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ABSTRACT
With the increasing popularity and complexity of containerized
software systems, satisfying the performance requirements of these
systems becomes more challenging as well. While a common rem-
edy to this problem is to increase the allocated amount of resources
by scaling up or out, this remedy is not necessarily cost-e�ective
and therefore often problematic for smaller companies.

In this paper, we study an alternative, more cost-e�ective ap-
proach for satisfying the performance requirements of container-
ized software systems. In particular, we investigate how we can
satisfy such requirements by applying software multi-versioning to
the system’s resource-heavy containers. We present DockerMV, an
open source extension of the Docker framework, to support multi-
versioning of containerized software systems. We demonstrate the
e�cacy of multi-versioning for satisfying the performance require-
ments of containerized software systems through experiments on
the TeaStore, a microservice reference test application, and Znn,
a containerized news portal. Our DockerMV extension can be used
by software developers to introduce multi-versioning in their own
containerized software systems, thereby better allowing them to
meet the performance requirements of their systems.

CCS CONCEPTS
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1 INTRODUCTION
As the popularity and complexity of software systems increase, it
becomes more challenging to satisfy the performance requirements
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of such systems. For example, one common problem that may hap-
pen for a web-based software system is the Slashdot e�ect. The
Slashdot e�ect is a resource allocation problem that happens when
a high-tra�c website posts a link to a low-tra�c website [1; 2].
If the low-tra�c website is not capable of handling the sudden
increase in tra�c, it may experience prolonged response times or
unavailability, thereby violating the website’s performance require-
ments. One common remedy to this problem is to allocate more
server resources to make sure that the performance of the web-
site satis�es the requirements. However, this approach can become
very expensive and could add high over-provisioning costs, which
not every project can a�ord. An alternative solution could be to
have di�erent versions of the services provided by the website.
For instance, if the website had lightweight versions of some of its
essential, resource-heavy components, it could use them during the
high load to reduce its resource usage while maintaining reasonable
response times. A similar example of this software multi-versioning
concept has been used by Google’s Gmail, which has a lightweight
HTML-based version that is used when the user’s browser does not
support the feature-rich but resource-heavy JavaScript-based ver-
sion [14]. By falling back on the lightweight version, the user would
still be able to use Gmail, albeit at a reduced quality of service.

Software multi-versioning is traditionally applied to mission-
critical systems, such as �ight or nuclear power plant control
systems, to improve their dependability, reliability or fault toler-
ance [9; 10; 21; 29]. As these systems are often monolithic, software
multi-versioning requires maintaining several full versions of the
system, making it a costly process. As a result, software multi-
versioning has never been widely used for non-critical systems, as
the cost of maintaining several versions usually does not outweigh
the bene�ts for non-critical systems.

However, the advent of systems with containerized architectures,
such as microservice-based ones, opens many new opportunities for
applying software multi-versioning. As these systems are divided
into smaller components that each run inside their own container,
we can apply software multi-versioning to a component rather than
the whole system. Figure 1 shows an example of an architecture of
a microservice-based application (the TeaStore application [41])
in which the Recommender microservice uses multi-versioning. For
every request, the system can select at runtime whether the Light-
Weight or HeavyWeight version of the Recommender microservice
will be used to ful�ll the request.

In this paper, we examine how software multi-versioning can
help satisfy the performance requirements of containerized soft-
ware systems. We conduct two experiments on the performance of
two containerized systems under varying loads. In the �rst experi-
ment, we study the TeaStore application [41], which is a reference
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Figure 1: High-level architecture of the TeaStore application
with multi-versioning of the Recommendermicroservice.

application for benchmarking and testing microservices. We ap-
plied multi-versioning to its Recommender service to simulate an
accurate but resource-heavy recommendation algorithm, and a less
accurate but more lightweight version. In our second experiment,
we study a containerized three-tier online news application (the
Znn application [15]) where our adapted version of the Znn appli-
cation reduces the level of service during the high load by using
di�erent versions of the content-providing component.

To implement our experiments, we present an extended version
of the Docker container platform (DockerMV) that allows the cre-
ation of multi-version services by deploying several containers for
each version of the service. To allow service developers to control
the load balancing between the multiple versions of their service
in a transparent manner, DockerMV provides a rule-based load bal-
ancer which can be con�gured at the service-level rather than at
the system level. Hence, by using DockerMV, developers can extend
their own containerized systems with multi-versioned services in a
manner that is transparent to the rest of the system.

The rest of the paper is organized as follows. Section 2 provides
background information about containerized software systems,
microservices and managing containers. Section 3 presents a mo-
tivational example for our approach. In Section 4, we present the
concept of our approach. In Section 5, we explain our experimental
setup. Section 6 discusses the results of our experiments. Section 7
gives an overview of the related work, and Section 8 explains the
threats to the validity of our work. Finally, Section 9 concludes the
paper.

2 BACKGROUND
In this section, we provide background information about container-
ized software systems and managing containers.

Load
Balancer

V11

V1n

Service S1

Request Response

Figure 2: High-level architecture of a regular service in
Docker where requests are load balanced in a Round Robin
manner.

2.1 Containerized Software Systems
One of the essential techniques that enable cloud computing is
virtualization [35], which is used to create virtual environments
in which processes or services are isolated from each other [11],
thereby allowing multi-tenancy of hardware resources [12; 28].
Traditionally, virtualization is achieved using a hypervisor. A hy-
pervisor is a process to create and run virtual machines (VMs) on
a host system, making it appear that each VM is using its own
independent hardware resources. Some well-known examples of
hypervisors are VMware ESX, KVM, Xen, and Hyper-V [3; 32; 40].
When using hypervisors for virtualization, each virtual machine
runs its own operating system (OS) on the host system, which
makes the virtual machines resource-heavy and severely limits the
number of virtual machines that can run in parallel on a single host.

A recent advancement in virtualization techniques is the advent
of lightweight software containers, which share the OS, binaries
and libraries of the host system. As a result, containers are smaller
and more lightweight than virtual machines that are started by a
hypervisor. Hence, it is possible to run hundreds of containers on
a single host machine. Also, as these containers use the host’s OS,
they can be started much faster [11].

2.1.1 Microservices. Microservices are a popular architectural ap-
proach for creating containerized software systems which is in-
spired by service-oriented computing [20]. In the microservices
architecture, the system is developed from a set of small indepen-
dent services [33]. While microservices can be deployed in virtual
machines, the best way to leverage their full potential is to run
them inside containers [11; 39]. The independence of microser-
vices allows developers to work on them separately and use the
most suitable technology to develop each of them [19]. Also, mi-
croservices can be modi�ed independently as the requirements of
the system change. Microservices communicate through RESTful
APIs or a message-based protocol, which allows to scale an appli-
cation quickly by replicating the microservice that is under heavy
load [30].

2.2 Managing Containers
A popular framework for deploying software containers is the
open source Docker container platform.1 Docker combines several
kernel-level technologies such as LXC and cgroups to enable the de-
ployment and reuse of highly portable, lightweight containers [32].

1https://www.docker.com/
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A Docker container is a runtime instance of a Docker image. A
Docker image speci�es everything that is necessary to run an ap-
plication as a container, for example, which libraries should be
enabled in the container and how they should be con�gured [6].
When Docker executes in swarm mode [8], (replications of) con-
tainers are started as services that are part of a larger, service-based
system (e.g., a microservice-based one) [7]. Figure 2 shows the high-
level architecture of a service S1 that consists of n exact replicas
of containers that run version V1 of the service. The load balancer
balances the tra�c to the service in a Round Robin-manner be-
tween its n containers. One of the main bene�ts of a Docker service
is that the service appears as a single unit to other parts of the
system, regardless of the number of replicated containers it consists
of. Hence, other parts of the system need not be aware of the load
balancing.

One downside of Docker services is that all the containers of a
service are exact replicas. In the next section, we present a motivat-
ing example in which it would be bene�cial to have a service that
consists of containers that run di�erent versions of the service.

3 A MOTIVATING EXAMPLE
Erica is a developerwhoworks for an e-commerce start-up company
that sells products online. The start-up company has migrated all
of its software systems to containerized ones. As the start-up has
limited �nancial resources, it is important to run their systems
in a cost-e�ective manner. Erica is responsible for designing the
algorithm that recommends new products to the customers based
on the customer’s shopping cart, the customer’s order history, or
the popularity of the items. Erica suggested several algorithms for
the recommendation system, each with their own strengths and
weaknesses. While the algorithm needs to be fast, it should provide
high quality recommendations as well.

Unfortunately, Erica noticed that the performance requirements
of one the software systems could not be satis�ed when the rec-
ommendation algorithm was enabled. Erica’s �rst solution was
to increase the allocated server resources. However, the start-up
company cannot a�ord these extra costs. Instead, Erica decided
to implement two versions of the algorithm; one resource-heavy
version that provides high quality recommendations, and one light-
weight version that provides lower quality but still acceptable rec-
ommendations. Hence, by switching between the algorithms as the
availability of resources allows, the system can make the trade-o�
between resource usage and recommendation quality. For example,
when there is a sale event happening on the website the lightweight
algorithm can be used, to ensure the recommendation algorithm
does not consume too many resources.

4 OUR APPROACH
Software multi-versioning is the concept of developing and running
several di�erent versions of a software system or component to
improve one or more of the system’s quality attributes. Our ap-
proach is to apply software multi-versioning to the containers of a
service in a containerized software system. To deploy multi-version
services, we need to deploy multiple containers, each of which are
instantiated from di�erent container images. Our goal is to imple-
ment multi-versioning in a transparent manner, i.e., users of the

Listing 1: The original docker service create command.
We omitted the arguments that are not relevant to our work
for clarity.

1 $ docker service create [$OPTIONS] $IMAGE [$REPLICATIONS]

services and/or containers are not aware of the multi-versioning.
Hence, our multi-version containers should form a uni�ed service
which can be treated like a regular single-version service.

4.1 Implementation
To implement our approach, we extended the Docker framework
into the DockerMV framework. To create a service with the orig-
inal Docker framework, the docker service create command
in Listing 1 is used. The original command takes the following
parameters:

• $OPTIONS: Optional parameters that can be used to con�g-
ure container-speci�c parameters, such as the environment
variables and the memory limit.

• $IMAGE: The image from which the container should be cre-
ated.

• $REPLICATIONS: The number of replications of the container
that should be created.

The command in Listing 1 will create a service that consists
of $REPLICATIONS exact copies of the container that is created
from the $IMAGE image with the con�guration options speci�ed
in $OPTIONS. The docker service create command in Listing 1
does not support multi-versioning. Therefore, we extended the com-
mand’s implementation to accept multiple images with di�erent
replication and con�guration parameter values.

Listing 2 shows the extended command, which allows the cre-
ation of multi-version Docker services. In particular, the extended
command allows the creation of a Docker service that consists of
$REPLICATIONS1 + ... + $REPLICATIONSn containers, that were
created from n images. In addition, the extended docker service
create command supports the following parameters:

• Network: The name of the overlay network to connect the
containers to each other (�xed for all containers in the Docker
service) (Required).

• Name: The Docker service name (�xed for all containers in
the Docker service) (Required).

• Environment variables: The environment variables (�xed
for all containers in the Docker service) (Optional).

• Memory: The memory limit for a container (Optional).
• Swap memory: The swap memory limit for a container (Op-
tional).

• CPU: The number of CPUs for a container (Optional).
• Container port: The port that the containers of the Docker
service will listen on (�xed for all containers in the Docker
service) (Required).

• Rule-set: The location of the user-de�ned rule-set.
In our extended command, the network, name, environment

variables, and container port parameters have the same value
across all containers of the service. However, the memory, swap
memory, and CPU can be con�gured di�erently for each container
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Listing 2: The extended docker service create command

1 $ docker service create [$OPTIONS]
2 $IMAGE1 $REPLICATIONS1
3 ...
4 $IMAGEn $REPLICATIONSn

Listing 3: An example invocation of the extended docker

service create command that deploys two versions of
the teastore-recommender service.

1 $ docker service create
2 e REGISTRY_HOST=host_IP e REGISTRY_PORT=10000
3 e HOST_NAME=host_IP e SERVICE_PORT=3333
4 10.2.5.26 Network recommender 8080 1g 1g 0.2 rules.txt
5 sgholami/teastore�recommender:HeavyWeight 1
6 sgholami/teastore�recommender:LightWeight 1

Listing 4: Format of the rules for the load balancer

1 $METRIC $OPERATOR $THRESHOLD ,
2 (version $VERSION_NAME perc=$PERCENTAGE;)+

in the service. Listing 3 shows an example invocation of the ex-
tended command (which is part of our DockerMV extension). In
particular, two versions of the teastore-recommender service
are started (one replication of each), that are connected to the
recommender network. Each of the containers initializes four envi-
ronment variables (REGISTRY_HOST, REGISTRY_PORT, HOST_NAME
and SERVICE_PORT).

4.2 Load Balancing
Figure 2 shows an example architecture of a Docker service. As
shown in Figure 2, a Docker service has a load balancer that dis-
tributes the incoming requests between the service’s containers. As
these containers are created from the same image, the load balancer
usually distributes the incoming tra�c in a round-robin manner
(i.e., an equal amount of tra�c to each container) [8]. Figure 3
shows the architecture of a service that consists of containers made
from di�erent images. As these containers are created from di�er-
ent images, they may perform a similar task at di�erent quality
of service levels, e.g., comparable to our motivating example in
Section 3. Hence, it may no longer be desirable to distribute the
tra�c in a round-robin manner. Instead, we would like to balance
the load based on performance metrics of the service, such as me-
dian response times or CPU utilization. Therefore, we implemented
a rule-based load balancer in our services. We used a customized
version of NGINX2 as the load balancer amongst the di�erent repli-
cations of a service’s containers. Our customized load balancer has
a user-de�ned rule-set which de�nes how to balance the incoming
tra�c to satisfy a system’s performance requirements. Listing 4
shows the format of the rules for the load balancer.

The parameters in the rule in Listing 4 are as follows:

2https://www.nginx.com

Listing 5: Example rule for the load balancer

1 RT > 0.4 ,
2 version recommender:HeavyWeight perc=40;
3 version recommender:LightWeight perc=60;

Load
Balancer

V11

V1m

Service S1

Vn1

Vnk

Request

Rules

Response

Figure 3: High-level architecture of a service with multi-
versioning where requests are balanced based on a rule-set.

• $METRIC: The metric that is used to check whether a rule
should �re. Currently only RT (median response time) is
supported.

• $OPERATOR: The relational operator (<, <=, >, >= or ==) that
is used in the condition to check whether a rule should �re.

• $THRESHOLD: The threshold for the metric that is used in the
condition to check whether a rule should �re.

• $VERSION_NAME: The name of one of the versions of the
service.

• $PERCENTAGE: The percentage of requests to be directed to
the container (between 1 and 100).

Listing 5 shows an example rule, in which 40% of the requests are
directed to the �rst container (i.e., the HeavyWeight version of the
service), and the second (LightWeight) container handles the other
60% of the requests. We recalculate the median response time every
�ve seconds from NGINX’s log �le. NGINX uses this median value
to decide which rule should be used when balancing the incoming
tra�c. NGINX saves the $time_local, and $request_time for
each of the incoming requests. The $time_local returns the local
time of the machine, and we use that time to identify the requests
which were received in the last n seconds. The $request_time is
the elapsed time since the �rst bytes were read from the client.

4.3 On the Necessity of Our Approach
One could argue that software multi-versioning could easily be
achieved using if-statements inside a service’s source code, or by
simply starting multiple services (i.e., one for each version). How-
ever, source code-based solutions have the disadvantage that they
clutter the source code, making maintenance and understanding
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Figure 4: High-level architecture of the Znn application

of the code more challenging. In addition, starting multiple ser-
vices causes software multi-versioning to no longer be transparent,
which has obvious (negative) consequences for the other parts of
the system. For example, the system now needs to be aware of
more complex load balancing requirements. Hence, our approach
is necessary to provide multi-versioning in containerized systems
in a transparent, non-cluttered manner.

5 EXPERIMENTAL SETUP
In this section, we elaborate on our experimental setup. The goal of
our experiments is to study the bene�ts of softwaremulti-versioning
for satisfying the performance requirements of containerized soft-
ware systems.

5.1 Subject Systems
In our experiments, we study the TeaStore [41] and the Znn ap-
plications. The TeaStore application is a reference microservice
application that can be used for performance testing and bench-
marking. The TeaStore application simulates an online store that
is composed of six microservices (see Figure 1). Every microservice
runs inside its own container. In addition, the database runs inside
its own container.

The Znn application [15] is a three-tier web-based news portal
that can be used for testing and benchmarking of self-adaptive
applications. The Znn application contains a pool of web servers, a
MySQL database with news-related text and multimedia contents,
and a load balancer that receives requests from clients and dis-
tributes them among the web servers in a Round Robin manner.
The high-level architecture of the Znn application is shown in Fig-
ure 4. The source code of the TeaStore3 and the Znn4 applications
are both publicly available.

5.2 Introducing Multi-Versioning in the Subject
Systems

To introduce multi-versioning in the TeaStore application, we
adapted the Recommender service, which is designed to return rec-
ommendations based on the user’s history and items in their shop-
ping cart (similar to our motivating example in Section 3). The
TeaStore application provides several algorithms and trains them
once the service is �rst launched. To conduct our experiment, we se-
lected one of the algorithms, which is the SlopeOne algorithm, and

3https://github.com/DescartesResearch/TeaStore
4https://github.com/cmu-able/znn
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Figure 5: Containerized deployment of Znn inwhichwe have
two di�erent versions of the Media service.

forced retraining every two minutes. The multiple retraining is ap-
plied to simulate a higher load and pressure on the system in which
the Recommender service is replicated (and hence retrained) on sev-
eral containers. The retraining causes slower response times of the
Recommender. As a result, we use two versions of the Recommender
in our experiment, one with regular retraining (HeavyWeight) and
another with a single training (LightWeight). Figure 1 shows the
architecture of the TeaStore application with the multi-versioned
Recommender service.

The Znn application returns news articles that contain multi-
media contents (such as a video that is sent by the web server).
Therefore, when the load of the system increases, the system’s
median response time rises (as the network bandwidth becomes a
bottleneck). Hence, we created two di�erent versions of the web
servers. The �rst version provides the original news article along
with its multimedia contents, while the other version of the ser-
vice returns only the text contents of the news. Figure 5 shows
the high-level architecture of the containerized version of the Znn
application with multi-versioning.

5.3 Experiments
We conducted three experiments for each of the subject systems:

• Ideal Case Experiment: In this experiment, we tested the
“ideal case" for each of the systems, i.e., the case in which
all requests are served by the heavyweight versions of the
services. Hence, for the TeaStore application all requests
are served by the Recommender that is constantly retrained,
and for Znn all requests receive a multimedia response.

• Worst Case Experiment: In the second experiment, we
tested the worst-case setup (in terms of quality of service,
i.e., we only used the lightweight versions of the services) for
each of the subject systems. For the TeaStore application,
the worst case is to use only the Recommender service with
a single training. In the Znn application, the worst case is to
return only the text responses.
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• Adaptive Experiment: Finally, we studied how multi-
versioning together with an adaptive balancing of the work-
load can help to satisfy the performance requirements. For
each of the subject systems, we deployed both of the ver-
sions of the services and balance the load based on a cus-
tomized rule-set. In this setup, we used our extended version
of Docker (DockerMV) along with our customized NGINX
load balancer.

These experiments are summarized in Table 1. To demonstrate
our approach, we de�ned the performance requirements as follows:

• For the TeaStore application, we set 450 milliseconds as the
upper limit for the median response time.

• For the Znn application, we set 1 second as the upper limit
for the median response time.

Both of these performance requirements were de�ned empiri-
cally based on the ideal and worst case experiments. Please note
that the exact choice of performance requirements does not matter
much—our sole purpose in this paper is to demonstrate the e�cacy
of software multi-versioning to satisfy performance requirements.

5.4 Workload
We used Apache JMeter,5 a tool for load testing web applications
to generate workloads for our experiments.

For the TeaStore application, we generated the workload using
the JMeter script that is provided by the TeaStore developers and
modi�ed it to add more items to the shopping cart to put more
pressure on the Recommender service. We generated a workload of
100 users who concurrently send HTTP requests to the TeaStore
application for di�erent purposes such as opening the home page,
logging in, or adding items to the cart. This workload continued
for 1,000 seconds. Each user sends an HTTP request to the server
and receives an HTML page, and as soon as the user receives a
response, they send the next request.

For the Znn application, we generated a workload that sends
HTTP requests and simulates multiple users sending requests to
the Znn application concurrently. Figure 6 shows the shape of the
workload and the number of active users during each of the two-
hour experiments. For instance, at the highest peak where the
number of active users is 200, it means that 200 threads concur-
rently send requests to the servers, and when they get a response,
they send another request. We use the same workload across the
experiments for each of the subject systems.

5.5 Deployment of the Subject Systems
Table 2 shows the description of the containers that we used for the
experiments. We limited the containers’ memory, swap memory,
and CPU to stop them from growing too much and allocating all
of the available resources. These limits were de�ned based on our
experience with the subject systems.

We provisioned one virtual machine in the Compute Canada
cloud6 and one virtual machine in the Cybera Rapid Access Cloud7
to run our containers for both of the experiments. In particular, we

5https://jmeter.apache.org
6https://www.computecanada.ca/research-portal/national-services/compute-

canada-cloud
7https://www.cybera.ca/services/rapid-access-cloud/

Figure 6: Shape of the Znn application workload

Listing 6: NGINX rule set for the TeaStore application

1 RT < 0.1 ,
2 version recommender:HeavyWeight perc=99;
3 version recommender:LightWeight perc=1;
4 RT < 0.25 ,
5 version recommender:HeavyWeight perc=90;
6 version recommender:LightWeight perc=10;
7 RT < 0.4 ,
8 version recommender:HeavyWeight perc=80;
9 version recommender:LightWeight perc=20;
10 RT >= 0.4 ,
11 version recommender:HeavyWeight perc=70;
12 version recommender:LightWeight perc=30;

ran the JMeter script on the Compute Canada cloud and the subject
systems on the Cybera cloud. Table 3 summarizes the con�gurations
of our virtual machines.

The source code of the DockerMV and more details about our
experiments can be found on the project’s GitHub repository [23].

5.6 Load Balancing
For the TeaStore application, we set the rules presented in List-
ing 6 for NGINX to balance the load between the versions of the
Recommender service. Listing 7 shows the set of rules for the Znn
application. Both rule sets were de�ned empirically based on ob-
servations during preliminary runs of the experiments.

6 EXPERIMENTAL EVALUATION
In this section, we discuss the results of our experiments for each
subject system.

6.1 Experiments with the TeaStore Application
Figure 7a shows the median response times of the TeaStore appli-
cation in our experiments. We illustrated the result of all tests in
one plot as the range of their values is close, and it is possible to
observe the changes in all of them together. Figure 7b shows the ra-
tio of requests that were responded to by the HeavyWeight version
of the Recommender service. We observe that the median response
time �uctuates around our performance requirement threshold as
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Table 1: A description of the experiments that we conducted for the TeaStore and Znn applications

TeaStore Description Znn Description

Ideal case experiment Recommender with multiple training Multimedia responses only
Worst case experiment Recommender with single training Text responses only
Adaptive experiment Adaptive load distribution Adaptive load distribution

Table 2: Description of the containers in the experiments

Name Docker Image Memory Swap Memory CPU

HeavyWeightRecommender sgholami/teastore-recommender:HeavyWeight 1G 1G 0.4
LightWeightRecommender sgholami/teastore-recommender:LightWeight 1G 1G 0.4
Multimedia alirezagoli/znn-multimedia:v1 1G 1G 0.4
Text alirezagoli/znn-text:v1 1G 1G 0.4
NGINX sgholami/nginx-monitoring unlimited unlimited unlimited
NGINX_o�cial NGINX unlimited unlimited unlimited
MySQL alirezagoli/znn-mysql:v1 unlimited unlimited unlimited

Table 3: Description of the virtual machines

Cloud Instance VCPUs Memory OS

Cybera Experiment 4 8GB Ubuntu-18.04
Compute Canada JMeter 4 15GB Ubuntu-18.04

Listing 7: NGINX rule set for the Znn application

1 RT < 0.1 ,
2 version znn�multimedia:v1 perc=99;
3 version znn�text:v1 perc=1;
4 RT < 0.2 ,
5 version znn�multimedia:v1 perc=80;
6 version znn�text:v1 perc=20;
7 RT < 0.3 ,
8 version znn�multimedia:v1 perc=70;
9 version znn�text:v1 perc=30;
10 RT < 0.6 ,
11 version znn�multimedia:v1 perc=40;
12 version znn�text:v1 perc=60;
13 RT < 0.8 ,
14 version znn�multimedia:v1 perc=30;
15 version znn�text:v1 perc=70;
16 RT >= 0.8 ,
17 version znn�multimedia:v1 perc=20;
18 version znn�text:v1 perc=80;

the load balancer distributes the load between the HeavyWeight
and LightWeight versions of the service.

6.2 Experiments with the Znn Application
Figure 8a shows the median response time of the ideal case for the
Znn application when we are using only the multimedia version of
the service. During this experiment, the median response time of
the application goes up to around 25 seconds, which indicates that
the resources for the application are severely under provisioned.
Figure 8b shows the median response time of the worst case exper-
iment, which shows that the available resources can easily handle
this type of tra�c. However, the quality of service is considerably
reduced since all requests are handled by the text version of the
service. Figure 9a shows the median response time when using
software multi-versioning to balance between the multimedia and
text version of the service. In addition, Figure 9b shows the ratio of
the requests which were responded to by the multimedia server in
the adaptive experiment. Figures 9a and 9b show that the system
deals with the increases in workload by balancing the majority of
the requests (�rst approximately 50-70% and then approximately
80%) to the text version of the service.

Summary: Multi-versioning allows us to satisfy the perfor-
mance requirements of subject systems while maintaining a
level of Quality of Service that is as high as possible using
the given resources.

7 RELATEDWORK
In this section, we discuss prior work that is related to ours. In
particular, we discuss related work on software multi-versioning,
software multi-versioning for containerized systems, and perfor-
mance engineering of containerized systems.
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(a) Median response time of the TeaStore application (b) The ratio of requests responded by the HeavyWeight version of the
service

Figure 7: The TeaStore application experiments and the distribution ratio of tra�c using software multi-versioning and adap-
tive load balancing

(a) The median response time when running only the
multimedia-version of the service

(b) The median response time when running only the text version
of the service

Figure 8: The Znn application experiments using only the multimedia vs only the text version of the service. Note that the
scales on the y-axes are di�erent.

(a) The median response time when running the services with
multi-versioning and using the rules de�ned in Listing 7

(b) The ratio of requests responded by the multimedia version of the
service

Figure 9: The Znn application experiment using software multi-versioning and adaptive load balancing
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7.1 Software Multi-Versioning
Until now, software multi-versioning has been used for several
purposes, such as improving a system’s security [13; 22; 31; 36],
safety [25], reliability [16], and availability [24]. In these cases, soft-
ware multi-versioning is often used as a means to achieve software
redundancy, i.e., to have several di�erent versions of the software
that are functionally equivalent, yet di�erent in terms of e.g., im-
plementation or used implementation language.

Larsen et al. [31] studied the e�ect of automated software re-
dundancy on a system’s security. Franz et al. [22] used software
multi-versioning as a defense mechanism for a system. The idea of
their approach is that as the system has several versions, it is harder
to �gure out for the attackers which version they are attacking.
Therefore, they have less chance to succeed in their attack, which
increases the system’s security. Persaud et al. [36] used software
redundancy by using Genetic Algorithms to enhance the security of
the system. Cigsar et al. [16] considered software multi-versioning
as an approach to improve the reliability of repairable systems.
Gracie et al. [25] stated that there have been designs for using re-
dundancy for safety purposes. Gorbenko et al. [24] used software
multi-versioning for a web service to extend its functionality and
improve its attributes such as availability and reliability.

7.2 Software Multi-Versioning for
Containerized Systems

In containerized systems, software multi-versioning has been used
mostly for purposes such as enhancing the fault tolerance. [42; 45],
security, and reliability [44] of the systems. For example, Wang et
al. [42] suggested the idea of applying multi-versioning to critical
components of cloud-based software to improve the fault tolerance
of the system. Wang et al. proposed an approach to �nd the critical
components of the system and apply software multi-versioning
only to those critical components to reduce the cost and complexity
of software multi-versioning while improving the system’s fault
tolerance. Also, Zheng et al. showed that software multi-versioning
can be used to improve the reliability [44] and fault tolerance [45]
of service-oriented systems. However, the choice of using multi-
versioning can a�ect the quality of service of the system. Therefore,
Zheng et al. formulated the reliability requirements as an optimiza-
tion problem and proposed a heuristic algorithm to maintain the
quality of the system by solving this optimization problem.

All prior studies on applying software multi-versioning to con-
tainerized software systems focused on improving the reliability of
a system. We are the �rst to study the bene�ts of software multi-
versioning for satisfying the performance requirements of a system.

7.3 Performance Engineering of Containerized
Systems

Recently, performance engineering researchers have started to
study performance engineering for microservices. For example,
Heinrich et al. gave an overview of the challenges of performance
engineering microservices [26]. They identi�ed performance test-
ing, monitoring and modeling of microservices as the main perfor-
mance engineering challenges. Performance testing microservices
is challenging, as the services are developed and maintained inde-
pendently. Therefore, Camargo et al. [18] presented an approach

to automate the performance testing for microservices. In this ap-
proach, eachmicroservice provides a test speci�cation that was used
for performing the tests. Jindal et al. [27] addressed performance
modeling of microservices by capacity planning. They identi�ed
a microservice’s capacity to �nd the appropriate resource needed
for the microservices. As a result, the system would not violate the
performance requirements. Amaral et al. [5] studied two models
for microservices architecture using containers. They compared
the performance of CPU and network for the master-slave and
nested-container models to provide a guide for system designers.

A large body of the existing performance engineering work for
containerized systems is about the performance of cloud systems.
As performance engineering for cloud systems is a very broad topic,
a thorough discussion of this body of work is outside the scope of
this paper, and we refer the reader to one of the excellent surveys
on this topic, e.g., the ones by Xu et al. [43] or Nuaimi et al. [4].
Also, Ruan et al. [38] studied the performance of cloud systems by
using containers from di�erent perspectives.

8 THREATS TO VALIDITY
In this paper, we studied how software multi-versioning can help
to satisfy the performance requirements of containerized software
systems. In this section, we discuss the threats to the validity of
this study.

8.1 External Validity
The Choice of Subject Systems.We studied two open source ap-
plications, one ofwhich is amicroservices application (the TeaStore
application), and the other is a more traditional three-tier applica-
tion (the Znn application). The Znn application is not originally a
containerized application, although based on our experience, many
three-tier applications are containerized in a similar manner as
we did in this study. While we aimed to select systems that are
representative for larger groups of systems, future studies should
investigate how well software multi-versioning works for a wider
range of systems, such as industrial systems.

8.2 Internal Validity
The Choice of Performance Requirements. The performance
requirements that we used in our experiments were de�ned em-
pirically based on the ideal and worst case experiments. As our
purpose in this paper is to demonstrate the e�cacy of software
multi-versioning to satisfy performance requirements, the exact
values of the requirements do not matter much. There could exist
characteristics that make some requirements more di�cult to sat-
isfy than others. For example, if a light weight version of a service
already has di�culties to satisfy a performance requirement given
the available resources, software multi-versioning will not help
much (since the load balancer will simply divert all tra�c to the
light weight version). Hence, future studies should further inves-
tigate how the choice of performance requirements impacts the
e�cacy of software multi-versioning to satisfy those requirements.

The Choice of Load Balancing Rules. As the focus of our
work is to demonstrate the e�cacy of software multi-versioning
for satisfying performance requirements, and not to present a novel
load balancing technique, in our experiments the load balancing
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is done by a simple static approach. Users of DockerMV can easily
adapt the load balancing rules to implement more advanced load
balancing techniques for their own systems, such as those proposed
by Niu et al. [34], Radojevic et al. [37] or Dasguptaat al. [17]. While
our experiments show that the used simple rule sets can already
yield satisfactory results, future studies should investigate how to
optimize the rules on a per-system and per-workload basis.

8.3 Construct Validity
The Choice of Performance Metric.We chose median response
time as our performance metric as it the primary metric that is
used for measuring the user-perceived performance. Future studies
should consider how software multi-versioning can bene�t other
performance metrics, such as CPU utilization or memory usage.

The Overhead of Software Multi-Versioning. We did not
measure the overhead that is added by introducing software multi-
versioning to containerized systems. However, given that the ad-
ditional load balancing is fairly simple and straightforward, there
should not be a signi�cant amount of additional overhead intro-
duced.

9 CONCLUSION
Traditionally, software multi-versioning has been applied only to
mission-critical systems due to the high cost of maintaining mul-
tiple versions of the software. Recently the increase in popularity
of containerized software systems has opened many new oppor-
tunities for the application of software multi-versioning, as the
technique can be applied to smaller parts of these systems.

In this paper, we study how software multi-versioning can help
to satisfy the performance requirements of containerized software
systems. In summary, our paper makes the following contributions:

• A demonstration that software multi-versioning can
e�ectively be applied to satisfy the performance re-
quirements of containerized software systems.We show
through experiments on two open source applications that
software multi-versioning can e�ectively be applied to con-
tainerized systems to satisfy performance requirementswhile
maintaining a quality of service-level that is still acceptable
given the available resources.

• A framework to deploy services with software multi-
versioning. We extended the Docker container platform to
allow the creation of multi-version services. Our DockerMV
platform supports custom rule-based load balancing between
the versions of a service that can be controlled by the ser-
vice developer, and hence is transparent to the other parts
of the system. Our DockerMV implementation is publicly
available [23].

We are one of the �rst ones to study the bene�ts of software
multi-versioning for containerized systems. In particular, we are
the �rst to demonstrate how software multi-versioning can help
to satisfy the performance requirements of such systems. Our ex-
pectation is that our DockerMV platform can help to satisfy other
nonfunctional requirements of containerized software system, such
as dependability, reliability, availability and security requirements.
Hence, future studies can leverage our platform to investigate how

software multi-versioning can be applied to further help satisfy the
nonfunctional requirements of containerized software systems.
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