAratio and the

intensity metrics. The SAratio (or Slow-to-All-actions-
ratio) for a time interval t is defined as:

SAratiot =
|SLOWt|

|SLOWt|+ |NORMALt|
We define an action as slow when it belongs to the 15%

slowest actions in terms of response time for a particular user
of a particular application (or feature) for a time interval t.
We now calculate the SAratio for all time intervals of the
training period using a sliding window approach. As we now
have a SAratio-value for all monitored time intervals, we
can identify intervals during which the system was running
relatively slow.

The next step is to define thresholds for the SAratio, such
that we can classify system load for each interval as:

• high: system load is typically too high, which makes it
perform slow (highest 5% of values for SAratio)

• med: system load may become or may just have been
problematic (medium 10% of values for SAratio)

• low: system load is non-problematic (low 85% of values
for SAratio)

After classifying all intervals as exhibiting high, med, or
low load based on the SAratio, we assign the performance
counter data to the time interval during which it was mon-
itored. Next, we use association rule mining to classify the
state of the system using performance counters only (e.g.,
memory�80, CPU>70 ! high). In particular, we want to
use the low level performance counter measurements rather
than the SAratio directly as they can give a more precise
description of the performance, which can assist in giving a
diagnosis.

B. Classification Phase

During the classification phase we classify new performance
counter measurements. However, because we are not interested
in isolated spikes in the performance of a system, but rather
in situations in which the system is relatively slow for longer
periods of time, we use a sliding-window approach to filter
out these isolated spikes.

For a sliding window of size n, we determine which
association rules match for the measured performance counter
values. Next, we count how many of those roles are classified
as low, med and high load (see Section II-A). Finally, we
determine the intensity metric as follows:

If >30% of the classifications in the window

8
<

:

high ! intensity+2
med ! intensity-1
low ! intensity-2

This results in a series of values for the intensity of the
load on a system during the classification phase, in which new
performance counter measurements are classified. Ideally, the
value of this metric is zero; whenever the value is larger, we
have an indication that the system is running relatively slow.

Both the association rules used to calculate the intensity
metric and the intensity metric itself will form the basis for
the approach presented in this paper.

III. APPROACH

In this section, we present our approach for locating
performance improvement opportunities (PIOs), which is an
extension of our approach for performance anomaly detection
explained in the previous section. A PIO is a snapshot of the
system during a period of time at which the performance of the
system could possibly be improved. This snapshot is described
by the following for that period of time:

• Date and time of start of the PIO
• Date and time of end of the PIO
• Intensity graph (Section II-B and Figure 2)
• Raw metric value matrix (Section III-A)
• Rule coverage matrix (Section III-A)
• Missing value matrix (Section IV-E)
A PIO description can assist performance engineers in per-

forming perfective maintenance by pinpointing the bottleneck
component during the PIO. The next step could be investiga-
tion of that component using a profiler (see Section VIII).

Our PIO detection approach exploits the association rules
used during the classification process of the anomaly detection
to detect starting points for exploring possible performance
improvement opportunities. The goal of our approach is to
analyze the information in the rules matched by a measurement
and detect clusters of performance counter metrics that help us
to decide on which server or hardware we must start looking
for possible performance improvements.

Table I shows a sample set of association rules used to
characterize the load on a system into the classes low, med
and high. The system consists of server S1 with performance
counters PC1 and PC2 and server S2 with performance
counter PC1. Table I contains a set of sample measurements
for these performance counters as well. As defined in [6],
a high load often represents a performance anomaly, which
indicates a possible PIO. We exploit this property to get an
indication of the bottleneck component.

TABLE I
SAMPLE ASSOCIATION RULE SET AND PERFORMANCE COUNTER

MEASUREMENTS

Sample association rule set Sample measurements
1 S1PC1>80 & S2PC1<60 ! high t S1PC1 S1PC2 S2PC1
2 S1PC1>70 & S1PC2>70 ! high 0 40 60 80
3 S1PC1>90 ! high 1 95 60 80
4 S1PC2<30 ! med 2 98 80 80
5 else ! low 3 98 95 55

4 98 80 80
5 40 25 80
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A. The Rule Coverage Matrix

Our approach uses a matrix m with one row for each
performance counter and one column for every time t we
receive a measurement. This matrix contains the raw values
monitored for each counter.

In addition, we maintain a so-called coverage matrix m0.
The rows of this matrix contain the performance counters, the
columns depict measurements. The first column, representing
the first measurement is initialized to 0. Each time a new
measurement is received, the last column of m0 is copied and
the following algorithm is applied:

• Increase m0
i,j if performance counter i is covered by a

high rule at measurement j.
• Leave m0

i,j equal to m0
i,j�1 for a med rule

• Decrease m0
i,j if performance counter i is covered by a

low rule at measurement j, with a minimum value of 0
Note that the original ‘raw’ values of the performance

counters in m are left untouched in this process. We update
the value of every m0

i,j only once for every measurement,
even though multiple covering rules may contain the same
performance counter.

The rationale behind building the rule coverage matrix this
way is the following:

1) The ruleset describes all known cases of when the system
was performing slowly.

2) We expect all measurements made during a PIO to be
covered by the same, or similar rules when they are
classified. The reason for this is that performance counter
values are in general relatively stable, which means
that abnormal values of (combinations of) performance
counters will be exhibited for a longer period of time,
i.e., throughout the PIO.

3) When entering this into the rule coverage matrix this way,
higher values in m0 will appear because these values will
be increased for performance counters which occur in
adjacent measurements.

4) Eventually, clusters of higher values in m0 for perfor-
mance counters on specific hardware will appear.

5) These clusters can be used to do performance mainte-
nance, e.g., by pinpointing a bottleneck component.

The following example illustrates this. Figure 1(a) shows the
resulting m0 after applying our approach to the measurements
and ruleset of Table I. Figure 1(b) shows a visual representa-
tion of this matrix in the form of a heat map [7]. In such a map
darker colours represent higher values. In our simple example
we can see a cluster of dark coloured performance counters
at server S1, indicating this server may be a bottleneck.

In the next section we present WEDJAT, a tool which
implements the rule coverage matrix and heatmap. In addition,
in WEDJAT we combine a number of methods for visualizing
performance counter data.

IV. TOOL IMPLEMENTATION: WEDJAT

In our approach, the starting point for all investigations is
the intensity metric discussed in Section II. Whenever the
intensity is larger than 0, the performance data requires more

H
H
H
H

pc
t 0 1 2 3 4 5

S1PC1 0 1 2 3 4 4
S1PC2 0 0 1 2 3 3
S2PC1 0 0 0 1 0 0

covered by rules # 5 3 2,3 1,2,3 2,3 4

Fig. 1. Rule coverage matrix for Table I and the corresponding heatmap

Fig. 2. Intensity graph showing two performance incidents

detailed inspection. Our tool WEDJAT2 gives an overview of
performance data deviating from its normal behaviour, helping
performance experts to quickly identify possible bottlenecks.

In WEDJAT, we combine our ideas of using a rule coverage
matrix and heat maps to visualize performance data. WEDJAT
offers several views, which can be used on their own or
complementary to each other. In the remainder of this section,
the components of WEDJAT and its views are presented.
A. Time Slider

One of the main components in WEDJAT is the time slider,
which enables a time interval for the heat maps to be selected.
This allows a user to zoom in or out on interesting events.
B. Intensity Graph View
Goal The intensity graph is intended to be displayed in a
performance monitor or dashboard and its purpose is to serve
as a trigger for starting investigation with WEDJAT. We have
included the intensity graph in WEDJAT itself as well; the time
slider allows to zoom in or out on this graph.
Interpretation Whenever this graph shows a peak (value
greater than zero), a possible PIO exists and the performance
data requires deeper investigation.
Example Figure 2 shows the intensity graph generated during
two performance incidents in a system.
C. Rule Coverage Heat Map View
Goal The rule coverage heat map is the visualization of the
rule coverage matrix as described in Section III. The goal of
this heat map is to give an indication of where to start the
investigation for possible performance improvements.
Interpretation In this heat map, adjacent dark squares indicate
that this counter occurred in matched association rules for a
longer period of time.

2The Wedjat, or Eye of Horus, is an ancient Egyptian symbol of protection
and good health.
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Example Figure 3 depicts a rule coverage heat map in
which the rule (sv4/Memory/Available MBytes/null � 691)
and (ws4/Processor/% Processor Time/_Total  53.519428)3

was matched repeatedly.

D. Deviation-from-mean Heat Map View

Goal The goal of this heat map is to easily identify groups of
abnormal values for performance counters.
Interpretation In the deviation-from-mean heat map, the
intensity of the color of its squares is calculated based upon
the number of standard deviations from the mean value of
the performance counter represented by that row. In this heat
map, adjacent dark squares indicate that this counter exhibited
an unusually low or high value for a longer period of time.
WEDJAT offers two possibilities of filtering deviation-from-
mean heat maps: show only the counters in the rule coverage
heat map and show all counters for a specific server. It is
possible to display the heat map for two servers at the same
time, for example, to compare them to verify a load balancer
is behaving properly.
Example The deviation-from-mean heat map for server ws4 is
displayed in Figure 4. In this heat map it is clear to see that
there was a period of approximately 20 minutes during which
the monitored processor time counter exhibited abnormal
behaviour (see first line between approximately 10:20 and
10:40).

E. Missing Values Heat Map View

Goal During the classification phase, we classify a set of
performance counter values. In some cases, this set is not
complete, i.e., it does not contain values for all performance
counters expected based on the configuration of the monitor.
The reason for this may be a configuration error or a problem
with hardware or a server. The goal of the missing values heat
map is to detect such configuration and hardware issues.
Interpretation A value MissingIntervals is maintained for
every performance counter, which is initialized to 0 and
increased when we do not receive a value for this performance
counter in a measurement interval. After a value is received
MissingIntervals is reset to 0. In the missing values heat map,
the intensity of the color of a square is based on the value of
MissingIntervals. As such, adjacent dark squares indicate that
this counter did not exhibit a value for a longer period of time,
which indicates either a configuration or hardware issue.
Example Figure 5 shows the missing values heat map when
there was a problem with the sv3 and sv2 servers and a
configuration error on the SQL cluster.

F. Line Chart View

Goal After clicking on a square in the deviation-from-mean
heat map, a line chart is plotted displaying the values of the
performance counter in the selected time interval. In addition,
the mean calculated during the training phase is shown. The
goal of displaying the line chart is to allow users of the tool

3In this paper, we use the format Server-
Name/CounterCategory/PerformanceCounter/Instance to describe a
performance counter.

to combine the information in the heat maps with views they
are more accustomed to.
Interpretation This chart can be used to see trends, e.g.,
whether the counter is increasing or decreasing rapidly.
Example Fig. 6 shows a line chart for counter
dbclus1/LogicalDisk/Avg. Disk sec/Read/W:.

Fig. 6. Line chart example

G. Histogram View

Goal After clicking on a square in the deviation-from-mean
heat map, two histograms are plotted as well. The goal of
the histograms is to give the user a quick overview of normal
values for the selected performance counter.
Interpretation The first histogram shows the values of the
performance counter observed during the training phase. This
histogram shows the user a quick overview of normal values
for this performance counter. The second one shows the his-
togram of the values observed during the selected time interval.
This histogram allows the user to compare the distribution of
the values of this performance counter with those observed
during the training period.
Example Figure 7 depicts these two histograms for the
dbclus/LogicalDisk/Avg. Disk sec/Read/U: performance
counter. The dark line in the histograms depicts the value of
the selected square. From these histograms becomes clear4

that during the trainingsperiod values between 0.025 and
0.005 rarely occured, while these occured frequently during
the selected period. This could indicate that the counter is
exhibiting abnormal behaviour during the selected period.

V. DESIGN OF THE FIELD USER STUDY

In this section, we evaluate WEDJAT and our idea of using
heat maps for software performance maintenance in a field
user study. In our study, we are looking for an answer to the
following research questions:
RQ 1. Does the rule coverage matrix provide a good starting
point for performance maintenance?
RQ 2. Are heat maps an appropriate way of visualizing
performance data?

The outline of this section is as follows. First, we will
describe the field setting of the user study. After this, we
will discuss the setup of the study and the profile of the
participants. In the next sections, we will present and discuss
the findings of the field user study.

4Note that the scale of the axes of the histograms is different.
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Fig. 3. Rule coverage heat map (rule matched repeatedly: (sv4/Memory/Available MBytes/null � 691) and (ws4/Processor/% Processor
Time/_Total  53.519428)

Fig. 4. Deviation-from-mean heat map for the server ws4

Fig. 5. Missing values heat map

Fig. 7. Histograms for the dbclus/LogicalDisk/Avg. Disk sec/Read/U: performance counter

A. Field Setting
In order to find out how useful the rule coverage matrix

and heat maps are for indicating starting points for improving
performance bottlenecks, we set up a field user study with
three performance experts from Exact5. Exact is a Dutch-
based software company, which specializes in enterprise re-
source planning (ERP), customer relationship management
(CRM) and financial administration software. Exact has over
1900 employees working in more than 20 countries. Founded
in 1984, Exact has over 25 years of experience in multi-
user client/server software and web applications. Since sev-
eral years, Exact has also been offering a successful multi-
tenant [9] Software-as-a-Service solution, called Exact Online6

(EOL), which is the target of our field study. Exact Online uses
ASP.NET and SQL Server.
B. Participant profile

All participants are performance experts in the EOL team.
The first part of the questionnaire consisted of a set of

5http://www.exact.com
6http://www.exactonline.nl

general questions about their experience, knowledge and the
current process at EOL. Their experience is summarized in
Table II. Participant I and II have 16+ years of experience
with software engineering and 10 years of experience with
performance analysis. Participant III does not have direct
experience as a software engineer, but does have 10 years of
performance analysis experience from a product management
point of view. All participants indicate their knowledge of the
EOL infrastructure and of performance analysis in general as
excellent.

TABLE II
YEARS EXPERIENCE OF THE PARTICIPANTS

Participant Role Soft. Eng. Perf. Analysis EOL

PI Senior Research Engineer 16 10 7
PII Principal Research Engineer 18 10 3
PIII Product Manager 0 10 7

In the current situation at EOL, performance problems are
noticed from log reports or follow from customer complaints
about application speed and availability. Analysis of these
problems and other possible opportunities to improve perfor-
mance is done using a set of standard non-integrated tools
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such as Microsoft’s PerfMon and SQL Profiler. All participants
spend 5–48 hours per week improving the performance of Ex-
act Online, depending upon the number of problems reported.
C. Experimental Setup

In a short preliminary study an initial evaluation of the
usability of WEDJAT and its enclosed heat maps was done. In
two sessions, three participants were requested to investigate
the performance issue discussed in [6] using WEDJAT only. A
large amount of feedback and improvements to the usability
of the heat maps and WEDJAT were gathered from the partic-
ipants. These improvements were implemented and evaluated
during the field study. In the field study, three participants
were requested to investigate a performance issue different
from the one investigated during the preliminary study. Two
of the participants to the field study took part in the preliminary
study, while the third had never worked with WEDJAT before.

The performance data used during the field study was
monitored during a period of one month on part of the
Exact Online infrastructure. The association rule set used by
WEDJAT was trained on the data monitored during the first
week of that period. The monitored part of the infrastructure
consists of 6 webservers, 3 service machines, 2 SQL clusters
and 2 virtual domain controllers, exhibiting a total of 140
performance counter values every minute7.

The process followed during the field study is discussed in
the remainder of this section.

1) Step 1: Demo of WEDJAT: All sessions were started
with a short demo of WEDJAT, demonstrating all its features.

2) Step 2: Assigned Task: The participants were asked to
investigate a real performance issue in WEDJAT for around 1.5
hours. We gave technical assistance during the investigation
and told them they would have to fill in a questionnaire at the
end of the session about the usability of WEDJAT.

The task the experts are asked to solve is the following:
1) Load the data set for April 27 2012.
2) List the times of PIOs found on that date.
3) Investigate the PIO found between 10 AM and 11 AM.
4) Indicate the bottleneck component(s) found in that PIO.
5) Elaborate on how you selected the bottleneck(s).
The bottleneck component in the PIO between 10 AM and

11 AM was formed by the processor of a web server. This
was expressed in WEDJAT by the following:

1) The Processor/% Processor Time performance counter
of ws4 (web server 4) showed a cluster of dark squares
in the rule coverage heat map (see Figure 3).

2) The Processor/% Processor Time performance counter
of ws4 (web server 4) showed a cluster of dark squares
in the deviation-from-mean heat map (see Figure 4).

3) Step 3: Questionnaire: After the investigation, the par-
ticipants were asked to fill in a questionnaire consisting of 5
open questions and 56 questions that could be answered on a 5-
point Likert-scale, ranging from 1 for ‘strongly agree’ to 5 for
‘strongly disagree’. During the questionnaire, all participants
regularly switched back to WEDJAT to answer the questions as

7For a complete list see http://www.st.ewi.tudelft.nl/⇠corpaul/eol list.txt

accurately as possible. The questionnaire and the participants’
answers are listed in Table III.

4) Step 4: Contextual Interview: A large amount of in-
formation and feedback was elicited from the participants
through the use of a contextual interview [10]. During such
an interview, the study participants are requested to solve an
assigned task while they are being questioned constantly when
working with the application for suggestions and feedback
based on their actions. This allows them to articulate their
normal or preferred work practices [10] and to get involved in
the design of the application. During the session with two
participants, we encouraged them to cooperate and discuss
their ideas out loud to elicit more detailed feedback. The
contextual interview was actually not a separate step in the
experiment but was held throughout step 2 and 3, based on
the actions and questions of the participants. When interesting
opportunities arose after an action or question, the participants
were asked to explain why they performed that action or
asked that question. From the discussions that followed, a large
amount of useful feedback could be extracted.

After filling out the questionnaire, the answers of the partic-
ipants in that session were compared, analyzed and discussed,
especially when they were very different from each other.

VI. RESULTS OF THE FIELD USER STUDY

As discussed in the previous section, we asked the partici-
pants (P I, P II and P III) to solve a task and to answer the
questions listed in Table III. In a subsequent step, we compared
the responses of the participants and tried to bridge differing
opinions. In all cases where we identified differing opinions,
this was due to a different interpretation of the question. In this
section, we discuss the most interesting highlights from the
task, questionnaire and anecdotes elicited during the interview.
A. The Assigned Task

All participants could easily solve the assigned task. An
interesting result from the process was that participant I and
II found additional bottlenecks during the investigation, which
were not directly obvious from the rule coverage heat map.
From our heat map, it was only obvious that the processor
of web server 3 was overloaded. However, because the par-
ticipants have experience with the EOL infrastructure, they
decided to start an investigation for the other web servers as
well. The reason for this is that the load of the application
is balanced over the web servers and therefore, they wanted
to see whether the processor of the other web servers was
overloaded as well. As an investigation they compared the
deviation-from-mean heat maps of the different web servers
to find out if any of them exhibited abnormal behaviour. They
found out that all web server processors had the same problem
due to a software error. We found out that our approach did
not detect a problem on all these servers because it is trained
using supervised learning. This means that for a performance
problem to be detected and analyzed correctly, a similar case
should be in the training set, which is difficult for performance
anomalies. This shows that our association rule set either
requires better training or a different generation process. We
consider this future work.
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B. Questionnaire Highlights

1) General: The participants’ general opinion about WED-
JAT was that it is useful and would help them to analyze and
diagnose performance problems better and quicker (Q1, Q2,
Q4, see Table III), even though the usability of the tool has
to improve (Q1). An example of a usability issue WEDJAT
currently has is the following. When the heat maps for a
large period of time are being displayed, they are horizontally
scrollable. Because the names of the performance counters
are on the left side of the heat map, these disappear from the
screen as the heat map is being scrolled. While this does not
make WEDJAT unusable, it would be more comfortable to have
the performance counter names in sight at all times. Improving
the usability of WEDJAT by fixing such issues is future work.
A promising result is that all participants felt very optimistic
about the use of heat maps for performance analysis (Q3).

For all views, we asked whether they should be included in
a performance dashboard for Exact Online or not. The answers
to these questions were different because the participants had
different opinions about what the purpose of a performance
dashboard should be. Participant III, the product manager, felt
that such a dashboard should contain performance analysis
tools while the research engineers believed it should contain
a trigger to start performance analysis only (Q10, Q17, Q24,
Q31, Q33, Q35). A reason for this could be that it is easier
for the research engineers to access additional performance
data when necessary, while this may be more difficult for
the product manager. All participants agreed that the intensity
graph is the most important starting point for performance
maintenance, as it gives the initial indication that the system
is performing relatively slow (Q35).

In an open question (Q57) we asked the participants what
their two favourite WEDJAT features were. It is promising
to see that all participants liked the new views on the data
(rule coverage heat map, deviation-from-mean heat map and
the intensity graph) in WEDJAT best. This indicates WEDJAT
offers new and useful information.

2) Heat Maps: All participants agreed that the heat map
views offer new information which helps them analyze perfor-
mance problems faster (Q8, Q9, Q13, Q14, Q20, Q21). During
the discussion we found out that the participants thought the
heat maps were also useful for communicating and explaining
performance problems to the management and system admin-
istrators. An interesting result was that participant I found the
heat maps very intuitive, while the other participants were
slightly less positive about this (Q7, Q12, Q19). From the
contextual interview we found out that participant I had a
background in statistics, which made him more comfortable
with less traditional visualization techniques. An exception
to this is the missing values heat map (Q25, Q26). Only
participant II found this heat map intuitive and useful. The
main reason for this is that participant II was the actual
participant who requested this feature after the preliminary
study. The other participants found this heat map difficult
to grasp without extra information, e.g., they would like to
receive a ‘trigger’ when a particular value has been missing,

rather than inspect the heat map themselves.
All participants agreed that using the ‘traditional’ line chart

(Section IV-F) and histogram (Section IV-G) in combination
with the heat maps improves the usability of WEDJAT (Q30,
Q32). In addition, they all considered the deviation-from-
mean heat maps to be the most useful ones (Q11-Q16, Q18-
Q23). This is interesting, as our expectation was that the
experts would prefer the rule coverage heat map as it gives
a direct indication of the bottleneck component. However,
during the experiment we found out that the experts preferred
to directly view the deviation-from-mean heat maps of servers
on which they have seen performance problems occur before,
and inspect those for abnormal behaviour (e.g, dark spots in
the heat map). If there was no abnormal behaviour on these
servers, they referred to the rule coverage heat map to see if
it would give another indication of where to look.

3) Applicability: All participants agreed mostly on what
they believe WEDJAT is and is not useful for. According
to them, WEDJAT is most useful for detecting which server
(Q36), instance (Q38) or hardware (Q41-Q45) forms a bottle-
neck, using the rule coverage and deviation-from-mean heat
maps. While they believed that WEDJAT currently is not
capable of detecting which load balancer (Q37) or network
connection (Q40) forms a bottleneck, the participants agreed
the main cause for this was that we currently did not moni-
tor performance counters for that hardware. The participants
expected WEDJAT to be capable of detecting such bottlenecks
after the set of monitored performance counters would be
extended. We have also asked whether the participants believed
WEDJAT could detect which application, e.g., ASP.NET file,
forms a bottleneck (Q39). All participants agreed WEDJAT was
not suitable for this without extra information. We consider
detecting application bottlenecks with WEDJAT as future work.

The participants believed the missing values heat map
was most useful for detecting hardware failures (Q47-Q56).
However, the same limitations as with the bottleneck detection
apply: load balancer (Q48) and network connection (Q51)
failures are difficult to detect currently, as no performance
counters are monitored for them.
C. Additional Insights Obtained From The Interview

In this section we will briefly discuss some of the additional
insights that we gained during the contextual interview with
the participants. The first insight we obtained was that the
participants did not like to cope with graphs that exhibit
more than one metric at the same time. For example, the
deviation-from-mean heat map used more than one color in
the initial version of WEDJAT (green for increasing and red
for decreasing values). All participants agreed that this heat
map was overly complex and confusing because of the large
amount of data. Therefore, we changed the heat map to use
one color instead to represent the absolute deviation from the
mean, which was appreciated much more by the participants.

The second insight we obtained was that the participants
would like a better integration with existing performance tools
such as their own dashboard. In addition, they would like to
see error log files such as those from the SQL server and web
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server integrated with WEDJAT, to display more information
for a selected time interval.

Finally, there was some concern with the generation of the
association rules and the strength of their diagnosis. It is likely
that the generated rules do not cover all performance counters
and therefore may give incomplete or insufficient diagnosis
of a problem. A possible solution is to offer an additional
heat map which gives an overview of performance counters
that exhibited abnormal values for a longer period of time.
Such a heat map would solve at least part of the problem
of supervised learning (see Section VII). Another solution
would be to use a continuous training scheme in which the
training set is constantly improved through user feedback.
The implementation and evaluation of this heat map and a
continuous training scheme will be addressed in future work.

VII. DISCUSSION

A. The Research Questions Revisited

1) RQ 1: Does the rule coverage matrix provide a good
starting point for performance maintenance?: In our field user
study we have seen that the participants appreciated the rule
coverage matrix as a starting point for investigating PIOs. The
rule coverage heat map was considered useful especially in
combination with the deviation-from-mean heat map, which
provided some extra information on top of the rule coverage
heat map. A possibility to improve the rule coverage matrix is
to improve the coverage of the association rule set as discussed
in Section VI-A. A final result from the field user study is that
users prefer the intensity metric as the initial trigger for starting
a PIO investigation, while the rule coverage matrix provides
the starting point for pinpointing the bottleneck component.

2) RQ 2: Are heat maps an appropriate way of visualizing
performance data?: The results of our field study show that
the participants were very enthusiastic about using heat maps
for performance maintenance. They all believed using heat
maps for performance maintenance will speed up the process.
In addition, they were optimistic about using heat maps to
explain performance problems to non experts such as hosting
companies and product management.

B. Threats to Validity

In this section we discuss the threats to validity of our
field user study and our approach for detecting PIOs. For a
discussion of the threats to validity of the intensity metric, we
refer to [6].
External validity. We have performed our field study on one
industrial multi-server SaaS application. Due to its outright
scale and set-up, this application is likely to be representative
of other large-scale SaaS applications.

Only three participants participated in our field user study,
however, all three are performance experts and have many
years of experience with performance maintenance.
Internal validity. We use supervised learning to train our
association rule set. While this may form a threat to the validity
of anomaly detection, we believe this is actually an advantage
for the detection of PIOs. Supervised learning implies we will

investigate PIOs which occur more often only, making them
more interesting for actual performance maintenance.

The complexity of the assigned task might have been too
easy. While the task assigned is indeed relatively easy to solve,
the main focus of the study was to see whether performance
experts appreciated the new view on the performance data.
Future work will consist of evaluating WEDJAT using more
complex tasks in a controlled experiment setting [11].

A possible threat to validity is the fact that the overhead
introduced by monitoring the performance counters influences
our training set and therefore our classification scheme. How-
ever, as accessing performance counters is relatively cheap,
we assume that reading the value of n performance counters
will have O(n) overhead for every time period we make a
measurement. Because this results in constant overhead for all
measurements, we assume that the overhead introduced in the
training set will also exist for the measurements made during
the classification phase and will therefore be negligible.
Reliability validity. WEDJAT and our implementation for
calculating the intensity metric are available for download
from our website8.

C. Lessons Learned
We have learned several lessons from our research. These

are the most important:
Performance maintenance is usually done using simple tools
while more integrated approaches are desired by the experts
(Section I). Experts prefer approaches that can be integrated
with their existing performance tools and like to avoid switch-
ing between programs and environments as much as possible.
Combining traditional with novel methods for performance
maintenance data visualization can help experts to get com-
fortable with the novel visualizations quicker (Section VI-B2).
Experts do not like to cope with graphs that exhibit more than
one metric at the same time (Section VI-C). In our effort to
combine several metrics in one heat map, we found out that the
performance experts did not appreciate this as they found the
learning curve for such maps too steep. Instead, they preferred
several maps displaying one metric at a time.
It is important not to rely on the rule coverage matrix only
when investigating a PIO (Section VI-A) in order to prevent
being too dependent on the assocation rule set. It is possible
that this rule set is not complete. Instead, it is better to combine
the results with those from the deviation-from-mean heat maps
to get a broader result.

VIII. RELATED WORK
This section discusses methods for assisting performance

experts in finding performance improvement opportunities.
Performance Anomaly Analysis. Important tools for per-
formance experts are anomaly detection mechanisms. Often,
these mechanisms detect anomalies that can be prevented in
the future by improving the performance of the system.

Breitgand et al. [12] propose an approach for automated
performance maintenance by automatically changing thresh-
olds for performance metrics for components, such as response

8http://swerl.tudelft.nl/bin/view/Main/MTS
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time. In their approach, they set a threshold for the true
positive and negative rate of the violation of a binary SLO.
Based on this setting, their model tries to predict and adapt
the thresholds for components such that the true positive and
negative rate converge to their threshold, hence improving the
performance of the system. In contrast to our work, they use
single threshold values for performance metrics, while we use
association rules which lead to combinations of thresholds.

Munawar et al. [13] search for invariants for the relationship
between metrics to specify normal behaviour of a multi-
tier application. Deviations from this relationship help system
administrators to pinpoint the faulty component. In their work
they use linear regression to detect relationships between
metrics, which limits their research to linear relationships. Our
approach does not explicitly look for direct relationships be-
tween metrics, but focuses on combinations of values instead.

Cohen et al. [5], [14] present an approach to correlate
low-level measurements with SLO violations. They use tree-
augmented naive Bayesian networks as a basis for performance
diagnosis. Their work is different from ours in the way we
detect the possible performance improvement. As we combine
several rules, our approach is capable of giving a more detailed
analysis of the location of the improvement.

Syer et al. [15] use covariance matrices to detect deviations
in thread pools that indicate possible performance problems.
The focus of their approach is on thread pools while ours is
not limited to a particular architectural pattern.

Malik et al. [16] have presented an approach for narrowing
down the set of performance counters that have to be moni-
tored to automatically compare load tests by using statistics.
Their technique also ranks the performance counters based on
their importance for load tests. Their work focuses on selecting
metrics (i.e., the dimension reduction problem), while our
work focuses on analyzing those metrics instead.

Jiang et al. [17] analyze log files to see if the results of a new
load test deviate from previous ones. This allows developers to
analyze the impact of their changes. Nguyen et al. [18] address
a similar problem, namely the problem of finding performance
regressions. The focus of these approaches is on analyzing
whether a change had the desired effect on performance, while
our approach focuses on finding what to change.
Profiling. Profilers are tools which collect run-time infor-
mation about software [8], such as the amount of memory
used or the number of instructions executed. More advanced
profilers analyze the ‘run-time bloat’, e.g., unnecessary new
object creations [19]. Profilers assist system administrators in
the way that they help identify the block or method which
uses the most resources and hence may form a bottleneck.

Bergel et al. [20] extend profiling with the possibility to de-
tect opportunities for code optimization. Using visualizations,
they advise developers on how to refactor code so that it will
run faster. Their advice is based on principles such as making
often called functions faster.

In general, while there are methods for decreasing the
amount of data and instrumentation [21], [22], execution
profiling introduces considerable overhead due to the large

amount of data that needs to be monitored. In addition, because
profilers usually analyze hot code (e.g., the code that uses the
most CPU cycles), they are not always directly suitable for
detecting all possible performance improvements [22]. Finally,
it is possible that many sites must be monitored in a distributed
environment. Therefore, while execution profiling plays an
important role in performance maintenance, its use should
be well-considered and minimally. Our approach can assist
in reducing the execution profiling overhead by pinpointing
the hardware or server on which profiling should be done.
Using Heat Maps for Performance Maintenance. Heat
maps have been used for performance analysis before [23],
[24], but we have evaluated our approach in an industrial
setting and on multi-server data.

IX. CONCLUSION

In this paper we have proposed a technique for detecting
performance improvement opportunities (PIOs) using asso-
ciation rules and performance counter measurements. We
have implemented this technique, together with several novel
techniques for the visualization of performance data, in an
open source tool called WEDJAT. We have evaluated WEDJAT,
the novel visualization methods and our approach in a field
user study with three performance experts from industry for a
large-scale industrial SaaS application. The results of the user
study show that WEDJAT helps them to perform performance
maintenance easier and faster. In short, our paper makes the
following contributions:

• An approach for using heat maps to analyze the perfor-
mance of a system and exploit performance improvement
opportunities

• The open source tool WEDJAT, which assists during the
performance maintenance process

• A field user study in which WEDJAT and the idea of using
heat maps for performance analysis are evaluated by three
performance experts from industry

In future work we will focus on improving the usability of
WEDJAT and the coverage of the used rule set. In addition,
we will keep on extending WEDJAT with several new visu-
alization methods. Finally, we will perform a more extended
evaluation of our approach in which we will a) do a true/false
positive/negative analysis of our results and b) assign more
complex tasks to solve to the experts.
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TABLE III
QUESTIONNAIRE RESULTS

P
I

P
II

P
II

I

General (1 = strongly disagree, 5 = strongly agree)
Q1 The tool was easy to use. 4 3 2
Q2 A tool like Wedjat will save me time. 5 3 5
Q3 There is added value in using heatmaps for performance analysis. 5 4 5
Q4 A tool like Wedjat will help me understand and diagnose performance

problems better.
4 4 5

Q5 Switching between different datasets in Wedjat was easy. 4 3 4
Rule coverage heat map
Q6 The meaning of this heatmap was clear to me. 4 3 3
Q7 The heatmap was intuitive. 4 3 3
Q8 The heatmap provides new information. 4 3 4
Q9 The heatmap improves the speed with which problems can be analyzed. 4 3 4

Q10 Adding the rules heatmap view to a performance dashboard for EOL will
save me time.

4 1 5

Deviation-from-mean heat map
Q11 The meaning of this heatmap was clear to me. 4 3 3
Q12 The heatmap was intuitive. 5 3 3
Q13 The heatmap provides new information. 4 3 4
Q14 The heatmap improves the speed with which problems can be analyzed. 4 3 4
Q15 I clicked in the heatmap to get more details about a value. 4 4 5
Q16 The extra information revealed after clicking was useful. 5 4 5
Q17 Adding the raw values heatmap view to a performance dashboard for EOL

will save me time.
2 1 4

Deviation-from-mean heat map per server
Q18 The meaning of this heatmap was clear to me. 4 3 3
Q19 The heatmap was intuitive. 4 3 3
Q20 The heatmap provides new information. 3 3 4
Q21 The heatmap improves the speed with which problems can be analyzed. 3 3 4
Q22 I clicked in the heatmap to get more details about a value. 4 3 5
Q23 The extra information revealed after clicking was useful. 4 3 5
Q24 Adding the raw values per server heatmap view to a performance dashboard

for EOL will save me time.
3 1 4

Missing values heat map
Q25 The missing values tab was intuitive. 2 4 3
Q26 The missing values tab was useful. 2 4 2
Line chart
Q27 The meaning of this chart was clear to me. 5 4 5
Q28 The chart was intuitive. 5 4 5
Q29 The chart provides new information. 4 4 3
Q30 The chart improves the speed with which problems can be analyzed. 4 4 5
Q31 Adding the line chart to a performance dashboard for EOL will save me

time.
3 1 4

Histogram
Q32 I used the extra information provided in the histogram tab. 4 3 5
Q33 Adding the histogram tab to a performance dashboard for EOL will save

me time.
2 1 3

Intensity
Q34 I used the extra information provided in the intensity tab. 4 3 5
Q35 Adding the intensity tab to a performance dashboard for EOL will save me

time.
4 5 4

Applicability: bottleneck detection
(1 = WEDJAT is very unuseful for this, 5 = WEDJAT is very useful for this)
Q36 Detecting the server that forms the bottleneck. 5 5 5
Q37 Detecting the load balancer that forms the bottleneck. 3 1 1
Q38 Detecting the instance that forms the bottleneck. 5 4 5
Q39 Detecting the ASPX that forms the bottleneck. 1 1 1
Q40 Detecting the network connection that forms the bottleneck. 1 1 1
Q41 Detecting the hardware that forms the bottleneck. 5 4 3
Q42 Detecting the CPU that forms the bottleneck. 5 4 5
Q43 Detecting the HDD that forms the bottleneck. 5 4 5
Q44 Detecting the memory that forms the bottleneck. 5 4 5
Q45 Detecting other hardware that forms the bottleneck. 5 1 3
Q46 Detecting a thread pool that forms the bottleneck. 1 3 1
Applicability: failure detection
Q47 Detecting a server failure. 4 3 5
Q48 Detecting a load balancer failure. 3 1 1
Q49 Detecting an instance failure. 4 3 5
Q50 Detecting an ASPX failure. 1 1 1
Q51 Detecting a network failure. 3 1 4
Q52 Detecting hardware failure. 4 3 5
Q53 Detecting a CPU failure. 4 3 5
Q54 Detecting a HDD failure. 4 3 5
Q55 Detecting a memory failure. 4 3 5
Q56 Detecting other hardware failures. 3 1 4
Q57 Favorite features in WEDJAT:
PI Deviation-from mean heat map, intensity graph
PII Rule coverage heat map, intensity graph
PIII Rule coverage heat map, deviation-from mean heat map
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